TDDD14/TDDDS85 Lecture 10:
Equivalence between CFG and PDA

Jonas Wallgren

Abstract

In this lecture will be shown that context free grammars and push down
automata have same power.

1 Introduction

In lecture 7 we introduced CFGs to express languages where there are some de-
pendencies inside the strings that can’t be decribed using regular expressions,
e.g. that brackets match. In lecture 9 we introduced PDAs for the same puropse.
Like we did for regular languages in lecture 4 we will now prove that the au-
tomata and the notation for this new class of languages (CFLs) are equivalent.
This is done in two steps: first the equivalence is proved as an implication in
one direction, then in the other direction. All proofs are sketchy to just give a
hint of the details. The importance doesn’t lie in the proofs but in the existence
of the conversions and their consequences.

Finally there is a comment on DPDAs. We will return to PDAs later when
we compare different classes of languages.

2 CFG—PDA

In this section we prove that given a CFG we can construct a PDA that accepts
the language of the CFG.

The starting point is a grammar G = (N, %, P, S) on Greibach normal form?,
e.g. every rule in P has the form

A — ¢B1Bsy...B,(where c€ ¥,B; € N,n > 0).

Now, create a PDA M = ({¢},%, N, 4, q, S, D), where

e There is just one state.

LAll CFGs can be transformed into Greibach normal form.

e The stack symbols are the nonterminals with the grammar start symbol
as the stack start symbol.

e There are no final states, so acceptance will be by empty stack.

The idea is that when there is a nonterminal on the stack top you choose one of
the grammar rules for that nonterminal, read the a first in its right-hand side,
and “queue” all the B:s on the stack. So, § will for each grammar rule contain

({q,c, A),{q,B1,Ba...By)).

Example 1. Take this grammar, with start symbol E,

E—aX|bX|aY|bY]aYX|bYX]a|b
T—aY|bY]a|b

X—+FE

Y—*T

which is a grammar on Greibach normal form for arithmetic expressions. If
we construct a PDA as above 5 of the 1/ elements in § will be:

0, a, E), (q,Y X)),
Y)

(

(g%, Y), (¢, T)),
(¢, +, X), (¢, E)),
((¢,6,T), (g,€)),
{(g,a, E), {q,€))-

If you, using the grammar, perform the following derivation:
EF=adYX=axTX =axbX =>axb+FE=axb+a
that corresponds to the following next-configuration steps using the PDA:

axb+a, E) —
q,%*b+a YX)
¢,b+a,TX) —
q,+a,X) —
q,a,E) —
q, €, €> and the string is accepted with empty stack.

{4,
(
(
(
(
(

Theorem 1. If a language is defined by a CFG then it is accepted by a PDA.

Proof. Let z,y € ©*,v € N*,A € N. Construct the PDA as above. Then?
A, 2y e (g, 2y,A) > (q,y,7). The grammar is on Greibach normal form
so both each derivation step and each next-configuration step handles one non-
terminal, so this could formally be proved by induction over the number of steps.

2Remember that =, is leftmost derivation.

From this it follows S =, = < (q,2,5) = (g,&,¢), i.e. if a string can be
derived by the CFG it is accepted by the PDA. O

The construction presented above especially eases the induction proof. In
general you don’t need the grammar to be on Greibach normal form. If you just
want to do a transformation of a grammar into a PDA you can allow terminals
on the stack. For every grammar rule A — « let {{q,¢, A), (g,)) be an element
in § and for every nonterminal a let ({q,a,a), (q,€)) be an element in .

3 PDA—-CFG

In this section we prove that given a PDA we can construct a CFG that describes
the language of the PDA. First we will transform a one-state PDA to a grammar,
then we will convert a many-state one to the one-state form.

3.1 A special case

Given a one-state PDA. The only important property of the PDA is its single
state. Its ¥ and I" may overlap. The state may be final or not.

For every element ({q,c, A),{(q,B1B>...B,)) € § let the grammar have the
rule A — ¢B1Bsy...B,. Let the start stack symbol of the PDA be the start
symbol of the CFG.

3.2 The general case

Let the starting point be the PDA M = (Q,%,T,4,s, L, {t}) with one final
state. We see from the construction of M’ in lecture 9 that a PDA M can be
converted into a PDA M’ with just one final state.

Remember from lecture 4 that when converting an NFA to a DFA a state in
the resulting DFA can represent the possiblility of being in several states in the
NFA. In converting a many-state PDA to a one-state one we will in some similar
manner put much information into the stack symbols. The stack symbols will
have names with a structure representing their intended use.

If we with M have (p, z, A) 1\% (g,¢€,¢) we will with our new M’ have

(%, 2, [pAq]) 1\% (*,e,e). Note that [pAg] is just a name. The PDA doesn’t

look at its parts, it can’t reconize them or separate them. But the name is
constructed in such a way that we can handle it easily.

Now we can define M' = ({x}, X, 17,8, %, [sLt],0), where ' = @ xT" x Q and
% is an arbitrarily chosen state name, just to be different from any other state
name. For every element ((p, ¢, A), (qo, B1B2...B,)) € 6 we will have
((*, ¢, [PAgn]), (x, [PBq1l[q1 Bga] - . - [qn-1Baqy]) € 8’ for all q1,q2, ... qn € Q. Yes,
there should be an element in ¢’ for every possible combination of n states in
M.

Lemma 1. If a language is accepted by a many-state PDA it is accepted by a
one-state one.

Proof. Construct M’ as above. Then (p,z, B1Bs...By,) 1_} (Gn,e,€) &
& (x,2, [pB1¢1][q1 B2q2] - - - [gn-1PB1¢xn]) 1\% (x,e,¢) The stack symbols in M’

are named after each step in M, so this could formally be proved by induction
over 1.
From this it follows (s,z, L) 1_} (t,e,e) & (*,x,[sLt]) h—}/ (x,e,¢), l.e. if a

string is accepted by a many-states PDA it is accepted by a one-state one. [

Theorem 2. If a language is accepted by a PDA then it is the language af a
CFG.

Proof. According to Lemma 1 a many-states PDA can be converted to a one-
state one. According to section 3.1 a one-state PDA can be transformed into a
CFG. O

4 DPDA

In a DFA the transition function must be just that, a (total) function that is
defined for all arguments: In any state, for any symbol read, there must be a
state to go to. Sometimes you, somewhat informally, allow the transition to be
a partial function, i.e. undefined for some arguments. See e.g. the solution to
exercise 2 in the first set of home assignments. For PDAs that is the normal
way to handle it.

Definition 1. A deterministic pushdown automaton, DPDA, is a PDA where
0 is a partial function.

So, there is for every state p
e cither at most one ({(p,a, A), (g, 8)) for each symbol a
e ora ((p,e,A),(¢,) in .

If a DPDA accepts x with empty stack it can’t accept xy (y# &) with empty
stack. In other words: A string in the accepted language cannot be a proper
prefix of another string in the language. That is called the prefiz property. We
will in coming lectures see how that is handled by introducing a special end
marker. If the original grammar is S — £|aS (with strings like a, aa, and aaa
where every string is a prefix of other ones) then the rule S — S$ is added
(leading to the strings a$, aa$, aaa$ etc).

More to think about

. In Section 2 we, given a CFG, constructed a (nondeterministic) PDA
recognising the same language as the grammar. Can you find any part in
the construction where nondeterminism is used, or seems to be important?

. Assume that we write a computer program which simulates a PDA (using
a brute force approach which explores all possible transitions). Using
this computer program and the construction in Section 2 we then have a
method for recognising a language represented by a context-free grammar,
by (1) converting the grammar to a PDA, and (2) simulating the PDA on
an input string. Can you think of any weaknesses of this approach? What
happens if we have a complicated grammar (corresponding to the syntax
of a programming language) and an input string consisting of thousands
or millions of symbols (corresponding to a program)?

