
TDDD14/TDDD85 Lecture 10:

Equivalence between CFG and PDA

Jonas Wallgren

Abstract

In this lecture will be shown that context free grammars and push down

automata have same power.

1 Introduction

In lecture 7 we introduced CFGs to express languages where there are some de-
pendencies inside the strings that can’t be decribed using regular expressions,
e.g. that brackets match. In lecture 9 we introduced PDAs for the same puropse.
Like we did for regular languages in lecture 4 we will now prove that the au-
tomata and the notation for this new class of languages (CFLs) are equivalent.
This is done in two steps: first the equivalence is proved as an implication in
one direction, then in the other direction. All proofs are sketchy to just give a
hint of the details. The importance doesn’t lie in the proofs but in the existence
of the conversions and their consequences.

Finally there is a comment on DPDAs. We will return to PDAs later when
we compare different classes of languages.

2 CFG→PDA

In this section we prove that given a CFG we can construct a PDA that accepts
the language of the CFG.

The starting point is a grammar G = 〈N,Σ, P, S〉 on Greibach normal form1,
e.g. every rule in P has the form

A → cB1B2 . . . Bn(where c ∈ Σ, Bi ∈ N,n > 0).

Now, create a PDA M = ({q},Σ, N, δ, q, S, ∅〉, where

• There is just one state.

1All CFGs can be transformed into Greibach normal form.

1

• The stack symbols are the nonterminals with the grammar start symbol
as the stack start symbol.

• There are no final states, so acceptance will be by empty stack.

The idea is that when there is a nonterminal on the stack top you choose one of
the grammar rules for that nonterminal, read the a first in its right-hand side,
and “queue” all the B:s on the stack. So, δ will for each grammar rule contain

〈〈q, c, A〉, 〈q,B1, B2 . . . Bn〉〉.

Example 1. Take this grammar, with start symbol E,

E→aX|bX|aY|bY|aYX|bYX|a|b
T→aY|bY|a|b
X→+E

Y→*T

which is a grammar on Greibach normal form for arithmetic expressions. If

we construct a PDA as above 5 of the 14 elements in δ will be:

〈〈q, a, E〉, 〈q, Y X〉〉,
〈〈q, ∗, Y 〉, 〈q, T 〉〉,
〈〈q,+, X〉, 〈q, E〉〉,
〈〈q, b, T 〉, 〈q, ε〉〉,
〈〈q, a, E〉, 〈q, ε〉〉.

If you, using the grammar, perform the following derivation:

E ⇒ aY X ⇒ a ∗ TX ⇒ a ∗ bX ⇒ a ∗ b+ E ⇒ a ∗ b+ a

that corresponds to the following next-configuration steps using the PDA:

〈q, a ∗ b+ a,E〉 →
〈q, ∗b+ a, Y X〉 →
〈q, b+ a, TX〉 →
〈q,+a,X〉 →
〈q, a, E〉 →
〈q, ε, ε〉 and the string is accepted with empty stack.

Theorem 1. If a language is defined by a CFG then it is accepted by a PDA.

Proof. Let z, y ∈ Σ∗, γ ∈ N∗, A ∈ N . Construct the PDA as above. Then2

A
n
⇒lm zγ ⇔ 〈q, zy,A〉

n
→ 〈q, y, γ〉. The grammar is on Greibach normal form

so both each derivation step and each next-configuration step handles one non-
terminal, so this could formally be proved by induction over the number of steps.

2Remember that ⇒lm is leftmost derivation.

2

From this it follows S
∗

⇒lm x ⇔ 〈q, x, S〉
∗

→ 〈q, ε, ε〉, i.e. if a string can be
derived by the CFG it is accepted by the PDA.

The construction presented above especially eases the induction proof. In
general you don’t need the grammar to be on Greibach normal form. If you just
want to do a transformation of a grammar into a PDA you can allow terminals
on the stack. For every grammar rule A → α let 〈〈q, ε, A〉, 〈q, α〉〉 be an element
in δ and for every nonterminal a let 〈〈q, a, a〉, 〈q, ε〉〉 be an element in δ.

3 PDA→CFG

In this section we prove that given a PDA we can construct a CFG that describes
the language of the PDA. First we will transform a one-state PDA to a grammar,
then we will convert a many-state one to the one-state form.

3.1 A special case

Given a one-state PDA. The only important property of the PDA is its single
state. Its Σ and Γ may overlap. The state may be final or not.

For every element 〈〈q, c, A〉, 〈q,B1B2 . . . Bn〉〉 ∈ δ let the grammar have the
rule A → cB1B2 . . . Bn. Let the start stack symbol of the PDA be the start
symbol of the CFG.

3.2 The general case

Let the starting point be the PDA M = 〈Q,Σ,Γ, δ, s,⊥, {t}〉 with one final
state. We see from the construction of M’ in lecture 9 that a PDA M can be
converted into a PDA M’ with just one final state.

Remember from lecture 4 that when converting an NFA to a DFA a state in
the resulting DFA can represent the possiblility of being in several states in the
NFA. In converting a many-state PDA to a one-state one we will in some similar
manner put much information into the stack symbols. The stack symbols will
have names with a structure representing their intended use.

If we with M have 〈p, x,A〉
n
→
M

〈q, ε, ε〉 we will with our new M’ have

〈∗, x, [pAq]〉
n
→
M ′

〈∗, ε, ε〉. Note that [pAq] is just a name. The PDA doesn’t

look at its parts, it can’t reconize them or separate them. But the name is
constructed in such a way that we can handle it easily.

Now we can define M ′ = 〈{∗},Σ,Γ′, δ′, ∗, [s⊥t], ∅〉, where Γ = Q×Γ×Q and
∗ is an arbitrarily chosen state name, just to be different from any other state
name. For every element 〈〈p, c, A〉, 〈q0, B1B2 . . . Bn〉〉 ∈ δ we will have
〈〈∗, c, [pAqn]〉, 〈∗, [pBq1][q1Bq2] . . . [qn−1Bqn]〉 ∈ δ′ for all q1, q2, . . . qn ∈ Q. Yes,
there should be an element in δ′ for every possible combination of n states in
M.

3

Lemma 1. If a language is accepted by a many-state PDA it is accepted by a

one-state one.

Proof. Construct M’ as above. Then 〈p, x,B1B2 . . . Bn〉
n
→
M

〈qn, ε, ε〉 ⇔

⇔ 〈∗, x, [pB1q1][q1B2q2] . . . [qn−1pB1qn]〉
n
→
M ′

〈∗, ε, ε〉 The stack symbols in M’

are named after each step in M, so this could formally be proved by induction
over n.

From this it follows 〈s, x,⊥〉
∗

→
M

〈t, ε, ε〉 ⇔ 〈∗, x, [s⊥t]〉
∗

→
M ′

〈∗, ε, ε〉, i.e. if a

string is accepted by a many-states PDA it is accepted by a one-state one.

Theorem 2. If a language is accepted by a PDA then it is the language af a

CFG.

Proof. According to Lemma 1 a many-states PDA can be converted to a one-
state one. According to section 3.1 a one-state PDA can be transformed into a
CFG.

4 DPDA

In a DFA the transition function must be just that, a (total) function that is
defined for all arguments: In any state, for any symbol read, there must be a
state to go to. Sometimes you, somewhat informally, allow the transition to be
a partial function, i.e. undefined for some arguments. See e.g. the solution to
exercise 2 in the first set of home assignments. For PDAs that is the normal
way to handle it.

Definition 1. A deterministic pushdown automaton, DPDA, is a PDA where

δ is a partial function.

So, there is for every state p

• either at most one 〈〈p, a,A〉, 〈q, β〉〉 for each symbol a

• or a 〈〈p, ε, A〉, 〈q′, β′〉〉 in δ.

If a DPDA accepts x with empty stack it can’t accept xy (y 6= ε) with empty
stack. In other words: A string in the accepted language cannot be a proper
prefix of another string in the language. That is called the prefix property. We
will in coming lectures see how that is handled by introducing a special end
marker. If the original grammar is S → ε|aS (with strings like a, aa, and aaa
where every string is a prefix of other ones) then the rule S′ → S$ is added
(leading to the strings a$, aa$, aaa$ etc).

4

5 More to think about

1. In Section 2 we, given a CFG, constructed a (nondeterministic) PDA
recognising the same language as the grammar. Can you find any part in
the construction where nondeterminism is used, or seems to be important?

2. Assume that we write a computer program which simulates a PDA (using
a brute force approach which explores all possible transitions). Using
this computer program and the construction in Section 2 we then have a
method for recognising a language represented by a context-free grammar,
by (1) converting the grammar to a PDA, and (2) simulating the PDA on
an input string. Can you think of any weaknesses of this approach? What
happens if we have a complicated grammar (corresponding to the syntax
of a programming language) and an input string consisting of thousands
or millions of symbols (corresponding to a program)?

5

