
Problem Set for Tutorial 6 — TDDD08

1. Given the program below, draw an SLDNF-forest for query ¬member(X, [a, b]) and for
¬member(c, [a, b]). What result would you expect in Prolog with the queries \+member(X, [a, b])
and \+member(c, [a, b])? If the results differ, why is that the case?

member(X, [X|_]).

member(X, [_|L]) :- member(X,L).

Solution. Discussed at the tutorial.

2. A ground propositional formula can be represented in Prolog by a term over true, false, and/2,
or/2, and not/1. For example, and(true, or(not(false), true)) would be an example of such
a formula in this representation. Assume that we want to define a predicate true formula(F)

which is true if F is a true ground propositional formula in the specified representation. An attempt
using negation as failure in Prolog might look as follows:

true_formula(true).

true_formula(and(X, Y)) :- true_formula(X), true_formula(Y).

true_formula(or(X, _Y)) :- true_formula(X).

true_formula(or(_X, Y)) :- true_formula(Y).

true_formula(not(X)) :- \+ true_formula(X).

(a) Give an example of two queries, one ground and one non-ground, which produces unexpected or
unintended answers.

Solution. For instance, query true formula(not(T)) produces answer no. This says that there is
no true formula of the form not(t), which is wrong. Similarly, true formula(not(not(T))) results in
yes, while it should not. Another kind of queries with unintended success is true formula(not(a)) or
true formula(or(true,a)), where the argument is not a propositional formula.

(b) Rewrite the above program without using negation. What is the result of the previous two queries
to the resulting program?

Solution. We may introduce a predicate false formula describing those propositional formulae that
are false. In the new program, false formula and true formula are defined similarly as above. However
not/1 is treated by a clause true formula(not(X)):-false formula(X), and by a similar clause for
false formula/1.

A clause like true formula(or(X, Y)):-true formula(X) does not assure that the argument is a
propositional formula. So we should impose a condition on Y, and transform the clause into
true formula(or(X,Y)):-true formula(X),formula(Y). An auxiliary predicate formula/1 describes
all the considered formulae, and can be defined by two clauses formula(X):-true formula(X) and
formula(X):-false formula(X). Such additional condition is needed in the clauses with heads
true formula(or(. . .)) and for false formula(and(. . .)).
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3. Consider a program WIN:

w(X)← m(X,Y ),¬w(Y ). m(a, b). m(b, a). m(b, c).

(Predicate m/2 describes moves in a game; w/1 describes winning positions – a position X wins if
you can move from X to a position Y in which your opponent cannot win.)

(a) Draw the SLDNF-forest for query w(X) under the Prolog selection rule. Make it clear which
branches are successful derivations and what their answers are, which leaves are floundered, and
which trees are finitely failed.

Solution. The forest:

w(Z)
| {X/Z}

m(Z, Y ),¬w(Y )

| | {Z/b, Y/c}

¬w(b)

FF

| {Z/b,
Y/a}

¬w(a)
| ε
�

answer
w(b)

¬w(c)
| ε
�

answer
w(b)

w(b)
|

m(b, Y ),¬w(Y )
|

. . . ¬w(c)
|
�

answer
w(b)

w(c)
|

m(c, Y ),¬w(Y )

FF

failed tree

w(a)
|

m(a, Y ),¬w(Y )

|
¬w(b)
FF

failed tree

We do not need to construct a whole SLDNF-tree, if the tree contains a most general answer. What
matters is its successful branch. (Note that in such cases the definition of SLDNF-resolution refers to
the successful SLDNF-derivation only.) So for w(b) we showed here such branch only. The substitutions
(mgu’s) of the resolution steps are shown only where they contribute to an answer.

(b) How is the forest changed if we add m(c, d) to the program?

Solution. A failed tree for w(d) and a successful derivation for w(c) (similar to those for w(c) and w(b)
above). A tree for w(b) with a failed leaf ¬w(c) and a leaf ¬w(a); and a tree for w(a) as in the slides
(with a single leaf ¬w(b)). Due to the circular reference between the two trees, leaves ¬w(a), ¬w(b) are
floundered (Prolog computation would fall into infinite recursion). The tree for w(Z) of the forest consists
of the 5 non-empty nodes of the tree above; however the leaves ¬w(a), ¬w(b) are floundered, and ¬w(c) is
failed,

So the trees for w(Z), w(a) and w(b) are not failed, and do not contain any answers (thus SLDNF-resolution
shows neither falsity, nor truth of these atoms).

(c) Construct the completion comp(WIN) of the program (except for equality axioms). Explain
whether ¬m(c, a) and ¬w(c) are logical consequences of comp(WIN). The same for w(b).

Solution. comp(WIN) consists of

w(X)↔ ∃Y (m(X,Y ),¬w(Y )) (1)

m(X,Y )↔ X = a, Y = b ∨X = b, Y = a ∨X = b, Y = c (2)

and the equality axioms CET (whose main role is to imply that distinct ground terms are not equal).

Consider ¬m(c, a). Replacing X,Y by c, a in (2) results (after an obvious simplification) in m(c, a)↔ false,
which is equivalent to ¬m(c, a). So comp(WIN) |= ¬m(c, a).

For future usage notice that in the same way we obtain that comp(WIN) |= ¬m(c, Y ) (equivalently,
comp(WIN) |= ∀Y ¬m(c, Y )), hence comp(WIN) |= ∀Y (¬m(c, Y ) ∨ α), for any α.

Consider ¬w(c). From (1) we have ¬w(c) ↔ ∀Y (¬m(c, Y ) ∨ w(Y )). As the right hand side of the
equivalence is a logical consequence of comp(WIN), so is ¬w(c).
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4. (Exam exercise) Consider the following general program P :

p(X)← ¬q(X). q(s(Y ))← p(Y ). q(a).

(a) Draw SLDNF-forests for queries q(X), p(s(b)), and p(s(s(b))). Make it clear which trees are
finitely failed, which leaves are floundered, which branches are successful derivations, and what
their answers are.

(b) Construct the completion comp(P ) of the program (except for equality axioms). Explain whether
q(a) is a logical consequence of comp(P ); the same for q(s(b)).

Instead of providing a solution here, we refer to a more instructive problem 2 in the note linked as “example
problems with solutions” at our “Exams” web page.

5. Consider programs

P1 : p← ¬p P2 : p← ¬q
q ← ¬p

P3 : p← ¬q
q ← ¬r
r ← ¬p

(a) Is an Herbrand interpretation {p} a model of P2? What about P3?

Solution. (Notice that this problem is not related to negation in logic programming. Remember that an
implication is true if its premise is false, or its consequent is true.)

{p} is a model of P2 (check this). It is not a model of P3 (because ¬r is true in {p}, but q is not true in
{p}, so {p} is not a model of the second clause of P3).

(b) Which of the programs have stable models? Find all of them.

Detailed solution. Let us look more closely at P3. Assume that I is a stable model of P3. So it is the
least Herbrand model of the reduct P I

3 , i.e. I = MP I
3

.

Assume that p ∈ I. Then the reduct P I
3 does not contain any rule r ← . . .. Thus MP I

3
does not contain r.

Hence the reduct contains rule q. So MP I
3

contains q, hence the reduct does not contain any rule p← . . .,
and MP I

3
does not contain p – contradiction. Assuming that p 6∈ I leads, similarly, to r ∈MP I

3
, q 6∈MP I

3
,

and p ∈MP I
3

, contradiction.

In the same way we obtain that P1 does not have a stable model.

Consider P2. Similarly as above, if a stable model contains p then it does not contain q. Analogically for

q. So we have two candidates for stable models, {p} and {q}. The reduct P
{p}
2 is {p}, and P

{q}
2 = {q}

(and their least Herbrand models are obviously M
P

{p}
2

= {p} and M
P

{q}
2

= {q}). Thus the stable models

of P2 are {p} and {q}.

6. Find the stable models of programs

P4 : p← p.
p← r.
q ← ¬p.
s← ¬q, r

P5 : p← ¬q.
q ← ¬p.
r ← q,¬p.
f ← ¬f , p

Comment: Note that P4 is stratified (“no recursion through negation”). Hence it has a single stable
model, which can be constructed stepwise for consecutive strata (1. the clauses for p, 2. that for q,
3. that for s).
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Detailed solution. Consider P4. The least Herbrand model of the first stratum is empty (p, r are false).
For the second stratum, q is true (as p is false). For the last stratum we have that s is false (as r is false, or
as ¬q is false). So the stable model is {q}.
Consider P5 and assume that I is its stable model. We will write “true” instead of “true in I”. Similarly as
above, from the first two clauses we obtain that exactly one of p, q is true; soon we see which of them. f
cannot be true (as this makes the reduct not having any clause f ← . . ., and thus f 6∈ I). So the body ¬f, p
must be false (otherwise f ∈ I, contradiction). As ¬f is true, p must be false. Hence q is true. By the third
rule r is true.
Thus I = {q, r}, this is the only candidate for a stable model. The reduct P I

5 is {q. r ← q. f ← p.}, and its
least Herbrand model is I. So I is the only stable model for P5.

7. Assume a small Herbrand universe (with > 1 elements) and find the stable models of

P6 : p(a)← ¬q.
q ← ¬p(a).
p(a)← p(X).
p(X)← p(a).

Detailed solution. Recall that a non-ground logic program, in the context of the stable model semantics, is
usually treated as a shorthand for the grounded program obtained by replacing a clause with all its instances.
Thus, if we choose the Herbrand universe {a, b} we, after removing duplicate clauses, obtain the program:

ground(P ) : p(a)← ¬q.
q ← ¬p(a).
p(a)← p(a).
p(a)← p(b).
p(b)← p(a).

Thus, the task is then to determine which subsets of the Herbrand base {p(a), p(b), q} that are stable models.

Since trying all possibilities is time-consuming, we begin by making a few obseravtions. First if p(b) is true,

then p(a) must be true, too, and vice versa. Thus any interpretation I ⊆ {p(a), p(b), q} which includes p(a)

must also include p(b), and vice versa. Second, any interpretation which does not include q needs to include

p(a), and hence also p(b), due to the clause p(a)← ¬q. With the help of these observations it is then not

difficult to see that the only stable models are {q} and {p(a), p(b)}.

8. Consider a program P containing a clause

f ← ¬f, ~L

where ~L is a conjunction of literals, and f does occur elsewhere in P . Show that f and ~L are false
in each stable model of P .

This is a usual way of forcing something to be false, a special notation :- ~L is introduced for such a
clause.

Detailed solution. First, assume that M is a stable model of P where f ∈ M (thus, f is true in M).

Consider the reduct of P with respect to M , and in particular the impact of the clause f ← ¬f, ~L. Since
f ∈M , ¬f is false, and the entire claused will be removed in the reduct. But since f does not appear in any
other clause it follows that M \ {f} satisfies P , too, meaning that M cannot be a stable model.

Second, assume that M is a stable model of P where ~L are true. Again, consider the reduct of P with respect

to M , and in particular the impact of the clause f ← ¬f, ~L. Since f /∈ M (by the argument above), and

since ~L are true in M , it follows that the reduced clause is precisely f . But then M cannot be a model of the

reduced program since it does not satisfy f .
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