TDDD12 Databasteknik

Foérelasning 2: Relationsalgebra
och sql

av Juha Takkinen 2008-04-03
Institutionen for datavetenskap (IDA)
Linkdpings universitet

Ljusbilderna baserade pé Elmasri & Navathes original
2008.0403 3

Chapter Outline

* Relational Algebra
* Unary Relational Operations
* Relational Algebra Operations From Set Theory
* Binary Relational Operations
« Additional Relational Operations
* Examples of Queries in Relational Algebra

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 5

Relational Algebra Overview
(continued)

* The algebra operations thus produce new relations
* These can be further manipulated using operations of the same
algebra
* A sequence of relational algebra operations forms a relational
algebra expression
* The result of a relational algebra expression is
also a relation that represents the result of a
database query (or retrieval request)

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 7

LiU

Chapter 6

The Relational Algebra and Calculus

expanding reality

LiU

20080403 4

Relational Algebra Overview

* Relational algebra is the basic set of operations for the relational
model

* These operations enable a user to specify
basic retrieval requests (or queries)

+ The result of an operation is a new relation, which may have been
formed from one or more input relations
* This property makes the algebra “closed” (all objects in relational

algebra are relations)

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 6

Brief History of Origins of Algebra

* Muhammad ibn Musa al-Khwarizmi (800-847 CE)
wrote a book titled al-jabr about arithmetic of
variables
* Book was translated into Latin.

* lts title (al-jabr) gave Algebra its name.
* Al-Khwarizmi called variables “shay”
* “Shay” is Arabic for “thing”.
* Spanish transliterated “shay” as “xay” (“x” was “sh” in
Spain).
* In time this word was abbreviated as x.
* Where does the word Algorithm come from?
* Algorithm originates from “al-Khwarizmi"
* Reference: PBS (
www.pbs.org/empires/islam/innoalgebra.html)

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 8

expanding reality

Database Schema for COMPANY

All examples discussed below refer to the COMPANY database shown here.

Figure 5.7
Referential integrity constraints displayed on the COMPANY relational database schema.

Relational Algebra Overview

EMPLOYEE
[[Fname [Minit [Lname | Ssn [Bdate | Address | Sex | Salary | Superssn [Dno |
)

M— |

[[Dname | Dnumber | Mgr_ssn | Mgr_start_date |

* Relational Algebra consists of several groups of operations
* Unary Relational Operations
* SELECT (symbol: & (sigma))
* PROJECT (symbol: x (pi))
* RENAME (symbol: p (rho))
* Relational Algebra Operations From Set Theory
. HAN?JQ (w), INTERSECTION (n), DIFFERENCE (or

=)
+ CARTESIAN PRODUCT (x)
* Binary Relational Operations
+ JOIN (several variations of JOIN exist)
* DIVISION
 Additional Relational Operations
* OUTER JOINS, OUTER UNION
+ AGGREGATE FUNCTIONS (These compute summa,WA%

DEPT_LOCATIONS

PROJECT

WORKS_ON
[Esen [o [i |
L

DEPENDENT

Essn | Dependent_name | Sex | Bdate | Relationship

information: for example, SUM, COUNT, AVG, MIN,

IDA, TDDD12, f5. 2: Relationsalg. och sal
2008-04-03 9

Unary Relational Operations: Unary Relational Operations:

SELECT SELECT
* The SELECT operation (denoted by o (sigma)) is used to : :
sellect a subse(t’of the tuples from a relation based on a *In general, the select operatlon Is
selection condition.
* The selection condition acts as a filter denoted by G siecion coniion-(R) Where
* Keeps only those tuples that satisfy the qualifying * the symbol @ (sigma) is used to denote the select operator
condition L . * the selection condition is a Boolean (conditional) expression
* Tuples satisfying the condition are selected whereas specified on the attributes of relation R
the other tuples are discarded (filtered out) * tuples that make the condition true are selected
* Examples: * appear in the result of the operation
. gefd the EMPLOYEE tuples whose department number * tuples that make the condition false are filtered out

* discarded from the result of the operation
G ono..« (EMPLOYEE) P

« Select the employee tuples whose salary is greater than

G sacany > 30,000 (EMPLOYEE)

IDA, TDDD12, f6. 2: Relationsalg. och sql IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 1 2008-04-03 12

Figure 5.6
0 COMPANY st onal deabase s ar

Unary Relational Operations:

The ,».z|f»«.n &=
. PROJECT
following
query + PROJECT Operation is denoted by (pi)
+ This operation keeps certain columns (attributes) from a relation
results refer and discards the other columns.
to this + PROJECT creates a vertical partitioning
d b * The list of specified columns (attributes) is kept in each tuple
atabase « The other attributes in each tuple are discarded
state + Example: To list each employee’s first and last name and salary,

the following is used:
T, enave saanv(EMPLOYEE)

IDA, TDDD12, f6. 2: Relationsalg. oct|
2008-04-03

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 14

Unary Relational Operations:
PROJECT (cont'd)

* The general form of the project operation is:
Tatreute st (R)
* = (pi) is the symbol used to represent the project operation
* <attribute list> is the desired list of attributes from relation R.
* The project operation removes any duplicate tuples

* This is because the result of the project operation must be a set
of tuples

* Mathematical sets do not allow duplicate elements.

IDA, TDDD12, f5. 2: Relationsalg. och sal
2008-04-03 15

Examples of applying SELECT and
PROJECT operations

Figure 6.1
Results of SELECT and PROJECT operations. (2) Gons- anp sssy>25000) 0 (010-5 D Satsy>30000) (EMPLOYEE).
(6) T4 Frae Satny (EMPLOYEED. (€) Tese, sy (EMPLOYEE),

(@)

Frame | Mint | Lname | Ssn Baate Address Sex | Salary | Super_ssn |Dno

Frankin | T | Wong | 333445555 | 1955-12-08 | 638 Voss, Houston, TX_ | M | 40000 | 888665555

B

Jennifer | S | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX | F_[43000 | 888665555

N

Ramesh | K | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX| M _|38000 333445555 | 5

® ©
Lname | Fname | Salary Sox | Salary
Smith John 30000 M | 30000
Wong Franklin | 40000 M | 40000
Zelaya | Alcia | 25000 F_| 25000
Wallace | Jennifer | 43000 F | 43000

M

M

M

Nerayan | Ramesh | 38000 38000
English | Joyce | 25000 25000
Jabbar | Ahmad | 25000 55000
Borg | James | 55000

Unary Relational Operations:
RENAME

* The general RENAME operation p can be expressed by any of the
following forms:

* Psere2....sn)(R) changes both:
* the relation name to S, and
* the column (attribute) names to B1, B1,Bn
* ps(R) changes:
* the relation name only to S
* Per e, 8n)(R) changes:
* the column (attribute) names only to B1, B1, Bn

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 19

Unary Relational Operations:
PROJECT (cont'd)

* PROJECT Operation Properties
« The number of tuples in the result of projection m_, (R) is always
less or equal to the number of tuples in R

« If the list of attributes includes a key of R, then the number of
tuples in the result of PROJECT is equal to the number of
tuples in R

* PROJECT is not commutative

* T gns (T g (R)) =T . (R) @s long as <list2> contains the
attributes in <list1>

IDA, TDDD12, 16. 2: Relationsalg. och sql
2008-04-03 16

Single expression versus sequence
of relational operations (Example)

* To retrieve the first name, last name, and salary
of all employees who work in department number
5, we must apply a select and a project operation

* We can write a single relational algebra
expression as follows:

* Tenave, inave, saLarv(© ono=s(EMPLOYEE))

* OR We can explicitly show the sequence of
operations, giving a name to each intermediate
relation:

S DEP5_EMPS k- 6 oo EMPLOYEE)

* RESULT « T ryaue, nave, saary (DEPS_EMPS)

IDA, TDDD12, fo. 2: Relationsalg. och sql
2008-04-03 18

Unary Relational Operations:
RENAME (cont'd)
« For convenience, we also use a shorthand for renaming attributes in an
intermediate relation:
* If we write:
* RESULT « T cyae, Lnave, saary (DEPS_EMPS)
* RESULT will have the same attribute names
as DEP5_EMPS (same attributes as

EMPLOYEE)
* If we write:
* RESULT (F, M, L, S, B, A, SX, SAL, SU,
DNO)« P fesuur (s B ASKSALSU,0NO)

(DEP5_EMPS)

* The 10 attributes of DEP5_EMPS are
renamedto F, M, L, S, B, A, SX, SAL, SU,
DNO, respectively

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 20

Relational Algebra Operations from
Set Theory: UNION

* Example:

* To retrieve the social security numbers of all
employees who either work in department 5 (RESULT1
below) or directly supervise an employee who works in
department 5 (RESULT2 below)

* We can use the UNION operation as follows:

DEP5_EMPS « Goyo.s (EMPLOYEE)
RESULT1 « 1 4\ (DEP5_EMPS)
RESULT2(SSN) Tigpenssn(DEP5_EMPS)

RESULT « RESULT1 U RESULT2
* The union operation produces the tuples that are in
either RESULT1 or RESULT2 or botl

Relational Algebra Operations from
Set Theory: UNION

= UNION Operation
* Binary operation, denoted by U

* Theresult of RuU S, is a relation that includes all tuples that are
eitherin R orin S or in both Rand S

* Duplicate tuples are eliminated
* The two operand relations R and S must be
“type compatible” (or UNION compatible)
* R and S must have same number of attributes
* Each pair of corresponding attributes must be
type compatible (have same or compatible
domains)

IDA, TDDD12, 16. 2: Relationsalg. och sql
2008-04-03 22

IDA, TDDD12, f5. 2: Relationsalg. och sal
2008-04-03 21

Relational Algebra Operations from

Set Theory

* Type Compatibility of operands is required for the
binary set operation UNION v, (also for
INTERSECTION n, and SET DIFFERENCE —, see
next slides)

Example of the result of a UNION
operation

* UNION Example

Figure 6.3 RESULT! RESULT2 RESULT * R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type
Result of the com atlble If
¥ UNION operation Ssn Ssn Ssn p .
RESULT ¢ RESULT1 123456789 333445555 123456789 * they have the same number of attributes, and
RESULT2. . . .
v 333445555 333445655 * the domains of corresponding attributes are type
jg:j::;; jg‘;j:;;‘;‘; compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n
* The resulting relation for R1UR2 (also for R1nR2,

or R1-R2, see next slides) has the same attribute
names as the first operand relation R1 (by
convention)

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 24

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 Ed

Relational Algebra Operations from
Set Theory: INTERSECTION

*INTERSECTION is denoted by N

* The result of the operation RN S, is a
relation that includes all tuples that are
in both R and S
* The attribute names in the result will be

the same as the attribute names in R

* The two operand relations R and S

must be “type compatible”

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 2

Relational Algebra Operations from Set
Theory: SET DIFFERENCE (cont'd)

* SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by —

* The result of RS, is a relation that includes all tuples that are in R
but not in S

* The attribute names in the result will be
the same as the attribute names in R
* The two operand relations R and S
must be “type compatible”

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 2

Example result of UNION, INTERSECT, and DIFFERENCE

(a) STUDENT INSTRUCTOR

Fn Ln Fname | Lname ® Fn Ln
Susan | Yao John Smith Susan | Yao
Ramesh | Shah Ricardo | Browne Ramesh | Shah
Johnny | Kohler Susan | Yao Johnny | Kohler
Barbara | Jones Francis Johnson Barbara | Jones
Amy Ford Ramesh | Shah Amy Ford
Jimmy Wang Jimmy Wang
Emest_| Gilbert Emest_| Gilbert
John Smith

Ricardo | Browne

Francis | Johnson

© [F [tn | @ Fn Ln @ [Frame | Lname
| Susan | Yao | Johnny | Kohler John Smith
| Ramesh | shah | Barbara | Jones Ricardo | Browne
Amy Ford Francis | Johnson
Jimmy | Wang
Emest | Gilbert

Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.

(b) STUDENT U INSTRUCTOR. (¢) STUDENT INSTRUCTOR. (d) STUDENT — INSTRUCTOR.
(e) INSTRUCTOR — STUDENT.

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont'd)

* Generally, CROSS PRODUCT is not a meaningful operation
+ Can become meaningful when followed by other operations
* Example (not meaningful):
* FEMALE_EMPS « 6 _(EMPLOYEE)
« EMPNAMES T tyave, inavie, ssv (FEMALE_EMPS)
* EMP_DEPENDENTS «- EMPNAMES x DEPENDENT
* EMP_DEPENDENTS will contain every
combination of EMPNAMES and DEPENDENT
* whether or not they are actually related

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 2

IAN PRODUCT (CROSS PRODUCT) cporation

Example of
applying
CARTE-
SIAN
PRODUCT

FemaLe emps

IDA, TDDD12, fo. 2: F
2008-04-03

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT

* CARTESIAN (or CROSS) PRODUCT Operation

* This operation is used to combine tuples from two
relations in a combinatorial fashion.

* Denoted by R(A1, A2, ..., An) x S(B1, B2, .. ., Bm)

* Resultis a relation Q with degree n + m attributes:
* Q(A1,A2,.. ., An,B1,B2,.. ., Bm),inthat order.

* The resulting relation state has one tuple for each
combination of tuples—one from R and one from S.

* Hence, if R has ng tuples (denoted as |[R| =ng), and S
has ng tuples, then R x S will have ng * ng tuples.

* The two operands do NOT have to be "type
compatible”

IDA, TDDD12, 16. 2: Relationsalg. och sql
2008-04-03 28

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont'd)

* To keep only combinations where the DEPENDENT is related to the
EMPLOYEE, we add a SELECT operation as follows

* Example (meaningful):
* FEMALE_EMPS « 06 ,_(EMPLOYEE)
* EMPNAMES < & tyaye, inave, ssn (FEMALE_EMPS)
* EMP_DEPENDENTS « EMPNAMES x DEPENDENT
* ACTUAL_DEPS « © gy ssn(EMP_DEPENDENTS)
* RESULT « T ryane, cnmve, DEPENDENT_NAME
(ACTUAL_DEPS)

RESULT will now contain the name of female
employees and their dependents

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 30

Binary Relational Operations: JOIN

* JOIN Operation (denoted by 1<)

* The sequence of CARTESIAN PRODECT followed by
SELECT is used quite commonly to identify and select
related tuples from two relations

* A special operation, called JOIN combines this
sequence into a single operation

* This operation is very important for any relational
database with more than a single relation, because it
allows us combine related tuples from various
relations

* The general form of ad'oin o{)eration on two relations
R(AT, A2, ..., An)and S(B1, B2, ..., Bm)is:

D Goin condition=S

* where R and S can be any relations that result from

general relational algebra expressions.

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 32

Binary Relational Operations: JOIN
(cont'd)

* Example: Suppose that we want to retrieve the
name of the manager of each department.

* To get the manager’s name, we need to combine each
DEPARTMENT tfuple with the EMPLOYEE tuple whose
SSN value matches the MGRSSN value in the
department tuple.

* We do this by using the join ~< operation.

+ DEPT_MGR « DEPARTMENT P, ou.con EMPLOYEE
* MGRSSN=SSN is the join condition

* Combines each department record with the employee
who manages the department

* The join condition can also be specified as
DEPARTMENT.MGRSSN= EMPLOYEE.SSN

IDA, TDDD12, f5. 2: Relationsalg. och sal
2008-04-03 a3

Some properties of JOIN

* The general case of JOIN operation is called a Theta-join:
RIX]| s
theta
* The join condition is called theta

* Theta can be any general boolean expression on the attributes of R
and S; for example:

+ R.Ai<S.Bj AND (R.Ak=S.BI OR R.Ap<S.Bq)

* Most join conditions involve one or more equality conditions
“AND’ed together; for example:

* R.Ai=S.Bj AND R.Ak=S.BI AND R.Ap=S.Bq

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 35

Binary Relational Operations:
NATURAL JOIN Operation

* NATURAL JOIN Operation

* Another variation of JOIN called NATURAL JOIN —
denoted by * — was created to get rid of the second
(superfluous) attribute in an EQUIJOIN condition.
* because one of each pair of attributes with identical

values is superfluous

* The standard definition of natural join requires that the
two join attributes, or each pair of corresponding join
attributes, have the same name in both relations

« If this is not the case, a renaming operation is applied
first.

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 a7

Example of applying the JOIN operation

DEPT_MGR
Dname Dnumber Mgr_ssn Fname | Minit | Lname Ssn
Research 5 333445656 | - | Frankin | T | Wong | 333445555
4 987654321 Jennifer | S | Wallace | 987654321
Headquarters 1 888665555 James E Borg 888665555

Figure 6.6
Result of the JOIN operation

DEPT_MGR ¢ DEPARTMENT }X] ,rcons00 EMPLOYEE

IDA, TDDD12, 16. 2: Relationsalg. och sql
2008-04-03 a4

Binary Relational Operations: EQUIJOIN

* EQUIJOIN Operation

* The most common use of join involves join conditions with equality
comparisons only

* Such a join, where the only comparison operator used is =, is called
an EQUIJOIN.

* In the result of an EQUIJOIN we always have one or more pairs of
attributes (whose names need not be identical) that have identical
values in every tuple.

* The JOIN seen in the previous example was an EQUIJOIN.

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 36

Binary Relational Operations NATURAL
JOIN (cont'd)

« Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
* DEPT_LOCS « DEPARTMENT * DEPT_LOCATIONS

* Only attribute with the same name is DNUMBER

* An implicit join condition is created based on this attribute:
DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

* Another example: Q « R(A,B,C,D) * S(C,D,E)
* The implicit join condition includes each pair of attributes with
the same name, “AND"ed together:
* R.C=S.C AND R.D.S.D
* Result keeps only one attribute of each such pair:
* Q(AB,C,DE)

IDA, TDDD12, f6. 2: Relationsalg. och sql

2008-04-03 38

Example of NATURAL JOIN operation)) .
Binary Relational Operations: DIVISION

(@
PROJ_DEPT
Prame. Prumber | Plocation | Dnum | Dname Mgrssn | Mor_start_date . ;
ProductX 1 Belaire 5 | Research 333445555 | 19880522 D|V|S|(.).N.Operalloh 5 . .
ProductY 2 Sugarland | 5 | Research 333445655 | 10880522 * The division operation is applied to two relations
ProductZ 3 Houston 5 Research 333445555 | 1988-05-22 . R(Z) = S(X), where X subset Z. LetY =2 - X
G 10 Stafford 4 987654321 | 1995-0101 (and hence Z = X U Y); that is, let Y be the set of
Reorganization 20 Houston 1 Headquarters | 888665555 | 1981-06-19 attributes of R that are not attributes of S.
Newbenefits 30 Stafford 4 987654321 1995-01-01
) * The result of DIVISION is a relation T(Y) that includes
DEPT_LOCS atuple t if tuples t; appear in R with t; [Y] = t, and with
Dname Dnumber | Magr_ssn Mgr_start date | Location « 1, [X] = t, for every tuplet, in S.
Headquarters 1 888665555 | 1981:06-19 Houston
4 987654321 Stafford
Research 5 333445555 Bolaire * For atuple t to appear in the result T of the DIVISION,
Research 5 333445555 Sugarland the values in t must appear in R in combination with
Research 5 333446555 | 1988-05-22 Houston every tuple in S.
Figure 6.7
Results of two NATURAL JOIN operations.
(2) PROJ_DEPT ¢~ PROJECT * DEPT. IDA, TDDD12, f6. 2: Relationsalg. och sql
(1) DEPT_LOCS ¢ DEPARTMENT # DEPT_LOCATIONS. 2008-04-03 40
Table 6.1
Cperations of Relatonal Algebra
Example of DIVISION Recap e ren
SELECT Selects all tuples that satisfy the selection condition
@ ® Of Re’ I’mm‘q nl:h':n [e ! ' -
SSN_PNOS SMITH_PNOS R s
lational eroscr Produces a new relation with only some of the Resnrtme (R
Essn Pno [P] A | B A] Alge- attributes of R, and removes duplicate Luples.
123456789 [1 1 at [b1 | [at | THETAJON Produces allcombinations of wples from R, and R,
123456789 | 2] a2 | bt bra hat satisfy the join condition.
666884444 | 3 B | b1 [| Ope- eauuon :ln:;lnltc:‘alll the (():lhu;.a‘u;m: of llltyvph;“) from ‘l(l‘ and
! , that satisfy a join condition with only equali
453453453 | 1 a4 | bt rations comparisons v
453453453 | 2 SSNS al | b2 T NATURALJOIN Same as EQUUOIN except that the join attributes of R,
333445565 | 2 [ssn] a3 | b2 are not included in theresuling elation; f the join
attributes have the same names, they do not have to
333445555 | 3 | 123456789 | a2 | b3 be specified at all.
333445565 | 10 453453453 | a3 | b3 UNION es a relation that includes all the tuples in R
333445555 | 20 o | b3 both R, and Ry R, and R, must be union
999887777 | SO al | bd INTERSECTION arelation that includes al the twples inboth R, R,
999887777 10 a2 | b4 3 Ry and R, must be union compatible.
987987987 | 10 a3 | b4 DIFFERENGE s a relation that includes all the tuples in BB
987987987 30 R;; R, and R, must be union
987654321 30
CARTESIAN tes of R, and Ry xRy
987654321 20 PRODUCT mbinations
20
owision Produces a relation R(X) that includes all wples fX] Ry(Z) + Ry(¥)
Figure 6.8 IDA, TDDD12, f¢ in R,(Z) that appear in R, in combination with every

tuple from Ry(Y), where Z= XU Y.

2008-04-03

The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) 7~ R+ S.

Additional Relational Operations:

Aggregate Function Operation Using Grouping with Aggregation

* The previous examples all summarized one or
more attributes for a set of tuples
* Maximum Salary or Count (number of) Ssn

* Grouping can be combined with Aggregate
Functions

* Example: For each department, retrieve the DNO,
COUNT SSN, and AVERAGE SALARY

* A variation of aggregate operation 7 allows this:
* Grouping attribute placed to left of symbol
* Aggregate functions to right of symbol
* N0 TGOUNT SSN, AVERAGE Salary (EMPLOYEE)

* Above operation %roups employees bK DNO
(department number) and computes the count of
employees and average salary per department

* Use of the Aggregate Functional operation 7

* Fuaxsaay (EMPLOYEE) retrieves the maximum salary
value from the EMPLOYEE relation

* Fyin saay (EMPLOYEE) retrieves the minimum Salary
value from the EMPLOYEE relation

* Fsumsaay (EMPLOYEE) retrieves the sum of the Salary
from the EMPLOYEE relation

* Toount ssw, averace saary (EMPLOYEE) computes the
count (number) of employees and their average salary

* Note: count just counts the number of rows, without
removing duplicates

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 43

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 44

lllustrating aggregate functions and
grouping

Examples of applying aggregate
functions and grouping

Figure 6.10
The aggregate function operation. Figure 8.6
(8) Prcns Results of GROUP BY and HAVING. (a) 024. (b) 026.

s eage- s (0n0 S CONT 5o, s sy (EMPLOYEE))
v, (EMPLOYEE)

(6) 510 3 counr i
(€) S count sen sverase sainy (EMPLOYEE),
() {Fname [Minit | Lname Ssn Salary | Super_ssn | Dno Dno | Count (*) | Avg (Salary)
R John | B |Smi | 123456789 | | 30000 | 333445555 | 5 5| 4 33250
@ [Dno | No_of_employees | Average_sal ®) [Dno [Count_ssn Average_salary. Frankin | T [Wong | 333445555 | | 40000 agseessss | 5 4|3 31000
5 4 33250 5 4 33250 Ramesh| K | Narayen | 666884444 | | 38000 | 333445555 | 5 1 1 55000
4 3 31000 4 3 31000 Joyce | A |Engish | 453453453 |---| 25000 | 333445555 | 5 Result of 024
1 1 55000 1 1 55000 Aida |) |2eaya | 990887777 | [25000 | seresazat [4 1]
Jennier | S| Walace | 987654321 | [43000 | 888665655 | 4
© ey Ahmad | V[abbar | oereeroer | [26000 oarosaszt [4 | |
s James | E | Bong | 88Be65565 | | 55000 | NULL 1

35125

Grouping EMPLOYEE tuples by the value of Dno

IDA, TDDD12, 16. 2: Relationsalg. och sql
2008-04-03 6

IDA, TDDD12, f5. 2: Relationsalg. och sal
2008-04-03 a5

Additional Relational Operations (cont'd) Additional Relational Operations (cont'd)

* The OUTER JOIN Operation

* In NATURAL JOIN and EQUIJOIN, tuples without a RESULT Figure 6.12
matching (or related) tuple are eliminated from the join - The result of a
result f”:me M;‘" 'S-"a:e NU[L’:a”‘e LEFT OUTER JOIN
* Tuples with null in the join attributes are also eliminated o il operation.

. . . Franklin T Wong Research
* This amounts to loss of information. ‘Aicia] Zolya | NULL
+ The left outer join operation keeps every tuple in the first or left . "
relation R in R_PX|'S; if no matching tuple is found in S, then the Jennifer S | Wallace | Administration
attributes of S in the join result are filled or “padded” with null values. Ramesh K Narayan | NULL
A similar operation, right outer join, keeps every tuple in the second Joyce A English | NULL
or right relation S in the result of R S. Ahmad v Jabbar NULL
A third operation, full outer join, denoted by :DQ: keeps all tuples James E Borg Headquarters

in both the left and the right relations when no matching tuples are
found, padding them with null values as needed.

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 a7

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 48

Additional Relational Operations (cont'd) Additional Relational Operations (cont'd)
* OUTER UNION Operations
* The outer union operation was developed to take the union of
tuples from two relations if the relations are not type compatible.
* This operation will take the union of tuples in two relations R(X, Y)

* Example: An outer union can be ?%)Iied to two
relations whose schemas are STUDENT(Name,
SSN Degartmenl, Advisor) and
INSTRU TOR(Name, SSN, Department, Rank).

and S(X, Z) that are partially compatible, meaning that only
some of their attributes, say X, are type compatible.

* The attributes that are type compatible are represented only once
in the result, and those attributes that are not type compatible from
either relation are also kept in the result relation T(X, Y, Z).

IDA, TDDD12, f6. 2: Relationsalg. och sql
20080403 49

* Tuples from the two relations are matched based on
having the same combination of values of the shared
attributes— Name, SSN, Department.

* If a student is also an instructor, both Advisor and Rank
will have a value; otherwise, one of these two attributes
will be null.

* The result relation STUDENT_OR_INSTRUCTOR will
have the following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN,

Department, Advisor, Rank)

IDA, TDDD12, f6. 2: Relationsalg. och sql
2008-04-03 50

Examples of Queries in Relational
Algebra: Procedural Form

Examples of Queries in Relational
Algebra — Single expressions

= QI: Retrieve the name and address of all employees who work for
the ‘Research’ department.
RESEARCH_DEPT ¢ @ DNAME="Research’ (DEPARTMENT)
RESEARCH_EMPS « (RESEARCH_DEPTP><I = EMPLOYEE)

RESULT ¢ TU inaMme, LName, appress (RESEARCH_EMPS)

As a single expression, these queries become:

= QI: Retrieve the name and address of all employees who work for
the ‘Research’ department.

TC name, Lname, Aderess (O Dname= "Research’

(DEPARTMENT 5<ibnumber-bno(EMPLOYEE))

= Q6: Retrieve the names of employees who have no dependents.
ALL_EMPS « Tt ss\(EMPLOYEE)

= Q6: Retrieve the names of employ who have no d
T ame, framol (T son (EMPLOYEE) — p ¢, (7 Essn
(DEPENDENT))) * EMPLOYEE)

EMPS_WITH_DEPS(SSN) <— T essn(DEPENDENT)
EMPS_WITHOUT_DEPS « (ALL_EMPS - EMPS_WITH_DEPS)
RESULT ¢ T LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

IDA, TDDD12, f5. 2: Relationsalg. och sal
2008-04-03 51

IDA, TDDD12, 16. 2: Relationsalg. och sql
2008-04-03 52

Data Definition, Constraints, and Schema

Chapter 8 oo

*Used to CREATE, DROP, and ALTER the descriptions of
the tables (relations) of a database

SQL-99: SchemaDefinition, Constraints, and Queries and Views

expanding reality

Liu

CREATE TABLE CREATE TABLE

*In SQL2, can use the CREATE TABLE command for specifying the primary key

attributes, secondary keys, and referential integrity constraints (foreign keys).

*Key attributes can be specified via the PRIMARY KEY and UNIQUE phrases
CREATE TABLE DEPT (

*Specifies a new base relation by giving it a name, and
specifying each of its attributes and their data types
(INTEGER, FLOAT, DECIMAL(i,j), CHAR(n),
VARCHAR(n))

*A constraint NOT NULL may be specified on an attribute DNAME VARCHAR(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
CREATE TABLE DEPARTMENT (MGRSSN CHAR(9),
DNAME VARCHAR (10) NOT MGRSTARTDATE CHAR(9),
NULL, PRIMARY KEY (DNUMBER),
DNUMBER INTEGER NOT NULL, UNIQUE (DNAME),
MGRSSN CHAR (9 FOREIGN KEY (MGRSSN) REFERENCES EMP);

(9)
MGRSTARTDATE CHAR(9));

DROP TABLE

*Used to remove a relation (base table) and its definition

&Y °The relation can no longer be used in queries, updates, or
any other commands since its description no longer exists

*Example:

DROP TABLE DEPENDENT;

Features Added in SQL2 and SQL-99

*Create schema

&Y *Referential integrity options

* RESTRICT, CASCADE, SET NULL, and SET
DEFAULT on foreign keys

REFERENTIAL INTEGRITY OPTIONS
(continued)

CREATE TABLE EMP (

ENAME VARCHAR (30) NOT NULL,
ESSN CHAR(9),

BDATE DATE,

DNO INTEGER DEFAULT 1,

SUPERSSN CHAR(9),

PRIMARY KEY (ESSN),

FOREIGN KEY (DNO) REFERENCES DEPT
ON DELETE SET DEFAULT ON UPDATE
CASCADE,

FOREIGN KEY (SUPERSSN) REFERENCES
EMP ON DELETE SET NULL ON UPDATE
CASCADE) ;

ALTER TABLE

*Used to add an attribute to one of the base relations
* The new attribute will have NULLS in all the tuples of

the relation right after the command is executed;
hence, the NOT NULL constraint is not allowed for
such an attribute

*Example:

ALTER TABLE EMPLOYEE ADD JOB

VARCHAR (12) ;

*The database users must still enter a value for the new
attribute JOB for each EMPLOYEE tuple.

* This can be done using the UPDATE command.

REFERENTIAL INTEGRITY OPTIONS

*We can specify RESTRICT, CASCADE, SET NULL or SET
DEFAULT on referential integrity constraints (foreign keys)
CREATE TABLE DEPT (

DNAME VARCHAR (10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),

MGRSTARTDATE CHAR(9),

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (MGRSSN) REFERENCES EMP
ON DELETE SET DEFAULT ON UPDATE CASCADE);

Retrieval Queries in SQL

*SQL has one basic statement for retrieving information
from a database; the SELECT statement
* This is not the same as the SELECT operation of the
relational algebra
*Important distinction between SQL and the formal
relational model:
* SQL allows a table (relation) to have two or more tuples that
are identical in all their attribute values
* Hence, an SQL relation (table) is a multi-set (sometimes
called a bag) of tuples; it is not a set of tuples
*SQL relations can be constrained to be sets by specifying
PRIMARY KEY or UNIQUE attributes, or by using the
DISTINCT option in a query

Retrieval Queries in SQL (cont'd) Retrieval Queries in SQL (cont'd)

*Basic form of the SQL SELECT statement is called a

*A bag or multi-set is like a set, but an element may appear C
mapping or a SELECT-FROM-WHERE block

more than once.
* Example: {A, B, C, A} is abag. {A, B, C} isalso a bag
that also is a set.

SELECT <attribute list>
FROM <table list>

* Bags also resemble lists, but the order is irrelevant in a WHERE <condition>

bag.

* <attribute list> is a list of attribute names whose values are to
be retrieved by the query

* <table list> is a list of the relation names required to process
the query

* <condition> is a conditional (Boolean) expression that
identifies the tuples to be retrieved by the query

*Example:
* {A,B,A} ={B, A, A} as bags
* However, [A, B, A] is not equal to [B, A, A] as lists

Relational Database Schema--Figure 5.5 Popu- [emem o e T —
lated m
Data-
base--
EMPLOYEE Fig.5.6
[P | wwr | onawe | s | moate | aoomess | sox | s | soremson | owo |
DEPARTMENT
o | ouseen | verssn | NersarToNTe |
DEPT_LOCATIONS :
e e
rouecr S = o
[P [ewsem [roemon | oew | = e
WORKS_ON e :
vours -
DEPEN s g "
[cson [ospepent v | sex | oonTe | revsron e
o e

Simple SQL Queries Simple SQL Queries (cont'd)
*Example of a simple query on one relation

*Query 0: Retrieve the birthdate and address of the
employee whose name is 'John B. Smith'.

*Basic SQL queries correspond to using the following
operations of the relational algebra:

* SELECT Q0: SELECT BDATE, ADDRESS
* PROJECT FROM M E

WHERE ~ FNAME="Tohn' AND MINIT=B’
+ JOIN AND LNAME="Smith’

All subsequent examples use the COMPANY database + Similar to a SELECT-PROJECT pair of relational algebra

operations:
* The SELECT-clause specifies the projection attributes and the
WHERE-clause specifies the selection condition
* However, the result of the query may contain duplicate
tuples

Simple SQL Queries (cont'd) Simple SQL Queries (cont'd)

*Query 2: For every project located in ‘Stafford', list the project number,
the controlling department number, and the department manager's last
name, address, and birthdate.

*Query 1: Retrieve the name and address of all employees
who work for the 'Research' department.

Ql: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNUMBER=DNO

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE,

ADDRESS
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN
AND PLOCATION="Stafford"

¢ Similar to a SELECT-PROJECT-JOIN sequence of
relational algebra operations

* (DNAME='Research’) is a selection condition
(corresponds to a SELECT operation in relational algebra)

* (DNUMBER=DNO) is a join condition (corresponds to a
JOIN operation in relational algebra)

* In Q2, there are two join conditions

* The join condition DNUM=DNUMBER relates a project to its
controlling department

* The join condition MGRSSN=SSN relates the controlling
department to the employee who manages that department

6

Aliases, * and DISTINCT, Empty WHERE-

clause ALIASES

*Some queries need to refer to the same relation twice

* In this case, aliases are given to the relation name
*Query 8: For each employee, retrieve the employee's name, and the
name of his or her immediate supervisor.

*In SQL, we can use the same name for two (or more)
& attributes as long as the attributes are in different relations
| *A query that refers to two or more attributes with the same
name must gualify the attribute name with the relation name
by prefixing the relation name to the attribute name

*Example:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S LNAME
FROM EMPLOYEEE S
‘WHERE E.SUPERSSN=S.SSN

* In Q8, the alternate relation names E and S are called aliases or
tuple variables for the EMPLOYEE relation

* We can think of E and S as two different copies of EMPLOYEE; E
represents employees in role of supervisees and S represents
employees in role of supervisors

*EMPLOYEE.LNAME, DEPARTMENT.DNAME

ALIASES (cont'd) USE OF *

*To retrieve all the attribute values of the selected tuples, a
* is used, which stands for all the attributes
Examples:

*Aliasing can also be used in any SQL query for
convenience
d °Can also use the AS keyword to specify aliases
QIC: SELECT *
FROM EMPLOYEE
WHERE = DNO=5

Q8: SELECT E.FNAME, ELNAME,
S.FNAME, S.LNAME
FROM EMPLOYEE ASE,
EMPLOYEE AS S
WHERE E.SUPERSSN=S.SSN

QID: SELECT *
FROM EMPLOYEE,
DEPARTMENT
WHERE = DNAME="Research' AND
DNO=DNUMBER

USE OF DISTINCT

*SQL does not treat a relation as a set; duplicate tuples can
appear

4 *To eliminate duplicate tuples in a query result, the
keyword DISTINCT is used

§ *For example, the result of Q11 may have duplicate
SALARY values whereas Q11A does not have any
duplicate values

Q11: SELECT SALARY

FROM EMPLOYEE
Ql1A: SELECT DISTINCT SALARY
FROM EMPLOYEE

NESTING OF QUERIES

*A complete SELECT query, called a nested query, can be

specified within the WHERE-clause of another query,

&) called the outer query

* Many of the previous queries can be specified in an
alternative form using nesting

*Query 1: Retrieve the name and address of all employees

who work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNOIN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME='Research')

CORRELATED NESTED QUERIES
(cont'd)

*In Q12, the nested query has a different result in the outer
& query

| *A query written with nested SELECT... FROM... WHERE...
blocks and using the = or IN comparison operators can always
| be expressed as a single block (non-nested) query. For
example, Q12 may be written as in Q12A

QI2A: SELECT E.FNAME, ELNAME
FROM EMPLOYEEE,
DEPENDENT D
WHERE E.SSN=D.ESSN AND
E.FNAME=D.DEPENDENT_NAME

SET OPERATIONS

*Query 4: Make a list of all project numbers for projects that involve an
employee whose last name is 'Smith' as a worker or as a manager of the
department that controls the project.

Q4: (SELECT PNAME
FROM PROJECT, DEPARTMENT,
EMPLOYEE

WHERE DNUM=DNUMBER AND
MGRSSN=SSN AND LNAME="Smith’)
UNION
(SELECT PNAME
FROM PROJECT, WORKS_ON,
EMPLOYEE
WHERE PNUMBER=PNO AND

ESSN=SSN AND NAME='Smith’)

CORRELATED NESTED QUERIES

*If a condition in the WHERE-clause of a nested query references an
attribute of a relation declared in the outer query, the two queries are
said to be correlated
* The result of a correlated nested query is different for each tuple (or
combination of tuples) of the relation(s) the outer query
*Query 12: Retrieve the name of each employee who has a dependent
with the same first name as the employee.

QI12: SELECT E.FNAME, ELNAME
FROM EMPLOYEE AS E
‘WHERE E.SSNIN
(SELECT ESSN
FROM DEPENDENT
‘WHERE ESSN=E.SSN AND
E.FNAME=DEPENDENT_NAME)

CORRELATED NESTED QUERIES (cont'd)

*Query 3: Retrieve the name of each employee who works on all
the projects controlled by department number 5.

Q3: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ((SELECT PNO
FROM WORKS_ON
WHERE ~ SSN=ESSN)
CONTAINS
(SELECT PNUMBER
FROM PROJECT
WHERE DNUM=5))

CORRELATED NESTED QUERIES (cont'd)

Tn Q3, the second nested query, which is not correlated with
he outer query, retrieves the project numbers of all projects
iLontrolled by department 5

The first nested query, which is correlated, retrieves the
broject numbers on which the employee works, which is

W ifferent for each employee tuple because of the correlation

THE EXISTS FUNCTION (cont'd)

*Query 6: Retrieve the names of employees who have no
dependents.

Q6: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT

FROM
DEPENDENT
WHERE SSN=ESSN)
*In Q6, the correlated nested query retrieves all
DEPENDENT tuples related to an EMPLOYEE tuple. If
none exist, the EMPLOYEE tuple is selected
* EXISTS is necessary for the expressive power of SQL

NULLS IN SQL QUERIES

*SQL allows queries that check if a value is NULL
& (missing or undefined or not applicable)
| “SQL uses IS or IS NOT to compare NULLSs because it
considers each NULL value distinct from other NULL
values, so equality comparison is not appropriate.
*Query 14: Retrieve the names of all employees who do not
have supervisors.
Ql14: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSSN IS NULL
* Note: If a join condition is specified, tuples with NULL
values for the join attributes are not included in the result

THE EXISTS FUNCTION (cont'd)

*Query 12: Retrieve the name of each employee who
has a dependent with the same first name as the

| employee.

QI2B: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS (SELECT *
FROM DEPENDENT
WHERE SSN=ESSN

FNAME=DEPENDENT_NAME)

EXPLICIT SETS

*It is also possible to use an explicit (enumerated) set of
values in the WHERE-clause rather than a nested query

d *Query 13: Retrieve the social security numbers of all

employees who work on project number 1, 2, or 3.
QI13: SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNOIN (1,2,3)

Joined Relations Feature in SQL2

*Can specify a "joined relation" in the FROM-clause
* Looks like any other relation but is the result of a join
* Allows the user to specify different types of joins
(regular "theta" JOIN, NATURAL JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, CROSS JOIN,
etc)

Joined Relations Feature in SQL2 (cont'd)

*Examples:
Q8: SELECT E.FNAME, ELLNAME, S.FNAME,
S.LNAME
FROM EMPLOYEEE S

WHERE E.SUPERSSN=S.SSN

*can be written as:
Q8: SELECT E.FNAME, ELLNAME, S.FNAME,
S.LNAME
FROM (EMPLOYEE E LEFT OUTER
JOIN EMPLOYEES ON
E.SUPERSSN=S.SSN)

Joined Relations Feature in SQL2 (cont'd)

*Another Example: Q2 could be written as follows; this
illustrates multiple joins in the joined tables

Q2: SELECT PNUMBER, DNUM, LNAME,
BDATE, ADDRESS
FROM (PROJECT JOIN
DEPARTMENT ON
DNUM=DNUMBER) JOIN
EMPLOYEE ON
MGRSSN=SSN))
WHERE PLOCATION="Stafford’

AGGREGATE FUNCTIONS (cont'd)

*Queries 17 and 18: Retrieve the total number of employees
B8 in the company (Q17), and the number of employees in the
il 'Research' department (Q18).
Q17: SELECT COUNT (¥)
FROM EMPLOYEE

QI18: SELECT COUNT (¥)
FROM EMPLOYEE,
DEPARTMENT
WHERE DNO=DNUMBER AND
DNAME="Research’

Joined Relations Feature in SQL2 (cont'd)

*Examples:
Ql: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE = DNAME=Research' AND
DNUMBER=DNO
*could be written as:
Ql: SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE JOIN
DEPARTMENT
ON DNUMBER=DNO)
WHERE DNAME='Research’
*or as:
Ql: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN
DEPARTMENT
AS DEPT(DNAME, DNO, MSSN,
MSDATE) .
WHERE DNAMEZResearch’

AGGREGATE FUNCTIONS

*Include COUNT, SUM, MAX, MIN, and AVG
*Query 15: Find the maximum salary, the minimum salary,

d and the average salary among all employees.

Q15: SELECT MAX(SALARY),
MIN(SALARY), AVG(SALARY)
FROM EMPLOYEE

*Some SQL implementations may not allow more than one
function in the SELECT-clause

GROUPING (cont'd)

*Query 20: For each department, retrieve the department
number, the number of employees in the department, and their

average salary.

Q20: SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUPBY DNO

¢ In Q20, the EMPLOYEE tuples are divided into groups:
* Each group having the same value for the grouping attribute DNO

¢ The COUNT and AVG functions are applied to each such
group of tuples separately

¢ The SELECT-clause includes only the grouping attribute and
the functions to be applied on each group of tuples

* A join condition can be used in conjunction with grouping

GROUPING (cont'd)
*Query 21: For each project, retrieve the project number,
| project.

Q21: SELECT PNUMBER, PNAME, COUNT (*¥)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME

joining of the two relations

THE HAVING-CLAUSE (cont'd)

*Query 22: For each project on which more than two
employees work, retrieve the project number, project name,
il and the number of employees who work on that project.
Q22: SELECT PNUMBER, PNAME,
COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT (*)>2

SUBSTRING COMPARISON (cont'd)

*Query 26: Retrieve all employees who were born during
the 1950s.
* Here, '5' must be the 8th character of the string (according to
our format for date), so the BDATE value is ' 5
with each underscore as a place holder for a single arbitrary

character.
Q26: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE ! 5

project name, and the number of employees who work on that

* In this case, the grouping and functions are applied after the

*The LIKE operator allows us to get around the fact that
each value is considered atomic and indivisible

* Hence, in SQL, character string attribute values are not
atomic

THE HAVING-CLAUSE

*Sometimes we want to retrieve the values of these
functions for only those groups that satisfy certain

| conditions

*The HAVING-clause is used for specifying a selection
condition on groups (rather than on individual tuples)

SUBSTRING COMPARISON

*Query 25: Retrieve all employees whose address is in
Houston, Texas. Here, the value of the ADDRESS attribute

| must contain the substring 'Houston,TX" in it.

Q25: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ADDRESS LIKE

'%Houston, TX %'
6
ARITHMETIC OPERATIONS
The standard arithmetic operators '+', '-'. "', and '/* (for

addition, subtraction, multiplication, and division,

J respectively) can be applied to numeric values in an SQL

query result

*Query 27: Show the effect of giving all employees who
work on the 'ProductX' project a 10% raise.
Q27: SELECT FNAME, LNAME, 1.1*SALARY
FROM EMPLOYEE, WORKS_ON,
PROJECT

WHERE SSN=ESSN AND
PNO=PNUMBER
AND PNAME="ProductX’

ORDER BY

*The ORDER BY clause is used to sort the tuples in a query
result based on the values of some attribute(s)
4 *Query 28: Retrieve a list of employees and the projects each
works in, ordered by the employee's department, and within
¥ each department ordered alphabetically by employee last
name.

Q28: SELECT DNAME, LNAME, FNAME,

PNAME
FROM DEPARTMENT, EMPLOYEE,
WORKS_ON, PROJECT
WHERE DNUMBER=DNO AND
SSN=ESSN AND PNO=PNUMBER

ORDER BY DNAME, LNAME

9%

Summary of SQL Queries

*A query in SQL can consist of up to six clauses, but only
& the first two, SELECT and FROM, are mandatory. The
| clauses are specified in the following order:

SELECT <attribute list>

§ FROM <table list>

[WHERE <condition>]

[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>]

INSERT

*Example:
Ul: INSERT INTO EMPLOYEE
VALUES ('Richard',K','Marini', '653298653', '30-
DEC-52',
'98 Oak Forest,Katy, TX', 'M', 37000,'987654321',

§ *An alternate form of INSERT specifies explicitly the
attribute names that correspond to the values in the new
tuple

* Attributes with NULL values can be left out
*Example: Insert a tuple for a new EMPLOYEE for whom
we only know the FNAME, LNAME, and SSN attributes.

UlA: INSERT INTO EMPLOYEE (FNAME,

LN.

VALUES ('Richard', 'Marini', '653298653")

ORDER BY (contd)

*The default order is in ascending order of values
*We can specify the keyword DESC if we want a

d descending order; the keyword ASC can be used to

explicitly specify ascending order, even though it is the
default

Summary of SQL Queries (cont'd)

*The SELECT-clause lists the attributes or functions to be retrieved

*The FROM-clause specifies all relations (or aliases) needed in the
query but not those needed in nested queries

“The WHERE-clause specifies the conditions for selection and join of

tuples from the relations specified in the FROM-clause
*GROUP BY specifies grouping attributes
*HAVING specifies a condition for selection of groups
*ORDER BY specifies an order for displaying the result of a query
* A query is evaluated by first applying the WHERE-clause, then
GROUP BY and HAVING, and finally the SELECT-clause

* Also: There are three SQL commands to modify the
database: INSERT, DELETE, and UPDATE (next)

102

DELETE

*Removes tuples from a relation

* Includes a WHERE-clause to select the tuples to be deleted

* Referential integrity should be enforced

* Tuples are deleted from only one table at a time (unless
CASCADE is specified on a referential integrity constraint)

* A missing WHERE-clause specifies that all tuples in the
relation are to be deleted; the table then becomes an empty
table

* The number of tuples deleted depends on the number of
tuples in the relation that satisfy the WHERE-clause

DELETE (cont'd) UPDATE

*Examples:
U4A: DELETEFROM EMPLOYEE
WHERE LNAME='Brown’

*Used to modify attribute values of one or more selected
tuples
d *A WHERE-clause selects the tuples to be modified

*An additional SET-clause specifies the attributes to be
modified and their new values

U4B: DELETE FROM EMPLOYEE
WHERE SSN="123456789"

U4cC: DELETE FROM EMPLOYEE . . .
WHERE NO T *Each command modifies tuples in the same relation

D! N
(SELECT DNUMBER

FROMDEPARTMENT *Referential integrity should be enforced

WHERE
DNAME="Research’)

U4D: DELETE FROM EMPLOYEE

UPDATE (cont'd) UPDATE (cont'd)

*Example: Give all employees in the 'Research’ department
a 10% raise in salary.
Ue6: UPDATE EMPLOYEE

*Example: Change the location and controlling department
number of project number 10 to 'Bellaire' and 5,

J respectively. SET SALARY = SALARY *1.1
Us: UPDATE PROJECT WHERE DNO OIN (SELECT DNUMBER
SET PLOCATION = 'Bellaire’, vfﬂé\ﬁﬁ Bﬁi’}i‘gﬁ@fmm
DNUM =5

WHERE PNUMBER=10 *In this request, the modified SALARY value depends on
the original SALARY value in each tuple

The reference to the SALARY attribute on the right of =
refers to the old SALARY value before modification
The reference to the SALARY attribute on the left of =
refers to the new SALARY value after modification

Views in SQL

Chapter 9

*A view is a “virtual” table that is derived from other tables
*Allows for limited update operations

Introduction to SQL Programming Techniques: * Since the table may not physically be stored

Views (and Triggers; see lecture 6) +Allows full query operations

*A convenience for expressing certain operations

expanding reality

LiU

Specification of Views

* SQL command: CREATE VIEW
* atable (view) name

* a possible list of attribute names (for example, when
arithmetic operations are specified or when we want the
names to be different from the attributes in the base
relations)

* a query to specify the table contents

Using a Virtual Table

*We can specify SQL queries on a newly create table
(view):
SELECT FNAME, LNAME
FROM WORKS_ON_NEW
WHERE PNAME=‘Seena’;

*When no longer needed, a view can be dropped:
DROP WORKS_ON_NEW;

SQL Views: An Example
*Specify a different WORKS_ON table

CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS
FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE SSN=ESSN AND PNO=PNUMBER
GROUP BY PNAME;

