
Problem Set for Tutorial 7 — TDDD08

W lodek Drabent and Victor Lagerkvist

1. Consider a program from a former tutorial, let us call it LONGER:

% Any [ | ] is longer than 0

longer([ | ], [ ]).
% If Xs is longer than Ys then [ X |Xs] is longer than [ Y |Ys]

longer([ X |Xs], [ Y |Ys])← longer(Xs,Ys).

Explain with respect to which of the specifications below the program is not
correct. Do this by providing a counterexample (a ground atom A which is
an answer of LONGER but is not in the specification). Do the same about
the program being not complete (a ground atom in the specification which
is not an answer of LONGER).

Below we denote by |l| the length of a list l (and |l| is undefined when l
is not a list). Also, let ||t|| stand for the number of constants in a term t.1

(In our comments we abbreviate “answer of LONGER” by “answer”; a, b, c are constants.)

S1 = { longer(l1, l2) ∈ BA | l2 is a list },
LONGER not complete w.r.t. S1 (longer(a, [ ]) ∈ S1 is not an answer)

S2 = { longer(l1, l2) ∈ BA | l1 is a list },
LONGER not correct and not complete w.r.t.S2

(an answer longer([a|b], [ ]) 6∈ S2, and longer([ ], a) ∈ S2 is not an answer)

S3 = { longer(l1, l2) ∈ BA | l1, l2 are lists and |l1| > |l2| }
= { longer([t1, . . . , tm], [u1, . . . , un]) ∈ BA | m > n ≥ 0 },

LONGER not correct w.r.t.S3 (due to answer longer([a|b], [ ]) 6∈ S3)

S4 = { longer(l1, l2) ∈ BA | if l1, l2 are lists then |l1| > |l2| }
= S3 ∪ { longer(l1, l2) ∈ BA | l1 or l2 is not a list },

LONGER not complete w.r.t.S4 (longer(a, b) ∈ S4 is not an answer)

S5 =

{
longer(l1, l2) ∈ BA

∣∣∣∣∣ l2 is a list and
if l1 is a list then |l1| > |l2|

}
= S3 ∪ { longer(l1, l2) ∈ BA | l1 is not a list, l2 is a list },

LONGER not complete w.r.t.S5 (longer(a, [ ]) ∈ S5 is not an answer)

1For instance, let a, b be constants and f a two-argument function symbol. Then we
have ||a|| = 1, ||f(a, b)|| = 2, ||[ ]|| = 1, ||[a,b]|| = 3, the latter because [a,b] is
.(a,.(b,[ ])). Also, |[ ]| = 0, |[b,f(b,b)]| = 2, and [a|b] is not a list.

Remember that BA is the Herbrand base of the considered alphabet A, and writing
p(t, u) ∈ BA is a compact way to state that p is a predicate symbol and t, u are ground
terms. It is crucial that you understand the list notation of Prolog. See e.g. slide 9 from
those for tutorial 2 (le2.LPintro∗.pdf).
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S6 = { longer([t1, . . . , tn+1|t], [u1, . . . , un]) ∈ BA | n ≥ 0 },
S7 = { longer(l1, l2) ∈ BA | ||l1|| > ||l2|| },

LONGER not correct w.r.t.S7, (an answer longer([a, b], [f(a, b, c)]) 6∈ S7),
and not complete w.r.t.S7, as longer(f(a, b), [ ]) ∈ S7 is not an answer

S8 = { longer(l1, l2) ∈ BA | l1, l2 are lists and |l1| = |l2|+ 2 }.
LONGER not correct w.r.t.S8, as an answer longer([a], [ ]) 6∈ S8

Whenever it is not stated that the program is not correct (or not complete) then it
is correct (respectively complete). This can be justified by appropriate correctness or
completeness proof(s), and using the fact that correctness (respectively completeness)
w.r.t. S implies correctness (completeness) w.r.t. any S′ ⊇ S (S′ ⊆ S). In the context
of the next problem, an effective approach is to construct (in a standard way) the least
Herbrand model MLONGER, see that MLONGER = S6, and show which of the specifications
are its supersets, and which are subsets.

Note that, in a sense, we used the equivalence of α→ β and ¬α ∨ β to describe each
of S4, S5 in two ways.

2. Which of specifications S1, . . . , S8 is the least Herbrand model MLONGER

of the program? (For a solution see above.)

3. Prove that the program is correct w.r.t. specification S5. Use the standard
method.
So you are proving that (in each answer of LONGER) the second argument is a list and
if first one is a list then the first one is longer than the second.
A hint is provided by the informal comments in the program.

Detailed solution. For each ground instance of a clause of LONGER, we have to
show that if its body atoms are in S5 then the head is in S5.

The specification is

S5 =

{
longer(l1, l2) ∈ BA

∣∣∣∣ l2 is a list and
if l1 is a list then |l1| > |l2|

}
and the ground instances are

longer([t|u], [ ]), (1)

longer([x|xs], [y|ys])︸ ︷︷ ︸
H

← longer(xs, ys)︸ ︷︷ ︸
B

, (2)

where t, u, x, xs, y, ys ∈ UA (i.e. they are ground terms).
Consider (1). longer([t|u], [ ]) ∈ S5, as [ ] is a list, and if [t|u] is a list then |[t|u]| >

0 = |[ ]|.
Consider (2) and assume B ∈ S5. So ys is a list, thus [y|ys] is a list. Assume [x|xs] is

a list; then xs is a list, hence |xs| > |ys| (as B ∈ S5), hence |xs|+ 1 > |ys|+ 1, this means
[x|xs] > [y|ys]. The last sentence proves that if [x|xs] is a list then [x|xs] > [y|ys]. (This

completes our proof that H ∈ S5.)

Another solution (using the other description of S5, and slightly less detailed).

S5 = S3 ∪ S′
5

S3 = { longer(l1, l2) ∈ BA | l1, l2 are lists and |l1| > |l2| }
S′
5 = { longer(l1, l2) ∈ BA | l1 is not a list, l2 is a list },

For each ground instance of a clause of LONGER, we show that if its body atoms are in
S5 then the head is in S5 (by showing that it is in S3 or in S′

5).
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Consider (1). Either [t|u] is not a list and thus longer([t|u], [ ]) ∈ S′
5. Or [t|u] is a list

and thus |[t|u]| > 0 = |[ ]|, hence longer([t|u], [ ]) ∈ S3.
Consider (2), and assume that B ∈ S5. We have two cases.
(i) B ∈ S3. As xs, ys are lists and |xs| > |ys|, we have that [x|xs], [y|ys] are lists too,

and |[x|xs]| > |[y|ys]|. Thus H ∈ S3.
(ii) B ∈ S′

5, so xs is not a list and ys is. Hence [x|xs] is not and [y|ys] is a list. Thus
H ∈ S′

5.

4. Out of specifications S1, . . . , S8 choose one, let us call it Scom, for which
you did not found program LONGER to be not complete. Prove that
LONGER is semi-complete w.r.t. Scom,

This implies that the program is complete w.r.t. Scom, as for any ground query
longer(t, u) the SLD-tree is finite. (The tree consists of a single branch in which for any
non-leaf node Ai its child Ai+1 contains fewer constants than Ai does. So such branch
cannot be infinite.)

Solution. Let us choose

Scom = S8 = { longer(l1, l2) ∈ BA | l1, l2 are lists and |l1| = |l2|+ 2 }.

(Completeness w.r.t. S3 is more useful, a proof is left for you.)
To prove that LONGER is semi-complete w.r.t. S8, we show that each atom A from

S8 is covered by LONGER w.r.t. S8. This means A is the head of a ground instance of a
clause from LONGER, such that all its body atoms are in S8.

Take an A = longer(l1, l2) ∈ S8. Obviously, |l1| > 0, so l1 is of the form [t|u].
If |l2| = 0 then A is of the form (1), i.e. A is covered by ground instance (1) of the

first clause of LONGER.
If |l2| > 0 then A = longer([x|xs], [y|ys]) (for some x, xs, y, ys, where xs, ys are lists).

We have |[x|xs]| = |[y|ys]|+ 2 and thus |xs| = |ys|+ 2. Now we see that A is the head of
a ground instance (2) of a clause from LONGER, and its body atom longer(xs, ys) is in
S8. So A is covered by the program w.r.t. S8. This completes the proof

5. Modify the program so that it is also correct w.r.t. S3. Provide at least
an informal outline of a correctness proof.
So, speaking informally, the program should additionally assure that the first argument
of longer is a list too.
It may be convenient to introduce an additional predicate.

Two solutions. The last clause of each of them is the same as that of LONGER.

% list(L) – L is a list
list([ ]).
list([ X |Xs])← list(Xs).
longer([ |Xs], [ ])← list(Xs).

longer([ X ], [ ]).
longer([ |Xs], [ ])← longer(Xs, [ ]).

longer([ X |Xs], [ Y |Ys])← longer(Xs,Ys).

A correctness proof of the second program is, briefly, as follows. The specification is

S3 = { longer(l1, l2) ∈ BA | l1, l2 are lists and |l1| > |l2| }

The first clause is a fact, and each its ground instance longer([x], [ ]) is in S3 (as 1 > 0).
For any ground instance of the second clause, if its body longer(xs, [ ]) is in S3 then its
head longer([x|xs], [ ]) is in S3 too (as xs is a list, hence [x|xs] is a list, longer than 0).
For any ground instance (2) of the third clause, if its body atom longer(xs, ys) ∈ S3

then the head longer([x|xs], [y|ys]) ∈ S3 (because [x|xs], [y|ys] are lists as xs, ys are, and
|[x|xs]| > |[y|ys]| as |xs| > |ys|).

Note that for a correctness proof of the first program we need to extend specification
S3 so it also describes list/1.
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6. Consider the main part of the efficient list reverse program (lecture 7).

REV : rev([ ], X,X).
rev([H|L], Y,X)← rev(L, [H|Y ], X).

(Program REV reverses a given list l by answering query rev(l, [ ], X).)
Describe (informally, in words) the relation defined by the program. Em-

ploy the notions of list and difference list. Do this more formally by describ-
ing a specification, for which REV is correct and complete, preferably in
this style:

Srev =
{
rev(s, t, u) ∈ BA | . . . is a list, . . . the reverse of list . . .

}
Prove that REV is correct w.r.t. Srev. Remember that list [t1, . . . , tn] rep-
resented as a difference list is a pair of terms [t1, . . . , tn|t] and t (where t is
arbitrary).
If you are really stuck, the handouts associated with this tutorial (corr.examples.pdf)
with example proofs contain a proof for basically the same program (Example 3.5) (Do
not miss a different order of arguments!)
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