
2008-04-03 5

IDA, TDDD12, fö. 2: Relationsalg. och sql

Chapter Outline

� Relational Algebra
� Unary Relational Operations
� Relational Algebra Operations From Set Theory
� Binary Relational Operations
� Additional Relational Operations
� Examples of Queries in Relational Algebra

2008-04-03 6

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Overview

� Relational algebra is the basic set of operations for the relational
model

� These operations enable a user to specify
basic retrieval requests (or queries)

� The result of an operation is a new relation, which may have been
formed from one or more input relations
� This property makes the algebra “closed” (all objects in relational

algebra are relations)

2008-04-03 7

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Overview
(continued)

� The algebra operations thus produce new relations
� These can be further manipulated using operations of the same

algebra
� A sequence of relational algebra operations forms a relational

algebra expression

� The result of a relational algebra expression is
also a relation that represents the result of a
database query (or retrieval request)

2008-04-03 8

IDA, TDDD12, fö. 2: Relationsalg. och sql

Brief History of Origins of Algebra

� Muhammad ibn Musa al-Khwarizmi (800-847 CE)
wrote a book titled al-jabr about arithmetic of
variables
� Book was translated into Latin.
� Its title (al-jabr) gave Algebra its name.

� Al-Khwarizmi called variables “shay”
� “Shay” is Arabic for “thing”.
� Spanish transliterated “shay” as “xay” (“x” was “sh” in

Spain).
� In time this word was abbreviated as x.

� Where does the word Algorithm come from?
� Algorithm originates from “al-Khwarizmi"
� Reference: PBS (http://

www.pbs.org/empires/islam/innoalgebra.html)

2008-04-03 9

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Overview

� Relational Algebra consists of several groups of operations
� Unary Relational Operations

� SELECT (symbol: σσσσ (sigma))
� PROJECT (symbol: π π π π (pi))
� RENAME (symbol: ρρρρ (rho))

� Relational Algebra Operations From Set Theory
� UNION (∪∪∪∪), INTERSECTION (∩∩∩∩), DIFFERENCE (or

MINUS, –)
� CARTESIAN PRODUCT (x)

� Binary Relational Operations
� JOIN (several variations of JOIN exist)
� DIVISION

� Additional Relational Operations
� OUTER JOINS, OUTER UNION
� AGGREGATE FUNCTIONS (These compute summary of

information: for example, SUM, COUNT, AVG, MIN, MAX)

2008-04-03 10

IDA, TDDD12, fö. 2: Relationsalg. och sql

Database Schema for COMPANY
All examples discussed below refer to the COMPANY database shown here.

2008-04-03 11

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
SELECT

� The SELECT operation (denoted by σσσσ (sigma)) is used to
select a subset of the tuples from a relation based on a
selection condition.
� The selection condition acts as a filter
� Keeps only those tuples that satisfy the qualifying

condition
� Tuples satisfying the condition are selected whereas

the other tuples are discarded (filtered out)
� Examples:

� Select the EMPLOYEE tuples whose department number
is 4:

σσσσ DNO = 4 (EMPLOYEE)
� Select the employee tuples whose salary is greater than

$30,000:

σσσσ SALARY > 30,000 (EMPLOYEE)

2008-04-03 12

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
SELECT

� In general, the select operation is

denoted by σσσσ <selection condition>(R) where

�

the symbol σσσσ (sigma) is used to denote the select operator

� the selection condition is a Boolean (conditional) expression
specified on the attributes of relation R

� tuples that make the condition true are selected
� appear in the result of the operation

� tuples that make the condition false are filtered out
� discarded from the result of the operation

2008-04-03 13

IDA, TDDD12, fö. 2: Relationsalg. och sql

The
following
query
results refer
to this
database
state

2008-04-03 14

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
PROJECT

� PROJECT Operation is denoted by ππππ (pi)
� This operation keeps certain columns (attributes) from a relation

and discards the other columns.
� PROJECT creates a vertical partitioning

� The list of specified columns (attributes) is kept in each tuple
� The other attributes in each tuple are discarded

� Example: To list each employee’s first and last name and salary,
the following is used:

πLNAME, FNAME,SALARY(EMPLOYEE)

2008-04-03 15

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
PROJECT (cont'd)

� The general form of the project operation is:

π<attribute list>(R)
� π (pi) is the symbol used to represent the project operation
� <attribute list> is the desired list of attributes from relation R.

� The project operation removes any duplicate tuples
� This is because the result of the project operation must be a set

of tuples
� Mathematical sets do not allow duplicate elements.

2008-04-03 16

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
PROJECT (cont'd)

� PROJECT Operation Properties

� The number of tuples in the result of projection π<list>(R) is always

less or equal to the number of tuples in R
� If the list of attributes includes a key of R, then the number of

tuples in the result of PROJECT is equal to the number of
tuples in R

� PROJECT is not commutative

� π <list1> (π <list2> (R)) = π <list1> (R) as long as <list2> contains the

attributes in <list1>

2008-04-03 17

IDA, TDDD12, fö. 2: Relationsalg. och sql

Examples of applying SELECT and
PROJECT operations

2008-04-03 19

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
RENAME

� The general RENAME operation ρ can be expressed by any of the
following forms:

� ρS (B1, B2, …, Bn)(R) changes both:

� the relation name to S, and
� the column (attribute) names to B1, B1, …..Bn

� ρS(R) changes:

� the relation name only to S

� ρ(B1, B2, …, Bn)(R) changes:

� the column (attribute) names only to B1, B1, …..Bn

2008-04-03 20

IDA, TDDD12, fö. 2: Relationsalg. och sql

Unary Relational Operations:
RENAME (cont'd)
� For convenience, we also use a shorthand for renaming attributes in an

intermediate relation:
� If we write:

• RESULT ← ππππ FNAME, LNAME, SALARY (DEP5_EMPS)
• RESULT will have the same attribute names

as DEP5_EMPS (same attributes as
EMPLOYEE)

• If we write:
• RESULT (F, M, L, S, B, A, SX, SAL, SU,

DNO)← ρ RESULT (F.M.L.S.B,A,SX,SAL,SU, DNO)

(DEP5_EMPS)
• The 10 attributes of DEP5_EMPS are

renamed to F, M, L, S, B, A, SX, SAL, SU,
DNO, respectively

2008-04-03 21

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from
Set Theory: UNION

� UNION Operation
� Binary operation, denoted by ∪
� The result of R ∪ S, is a relation that includes all tuples that are

either in R or in S or in both R and S
� Duplicate tuples are eliminated

� The two operand relations R and S must be
“type compatible” (or UNION compatible)
� R and S must have same number of attributes
� Each pair of corresponding attributes must be

type compatible (have same or compatible
domains)

2008-04-03 22

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from
Set Theory: UNION

� Example:
� To retrieve the social security numbers of all

employees who either work in department 5 (RESULT1
below) or directly supervise an employee who works in
department 5 (RESULT2 below)

� We can use the UNION operation as follows:

DEP5_EMPS ← σDNO=5 (EMPLOYEE)

RESULT1 ← π SSN(DEP5_EMPS)

RESULT2(SSN) ← πSUPERSSN(DEP5_EMPS)

RESULT ← RESULT1 ∪ RESULT2
� The union operation produces the tuples that are in

either RESULT1 or RESULT2 or both

2008-04-03 23

IDA, TDDD12, fö. 2: Relationsalg. och sql

Example of the result of a UNION
operation

� UNION Example

2008-04-03 24

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from
Set Theory
� Type Compatibility of operands is required for the

binary set operation UNION ∪, (also for
INTERSECTION ∩, and SET DIFFERENCE –, see
next slides)

� R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type
compatible if:
� they have the same number of attributes, and
� the domains of corresponding attributes are type

compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).
� The resulting relation for R1∪R2 (also for R1∩R2,

or R1–R2, see next slides) has the same attribute
names as the first operand relation R1 (by
convention)

2008-04-03 25

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from
Set Theory: INTERSECTION

� INTERSECTION is denoted by ∩
� The result of the operation R ∩ S, is a
relation that includes all tuples that are
in both R and S
� The attribute names in the result will be

the same as the attribute names in R
� The two operand relations R and S
must be “type compatible”

2008-04-03 26

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from Set
Theory: SET DIFFERENCE (cont'd)

� SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –
� The result of R – S, is a relation that includes all tuples that are in R

but not in S

� The attribute names in the result will be
the same as the attribute names in R

� The two operand relations R and S
must be “type compatible”

2008-04-03 27

IDA, TDDD12, fö. 2: Relationsalg. och sql

Example result of UNION, INTERSECT, and DIFFERENCE

2008-04-03 28

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT

� CARTESIAN (or CROSS) PRODUCT Operation
� This operation is used to combine tuples from two

relations in a combinatorial fashion.
� Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)
� Result is a relation Q with degree n + m attributes:

� Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
� The resulting relation state has one tuple for each

combination of tuples—one from R and one from S.
� Hence, if R has nR tuples (denoted as |R| = nR), and S

has nS tuples, then R x S will have nR * nS tuples.

� The two operands do NOT have to be "type
compatible”

2008-04-03 29

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont'd)

� Generally, CROSS PRODUCT is not a meaningful operation
� Can become meaningful when followed by other operations

� Example (not meaningful):
� FEMALE_EMPS ← σσσσ SEX=’F’(EMPLOYEE)
� EMPNAMES ← ππππ FNAME, LNAME, SSN (FEMALE_EMPS)
� EMP_DEPENDENTS ← EMPNAMES x DEPENDENT

� EMP_DEPENDENTS will contain every
combination of EMPNAMES and DEPENDENT
� whether or not they are actually related

2008-04-03 30

IDA, TDDD12, fö. 2: Relationsalg. och sql

Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont'd)

� To keep only combinations where the DEPENDENT is related to the
EMPLOYEE, we add a SELECT operation as follows

� Example (meaningful):
� FEMALE_EMPS ← σσσσ SEX=’F’(EMPLOYEE)
� EMPNAMES ← ππππ FNAME, LNAME, SSN (FEMALE_EMPS)
� EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
� ACTUAL_DEPS ← σσσσ SSN=ESSN(EMP_DEPENDENTS)
� RESULT ← ππππ FNAME, LNAME, DEPENDENT_NAME

(ACTUAL_DEPS)
� RESULT will now contain the name of female

employees and their dependents

2008-04-03 31

IDA, TDDD12, fö. 2: Relationsalg. och sql

Example of
applying
CARTE-
SIAN
PRODUCT

2008-04-03 32

IDA, TDDD12, fö. 2: Relationsalg. och sql

Binary Relational Operations: JOIN

� JOIN Operation (denoted by)
� The sequence of CARTESIAN PRODECT followed by

SELECT is used quite commonly to identify and select
related tuples from two relations

� A special operation, called JOIN combines this
sequence into a single operation

� This operation is very important for any relational
database with more than a single relation, because it
allows us combine related tuples from various
relations

� The general form of a join operation on two relations
R(A1, A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S
� where R and S can be any relations that result from

general relational algebra expressions.

2008-04-03 33

IDA, TDDD12, fö. 2: Relationsalg. och sql

Binary Relational Operations: JOIN
(cont'd)

� Example: Suppose that we want to retrieve the
name of the manager of each department.
� To get the manager’s name, we need to combine each

DEPARTMENT tuple with the EMPLOYEE tuple whose
SSN value matches the MGRSSN value in the
department tuple.

� We do this by using the join operation.

� DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE
� MGRSSN=SSN is the join condition

� Combines each department record with the employee
who manages the department

� The join condition can also be specified as
DEPARTMENT.MGRSSN= EMPLOYEE.SSN

2008-04-03 34

IDA, TDDD12, fö. 2: Relationsalg. och sql

Example of applying the JOIN operation

DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE

2008-04-03 35

IDA, TDDD12, fö. 2: Relationsalg. och sql

Some properties of JOIN

� The general case of JOIN operation is called a Theta-join:

 R S

 theta
� The join condition is called theta
� Theta can be any general boolean expression on the attributes of R

and S; for example:
� R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)

� Most join conditions involve one or more equality conditions
“AND”ed together; for example:
� R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq

2008-04-03 36

IDA, TDDD12, fö. 2: Relationsalg. och sql

Binary Relational Operations: EQUIJOIN

� EQUIJOIN Operation
� The most common use of join involves join conditions with equality

comparisons only
� Such a join, where the only comparison operator used is =, is called

an EQUIJOIN.
� In the result of an EQUIJOIN we always have one or more pairs of

attributes (whose names need not be identical) that have identical
values in every tuple.

� The JOIN seen in the previous example was an EQUIJOIN.

2008-04-03 37

IDA, TDDD12, fö. 2: Relationsalg. och sql

Binary Relational Operations:
NATURAL JOIN Operation

� NATURAL JOIN Operation
� Another variation of JOIN called NATURAL JOIN —

denoted by * — was created to get rid of the second
(superfluous) attribute in an EQUIJOIN condition.
� because one of each pair of attributes with identical

values is superfluous
� The standard definition of natural join requires that the

two join attributes, or each pair of corresponding join
attributes, have the same name in both relations

� If this is not the case, a renaming operation is applied
first.

2008-04-03 38

IDA, TDDD12, fö. 2: Relationsalg. och sql

Binary Relational Operations NATURAL
JOIN (cont'd)

� Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
� DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

� Only attribute with the same name is DNUMBER
� An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

� Another example: Q ← R(A,B,C,D) * S(C,D,E)
� The implicit join condition includes each pair of attributes with

the same name, “AND”ed together:
� R.C=S.C AND R.D.S.D

� Result keeps only one attribute of each such pair:
� Q(A,B,C,D,E)

2008-04-03 39

IDA, TDDD12, fö. 2: Relationsalg. och sql

Example of NATURAL JOIN operation

2008-04-03 40

IDA, TDDD12, fö. 2: Relationsalg. och sql

Binary Relational Operations: DIVISION

� DIVISION Operation
� The division operation is applied to two relations
� R(Z) ÷ S(X), where X subset Z. Let Y = Z - X

(and hence Z = X ∪ Y); that is, let Y be the set of
attributes of R that are not attributes of S.

� The result of DIVISION is a relation T(Y) that includes
a tuple t if tuples tR appear in R with tR [Y] = t, and with
� tR [X] = ts for every tuple ts in S.

� For a tuple t to appear in the result T of the DIVISION,
the values in t must appear in R in combination with
every tuple in S.

2008-04-03 41

IDA, TDDD12, fö. 2: Relationsalg. och sql

Example of DIVISION

2008-04-03 42

IDA, TDDD12, fö. 2: Relationsalg. och sql

Recap
of Re-
lational
Alge-
bra
Ope-
rations

2008-04-03 43

IDA, TDDD12, fö. 2: Relationsalg. och sql

Additional Relational Operations:
Aggregate Function Operation

� ℱUse of the Aggregate Functional operation
� ℱMAX Salary (EMPLOYEE) retrieves the maximum salary

value from the EMPLOYEE relation
� ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary

value from the EMPLOYEE relation
� ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary

from the EMPLOYEE relation
� ℱ COUNT SSN, AVERAGE Salary (EMPLOYEE) computes the

count (number) of employees and their average salary
� Note: count just counts the number of rows, without

removing duplicates

2008-04-03 44

IDA, TDDD12, fö. 2: Relationsalg. och sql

Using Grouping with Aggregation

� The previous examples all summarized one or
more attributes for a set of tuples
� Maximum Salary or Count (number of) Ssn

� Grouping can be combined with Aggregate
Functions

� Example: For each department, retrieve the DNO,
COUNT SSN, and AVERAGE SALARY

� ℱA variation of aggregate operation allows this:
� Grouping attribute placed to left of symbol
� Aggregate functions to right of symbol
�

DNO ℱ COUNT SSN, AVERAGE Salary (EMPLOYEE)
� Above operation groups employees by DNO

(department number) and computes the count of
employees and average salary per department

2008-04-03 45

IDA, TDDD12, fö. 2: Relationsalg. och sql

Examples of applying aggregate
functions and grouping

2008-04-03 46

IDA, TDDD12, fö. 2: Relationsalg. och sql

Illustrating aggregate functions and
grouping

2008-04-03 47

IDA, TDDD12, fö. 2: Relationsalg. och sql

Additional Relational Operations (cont'd)

� The OUTER JOIN Operation
� In NATURAL JOIN and EQUIJOIN, tuples without a

matching (or related) tuple are eliminated from the join
result
� Tuples with null in the join attributes are also eliminated
� This amounts to loss of information.

� The left outer join operation keeps every tuple in the first or left
relation R in R S; if no matching tuple is found in S, then the
attributes of S in the join result are filled or “padded” with null values.

� A similar operation, right outer join, keeps every tuple in the second
or right relation S in the result of R S.

� A third operation, full outer join, denoted by keeps all tuples
in both the left and the right relations when no matching tuples are
found, padding them with null values as needed.

2008-04-03 48

IDA, TDDD12, fö. 2: Relationsalg. och sql

Additional Relational Operations (cont'd)

2008-04-03 49

IDA, TDDD12, fö. 2: Relationsalg. och sql

Additional Relational Operations (cont'd)

� OUTER UNION Operations
� The outer union operation was developed to take the union of

tuples from two relations if the relations are not type compatible.
� This operation will take the union of tuples in two relations R(X, Y)

and S(X, Z) that are partially compatible, meaning that only
some of their attributes, say X, are type compatible.

� The attributes that are type compatible are represented only once
in the result, and those attributes that are not type compatible from
either relation are also kept in the result relation T(X, Y, Z).

2008-04-03 50

IDA, TDDD12, fö. 2: Relationsalg. och sql

Additional Relational Operations (cont'd)

� Example: An outer union can be applied to two
relations whose schemas are STUDENT(Name,
SSN, Department, Advisor) and
INSTRUCTOR(Name, SSN, Department, Rank).
� Tuples from the two relations are matched based on

having the same combination of values of the shared
attributes— Name, SSN, Department.

� If a student is also an instructor, both Advisor and Rank
will have a value; otherwise, one of these two attributes
will be null.

� The result relation STUDENT_OR_INSTRUCTOR will
have the following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN,
Department, Advisor, Rank)

2008-04-03 51

IDA, TDDD12, fö. 2: Relationsalg. och sql

Examples of Queries in Relational
Algebra: Procedural Form

� Q1: Retrieve the name and address of all employees who work for

the ‘Research’ department.

RESEARCH_DEPT ← σσσσ DNAME=’Research’ (DEPARTMENT)

RESEARCH_EMPS ← (RESEARCH_DEPT DNUMBER= DNOEMPLOYEEEMPLOYEE)

RESULT ← π FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

� Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS ← π SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN) ← π ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS ← (ALL_EMPS - EMPS_WITH_DEPS)

RESULT ← π LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

2008-04-03 52

IDA, TDDD12, fö. 2: Relationsalg. och sql

Examples of Queries in Relational
Algebra – Single expressions

As a single expression, these queries become:
� Q1: Retrieve the name and address of all employees who work for

the ‘Research’ department.

π Fname, Lname, Address (σ Dname= ‘Research’

(DEPARTMENT Dnumber=Dno(EMPLOYEE))

� Q6: Retrieve the names of employees who have no dependents.

 π Lname, Fname((π Ssn (EMPLOYEE) − ρ Ssn (π Essn

∗(DEPENDENT))) EMPLOYEE)

 54

Data Definition, Constraints, and Schema
Changes

�Used to CREATE, DROP, and ALTER the descriptions of

the tables (relations) of a database

 55

CREATE TABLE

�Specifies a new base relation by giving it a name, and
specifying each of its attributes and their data types
(INTEGER, FLOAT, DECIMAL(i,j), CHAR(n),
VARCHAR(n))
�A constraint NOT NULL may be specified on an attribute

CREATE TABLE DEPARTMENT (
DNAME VARCHAR(10) NOT

NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9));

 56

CREATE TABLE

�In SQL2, can use the CREATE TABLE command for specifying the primary key
attributes, secondary keys, and referential integrity constraints (foreign keys).
�Key attributes can be specified via the PRIMARY KEY and UNIQUE phrases

CREATE TABLE DEPT (

DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,

MGRSSN CHAR(9),

MGRSTARTDATE CHAR(9),

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (MGRSSN) REFERENCES EMP);

 57

DROP TABLE

�Used to remove a relation (base table) and its definition

�The relation can no longer be used in queries, updates, or

any other commands since its description no longer exists

�Example:

DROP TABLE DEPENDENT;

 58

ALTER TABLE

�Used to add an attribute to one of the base relations
� The new attribute will have NULLs in all the tuples of

the relation right after the command is executed;
hence, the NOT NULL constraint is not allowed for
such an attribute

�Example:
ALTER TABLE EMPLOYEE ADD JOB
VARCHAR(12);

�The database users must still enter a value for the new
attribute JOB for each EMPLOYEE tuple.

� This can be done using the UPDATE command.

 59

Features Added in SQL2 and SQL-99

�Create schema

�Referential integrity options

� RESTRICT, CASCADE, SET NULL, and SET

DEFAULT on foreign keys

 60

REFERENTIAL INTEGRITY OPTIONS

�We can specify RESTRICT, CASCADE, SET NULL or SET
DEFAULT on referential integrity constraints (foreign keys)

CREATE TABLE DEPT (

 DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,

MGRSSN CHAR(9),

MGRSTARTDATE CHAR(9),

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (MGRSSN) REFERENCES EMP

ON DELETE SET DEFAULT ON UPDATE CASCADE);

 61

REFERENTIAL INTEGRITY OPTIONS
(continued)

CREATE TABLE EMP(

ENAME VARCHAR(30) NOT NULL,

ESSN CHAR(9),

BDATE DATE,

DNO INTEGER DEFAULT 1,

SUPERSSN CHAR(9),

PRIMARY KEY (ESSN),

FOREIGN KEY (DNO) REFERENCES DEPT

ON DELETE SET DEFAULT ON UPDATE

CASCADE,

FOREIGN KEY (SUPERSSN) REFERENCES

EMP ON DELETE SET NULL ON UPDATE

CASCADE);

 62

Retrieval Queries in SQL

�SQL has one basic statement for retrieving information
from a database; the SELECT statement

� This is not the same as the SELECT operation of the
relational algebra

�Important distinction between SQL and the formal
relational model:

� SQL allows a table (relation) to have two or more tuples that
are identical in all their attribute values

� Hence, an SQL relation (table) is a multi-set (sometimes
called a bag) of tuples; it is not a set of tuples

�SQL relations can be constrained to be sets by specifying
PRIMARY KEY or UNIQUE attributes, or by using the
DISTINCT option in a query

 63

Retrieval Queries in SQL (cont'd)

�A bag or multi-set is like a set, but an element may appear

more than once.

� Example: {A, B, C, A} is a bag. {A, B, C} is also a bag

that also is a set.

� Bags also resemble lists, but the order is irrelevant in a

bag.

�Example:

� {A, B, A} = {B, A, A} as bags

� However, [A, B, A] is not equal to [B, A, A] as lists

 64

Retrieval Queries in SQL (cont'd)

�Basic form of the SQL SELECT statement is called a
mapping or a SELECT-FROM-WHERE block

SELECT <attribute list>

FROM <table list>

WHERE <condition>

� <attribute list> is a list of attribute names whose values are to
be retrieved by the query

� <table list> is a list of the relation names required to process
the query

� <condition> is a conditional (Boolean) expression that
identifies the tuples to be retrieved by the query

 65

Relational Database Schema--Figure 5.5

 66

Popu-
lated
Data-
base--
Fig.5.6

 67

Simple SQL Queries

�Basic SQL queries correspond to using the following

operations of the relational algebra:

� SELECT

� PROJECT

� JOIN

�All subsequent examples use the COMPANY database

 68

Simple SQL Queries (cont'd)

�Example of a simple query on one relation
�Query 0: Retrieve the birthdate and address of the
employee whose name is 'John B. Smith'.

Q0: SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME='John' AND MINIT='B’

 AND LNAME='Smith’

� Similar to a SELECT-PROJECT pair of relational algebra
operations:

� The SELECT-clause specifies the projection attributes and the
WHERE-clause specifies the selection condition

� However, the result of the query may contain duplicate
tuples

 69

Simple SQL Queries (cont'd)

�Query 1: Retrieve the name and address of all employees
who work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNUMBER=DNO

� Similar to a SELECT-PROJECT-JOIN sequence of
relational algebra operations

� (DNAME='Research') is a selection condition
(corresponds to a SELECT operation in relational algebra)

� (DNUMBER=DNO) is a join condition (corresponds to a
JOIN operation in relational algebra)

 70

Simple SQL Queries (cont'd)

�Query 2: For every project located in 'Stafford', list the project number,
the controlling department number, and the department manager's last
name, address, and birthdate.

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE,
ADDRESS

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND PLOCATION='Stafford'

� In Q2, there are two join conditions
� The join condition DNUM=DNUMBER relates a project to its

controlling department
� The join condition MGRSSN=SSN relates the controlling

department to the employee who manages that department

 71

Aliases, * and DISTINCT, Empty WHERE-
clause

�In SQL, we can use the same name for two (or more)
attributes as long as the attributes are in different relations
�A query that refers to two or more attributes with the same
name must qualify the attribute name with the relation name
by prefixing the relation name to the attribute name
�Example:

�EMPLOYEE.LNAME, DEPARTMENT.DNAME

 72

ALIASES

�Some queries need to refer to the same relation twice
� In this case, aliases are given to the relation name

�Query 8: For each employee, retrieve the employee's name, and the
name of his or her immediate supervisor.

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

� In Q8, the alternate relation names E and S are called aliases or
tuple variables for the EMPLOYEE relation

� We can think of E and S as two different copies of EMPLOYEE; E
represents employees in role of supervisees and S represents
employees in role of supervisors

 73

ALIASES (cont'd)

�Aliasing can also be used in any SQL query for

convenience

�Can also use the AS keyword to specify aliases

Q8: SELECT E.FNAME, E.LNAME,

S.FNAME, S.LNAME

FROM EMPLOYEE AS E,

EMPLOYEE AS S

WHERE E.SUPERSSN=S.SSN

 74

USE OF *

�To retrieve all the attribute values of the selected tuples, a

* is used, which stands for all the attributes

Examples:

Q1C: SELECT *

FROM EMPLOYEE

WHERE DNO=5

Q1D: SELECT *

FROM EMPLOYEE,

DEPARTMENT

WHERE DNAME='Research' AND

DNO=DNUMBER

 75

USE OF DISTINCT

�SQL does not treat a relation as a set; duplicate tuples can

appear

�To eliminate duplicate tuples in a query result, the

keyword DISTINCT is used

�For example, the result of Q11 may have duplicate

SALARY values whereas Q11A does not have any

duplicate values

Q11: SELECT SALARY

FROM EMPLOYEE

Q11A: SELECT DISTINCT SALARY

FROM EMPLOYEE

 76

SET OPERATIONS

�Query 4: Make a list of all project numbers for projects that involve an
employee whose last name is 'Smith' as a worker or as a manager of the
department that controls the project.

Q4: (SELECT PNAME
FROM PROJECT, DEPARTMENT,

EMPLOYEE
WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND LNAME='Smith')
UNION

(SELECT PNAME
FROM PROJECT, WORKS_ON,

EMPLOYEE
WHERE PNUMBER=PNO AND

ESSN=SSN AND NAME='Smith')

 77

NESTING OF QUERIES

�A complete SELECT query, called a nested query, can be
specified within the WHERE-clause of another query,
called the outer query

� Many of the previous queries can be specified in an
alternative form using nesting

�Query 1: Retrieve the name and address of all employees
who work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research')

 78

CORRELATED NESTED QUERIES

�If a condition in the WHERE-clause of a nested query references an
attribute of a relation declared in the outer query, the two queries are
said to be correlated

� The result of a correlated nested query is different for each tuple (or
combination of tuples) of the relation(s) the outer query

�Query 12: Retrieve the name of each employee who has a dependent
with the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN

(SELECT ESSN
FROM DEPENDENT
WHERE ESSN=E.SSN AND

 E.FNAME=DEPENDENT_NAME)

 79

CORRELATED NESTED QUERIES
(cont'd)

�In Q12, the nested query has a different result in the outer

query

�A query written with nested SELECT... FROM... WHERE...

blocks and using the = or IN comparison operators can always

be expressed as a single block (non-nested) query. For

example, Q12 may be written as in Q12A

Q12A: SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E,

DEPENDENT D

WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME

 80

CORRELATED NESTED QUERIES (cont'd)

�Query 3: Retrieve the name of each employee who works on all

the projects controlled by department number 5.

Q3: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE ((SELECT PNO

 FROM WORKS_ON

 WHERE SSN=ESSN)

 CONTAINS

 (SELECT PNUMBER

 FROM PROJECT

 WHERE DNUM=5))

 81

CORRELATED NESTED QUERIES (cont'd)

�In Q3, the second nested query, which is not correlated with

the outer query, retrieves the project numbers of all projects

controlled by department 5

�The first nested query, which is correlated, retrieves the

project numbers on which the employee works, which is

different for each employee tuple because of the correlation

 82

THE EXISTS FUNCTION (cont'd)

�Query 12: Retrieve the name of each employee who

has a dependent with the same first name as the

employee.

Q12B: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXISTS (SELECT *

 FROM DEPENDENT

 WHERE SSN=ESSN

AND

FNAME=DEPENDENT_NAME)

 83

THE EXISTS FUNCTION (cont'd)

�Query 6: Retrieve the names of employees who have no

dependents.

Q6: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT

*

FROM

DEPENDENT

WHERE SSN=ESSN)

�In Q6, the correlated nested query retrieves all

DEPENDENT tuples related to an EMPLOYEE tuple. If

none exist, the EMPLOYEE tuple is selected
� EXISTS is necessary for the expressive power of SQL

 84

EXPLICIT SETS

�It is also possible to use an explicit (enumerated) set of

values in the WHERE-clause rather than a nested query

�Query 13: Retrieve the social security numbers of all

employees who work on project number 1, 2, or 3.

Q13: SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE PNO IN (1, 2, 3)

 85

NULLS IN SQL QUERIES

�SQL allows queries that check if a value is NULL
(missing or undefined or not applicable)
�SQL uses IS or IS NOT to compare NULLs because it
considers each NULL value distinct from other NULL
values, so equality comparison is not appropriate.
�Query 14: Retrieve the names of all employees who do not
have supervisors.

Q14: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSSN IS NULL

� Note: If a join condition is specified, tuples with NULL
values for the join attributes are not included in the result

 86

Joined Relations Feature in SQL2

�Can specify a "joined relation" in the FROM-clause

� Looks like any other relation but is the result of a join

� Allows the user to specify different types of joins

(regular "theta" JOIN, NATURAL JOIN, LEFT

OUTER JOIN, RIGHT OUTER JOIN, CROSS JOIN,

etc)

 87

Joined Relations Feature in SQL2 (cont'd)

�Examples:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME,

S.LNAME

FROM EMPLOYEE E S

WHERE E.SUPERSSN=S.SSN

�can be written as:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME,

S.LNAME

FROM (EMPLOYEE E LEFT OUTER

JOIN EMPLOYEES ON

E.SUPERSSN=S.SSN)

 88

Joined Relations Feature in SQL2 (cont'd)

�Examples:
Q1: SELECT FNAME, LNAME, ADDRESS

FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNUMBER=DNO
�could be written as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN

DEPARTMENT
 ON DNUMBER=DNO)

WHERE DNAME='Research’
�or as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN

DEPARTMENT
 AS DEPT(DNAME, DNO, MSSN,

MSDATE)
WHERE DNAME='Research’

 89

Joined Relations Feature in SQL2 (cont'd)

�Another Example: Q2 could be written as follows; this

illustrates multiple joins in the joined tables

Q2: SELECT PNUMBER, DNUM, LNAME,

BDATE, ADDRESS

FROM (PROJECT JOIN

DEPARTMENT ON

DNUM=DNUMBER) JOIN

EMPLOYEE ON

MGRSSN=SSN))

WHERE PLOCATION='Stafford’

 90

AGGREGATE FUNCTIONS

�Include COUNT, SUM, MAX, MIN, and AVG

�Query 15: Find the maximum salary, the minimum salary,

and the average salary among all employees.

Q15: SELECT MAX(SALARY),

MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE

�Some SQL implementations may not allow more than one

function in the SELECT-clause

 91

AGGREGATE FUNCTIONS (cont'd)

�Queries 17 and 18: Retrieve the total number of employees

in the company (Q17), and the number of employees in the

'Research' department (Q18).

Q17: SELECT COUNT (*)

FROM EMPLOYEE

Q18: SELECT COUNT (*)

FROM EMPLOYEE,

DEPARTMENT

WHERE DNO=DNUMBER AND

DNAME='Research’

 92

GROUPING (cont'd)

�Query 20: For each department, retrieve the department
number, the number of employees in the department, and their
average salary.

Q20: SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO

� In Q20, the EMPLOYEE tuples are divided into groups:
� Each group having the same value for the grouping attribute DNO
� The COUNT and AVG functions are applied to each such

group of tuples separately
� The SELECT-clause includes only the grouping attribute and

the functions to be applied on each group of tuples
� A join condition can be used in conjunction with grouping

 93

GROUPING (cont'd)

�Query 21: For each project, retrieve the project number,

project name, and the number of employees who work on that

project.

Q21: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

� In this case, the grouping and functions are applied after the

joining of the two relations

 94

THE HAVING-CLAUSE

�Sometimes we want to retrieve the values of these

functions for only those groups that satisfy certain

conditions

�The HAVING-clause is used for specifying a selection

condition on groups (rather than on individual tuples)

 95

THE HAVING-CLAUSE (cont'd)

�Query 22: For each project on which more than two

employees work, retrieve the project number, project name,

and the number of employees who work on that project.

Q22: SELECT PNUMBER, PNAME,

COUNT(*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 2

 96

SUBSTRING COMPARISON

�Query 25: Retrieve all employees whose address is in

Houston, Texas. Here, the value of the ADDRESS attribute

must contain the substring 'Houston,TX‘ in it.

Q25: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE ADDRESS LIKE

'%Houston,TX%'

 97

SUBSTRING COMPARISON (cont'd)

�Query 26: Retrieve all employees who were born during
the 1950s.

� Here, '5' must be the 8th character of the string (according to
our format for date), so the BDATE value is '_______5_',
with each underscore as a place holder for a single arbitrary
character.

Q26: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE '_______5_’

�The LIKE operator allows us to get around the fact that
each value is considered atomic and indivisible

� Hence, in SQL, character string attribute values are not
atomic

 98

ARITHMETIC OPERATIONS

�The standard arithmetic operators '+', '-'. '*', and '/' (for

addition, subtraction, multiplication, and division,

respectively) can be applied to numeric values in an SQL

query result

�Query 27: Show the effect of giving all employees who

work on the 'ProductX' project a 10% raise.

Q27: SELECT FNAME, LNAME, 1.1*SALARY

FROM EMPLOYEE, WORKS_ON,

PROJECT

WHERE SSN=ESSN AND

 PNO=PNUMBER

 AND PNAME='ProductX’

 99

ORDER BY

�The ORDER BY clause is used to sort the tuples in a query

result based on the values of some attribute(s)

�Query 28: Retrieve a list of employees and the projects each

works in, ordered by the employee's department, and within

each department ordered alphabetically by employee last

name.

Q28: SELECT DNAME, LNAME, FNAME,

 PNAME

 FROM DEPARTMENT, EMPLOYEE,

WORKS_ON, PROJECT

WHERE DNUMBER=DNO AND

SSN=ESSN AND PNO=PNUMBER

ORDER BY DNAME, LNAME

 100

ORDER BY (cont'd)

�The default order is in ascending order of values

�We can specify the keyword DESC if we want a

descending order; the keyword ASC can be used to

explicitly specify ascending order, even though it is the

default

 101

Summary of SQL Queries

�A query in SQL can consist of up to six clauses, but only
the first two, SELECT and FROM, are mandatory. The
clauses are specified in the following order:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>]

 102

Summary of SQL Queries (cont'd)

�The SELECT-clause lists the attributes or functions to be retrieved
�The FROM-clause specifies all relations (or aliases) needed in the
query but not those needed in nested queries
�The WHERE-clause specifies the conditions for selection and join of
tuples from the relations specified in the FROM-clause
�GROUP BY specifies grouping attributes
�HAVING specifies a condition for selection of groups
�ORDER BY specifies an order for displaying the result of a query

� A query is evaluated by first applying the WHERE-clause, then
GROUP BY and HAVING, and finally the SELECT-clause

� Also: There are three SQL commands to modify the
database: INSERT, DELETE, and UPDATE (next)

 103

INSERT

�Example:
U1: INSERT INTO EMPLOYEE

VALUES ('Richard','K','Marini', '653298653', '30-
DEC-52',

'98 Oak Forest,Katy,TX', 'M', 37000,'987654321',
4)

�An alternate form of INSERT specifies explicitly the
attribute names that correspond to the values in the new
tuple

� Attributes with NULL values can be left out
�Example: Insert a tuple for a new EMPLOYEE for whom
we only know the FNAME, LNAME, and SSN attributes.

U1A: INSERT INTO EMPLOYEE (FNAME,
LNAME, SSN)

 VALUES ('Richard', 'Marini', '653298653')

 104

DELETE

�Removes tuples from a relation
� Includes a WHERE-clause to select the tuples to be deleted

� Referential integrity should be enforced

� Tuples are deleted from only one table at a time (unless

CASCADE is specified on a referential integrity constraint)

� A missing WHERE-clause specifies that all tuples in the

relation are to be deleted; the table then becomes an empty

table

� The number of tuples deleted depends on the number of

tuples in the relation that satisfy the WHERE-clause

 105

DELETE (cont'd)

�Examples:

U4A: DELETE FROM EMPLOYEE
WHERE LNAME='Brown’

U4B: DELETE FROM EMPLOYEE
WHERE SSN='123456789’

U4C: DELETE FROM EMPLOYEE
WHERE DNO IN

 (SELECT DNUMBER
FROMDEPARTMENT
WHERE

DNAME='Research')

U4D: DELETE FROM EMPLOYEE

 106

UPDATE

�Used to modify attribute values of one or more selected

tuples

�A WHERE-clause selects the tuples to be modified

�An additional SET-clause specifies the attributes to be

modified and their new values

�Each command modifies tuples in the same relation

�Referential integrity should be enforced

 107

UPDATE (cont'd)

�Example: Change the location and controlling department

number of project number 10 to 'Bellaire' and 5,

respectively.

U5: UPDATE PROJECT

SET PLOCATION = 'Bellaire',

DNUM = 5

WHERE PNUMBER=10

 108

UPDATE (cont'd)

�Example: Give all employees in the 'Research' department
a 10% raise in salary.

U6: UPDATE EMPLOYEE
SET SALARY = SALARY *1.1
WHERE DNO IN (SELECT DNUMBER

 FROM DEPARTMENT
 WHERE DNAME='Research')

�In this request, the modified SALARY value depends on
the original SALARY value in each tuple

� The reference to the SALARY attribute on the right of =
refers to the old SALARY value before modification

� The reference to the SALARY attribute on the left of =
refers to the new SALARY value after modification

 110

Views in SQL

�A view is a “virtual” table that is derived from other tables

�Allows for limited update operations

� Since the table may not physically be stored

�Allows full query operations

�A convenience for expressing certain operations

 111

Specification of Views

� SQL command: CREATE VIEW

� a table (view) name

� a possible list of attribute names (for example, when

arithmetic operations are specified or when we want the

names to be different from the attributes in the base

relations)

� a query to specify the table contents

 112

SQL Views: An Example

�Specify a different WORKS_ON table

CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE SSN=ESSN AND PNO=PNUMBER

GROUP BY PNAME;

 113

Using a Virtual Table

�We can specify SQL queries on a newly create table

(view):

SELECT FNAME, LNAME

FROM WORKS_ON_NEW

WHERE PNAME=‘Seena’;

�When no longer needed, a view can be dropped:

DROP WORKS_ON_NEW;

