Examination Formal Languages and Automata Theory TDDD14 & TDDD85

(Formella Språk och Automatateori)

$2019 – 10 – 31, \ 14.00 - 18.00$

- 1. Allowed help materials
 - A sheet of notes 2 sided A5 or 1 sided A4. The contents is up to you. Return the notes together with the exam.
 - English dictionary

′ Tillåtna hjälpmedel:

- Ett papper med valfria anteckningar 2 sidor A5 eller 1 sida A4. Anteckningarna ska bifogas tentamen vid inlämnandet.
- Engelsk ordbok
- 2. You may answer in Swedish or English.
- 3. The maximum number of points is 34. The grades are as follows:

Grade	TDDD14	TDDD85
3	18-24	15 - 21
4	25 - 29	22 - 27
5	30 - 34	28 - 34

4. Jour (contact person): Victor Lagerkvist, tel. +46730817584

GOOD LUCK !

Make sure that you justify your answers! Unexplained answers will be granted 0 points. (For instance, if you are writing a grammar for a given language then you should also explain that the grammar indeed generates the language. If you apply some known method then you should explain each step. And so on.)

- 1. (4p) Give regular expressions for each of the following subsets of $\{0,1\}^*$. The expressions should be as simple as possible. Clearly state any assumptions you make.
 - (a) $\{x \mid x \text{ contains an even number of } 0's\},\$
 - (b) $\{x \mid x \text{ contains an odd number of } 1's\},\$
 - (c) $\{x \mid x \text{ contains an even number of } 0$'s or an odd number of 1's},
 - (d) $\{x \mid x \text{ contains two consecutive 0's but not three consecutive 0's}\}$.
- 2. (4p) The NFA with ϵ transitions N is defined via the transition function

	ϵ	a	b
$\rightarrow 1$	{2}	{3}	{3}
2	Ø	$\{1,4\}$	{3}
$3\mathrm{F}$	{4}	Ø	Ø
4	Ø	Ø	$\{2\}$

Recall that \rightarrow indicates the start state, and that F indicates an accept/final state.

- (a) Draw the transition diagram for N.
- (b) Using a standard method, construct an equivalent DFA M.
- 3. (4p) Using a standard method, construct a regular expression defining the same language as the DFA whose transition function δ is given by

	a	b
$\rightarrow A$	A	C
$B \mathrm{F}$	A	B
$C \ F$	B	A

Recall that \rightarrow indicates the start state, and that F indicates an accept/final state.

4. (4p) Show that the following DFA has a minimal number of states or construct an equivalent DFA with a minimal number of states. Use the minimization algorithm from the course.

- 5. (6p) Consider the language P consisting of all properly balanced parenthesis. That is, strings over (and) where each left parenthesis (has a matching right parenthesis). For example, the strings ((())) and ()() are in P but the string)(() is not.
 - (a) Prove that *P* is context-free by providing a context-free grammar for *P*. Is your grammar unambiguous?
 - (b) Prove that P is not regular by using the pumping lemma for regular languages.
- 6. (8p) Which of the following statements are true, which are false? Why?
 - (a) The union of a regular language and a context-free language is always context-free.
 - (b) The intersection of a regular language and a context-free language is always regular.
 - (c) There exists a recursive language whose complement is not recursive.
 - (d) There exists an algorithm which finds out whether the languages defined by two NFA's are equal.
- 7. (4p) Let A, B and C be languages of which we know that $A \leq_m B$ and $A \leq_m C$ (where $L \leq_m L'$ denotes that there exists a mapping reduction from L to L').
 - (a) Prove or disprove that $A \leq_m B \cup C$ always holds.
 - (b) Prove or disprove that $A \leq_m B \cap C$ always holds.