
Problem Set for Tutorial 5 — TDDD08

Wlodek Drabent∗1 and Victor Lagerkvist†1

1Department of Computer and Information Science, Linköping University, Linköping, Sweden

1. Consider the following definite program P :

o(s(z)). (1)

o(s(s(N)))← o(N). (2)

e(z). (3)

e(s(s(N)))← e(N). (4)

n(N)← o(N). (5)

n(N)← e(N). (6)

(a) Assume that the vocabulary A contains only the constant z and the unary function
symbol s. What is the Herbrand universe UA?

(b) What is the Herbrand base?

(c) Find the least Herbrand model of the program.

(d) Give an example of a model of the program which is not an Herbrand model.

Solution.

(a) {z, s(z), s(s(z)), . . .} = {si(z) | i ≥ 0} (we let si(z) be i repeated applications of s, and let
s0(z) = z).

(b) {o(t), e(t), n(t) | t ∈ UA}.
(c) {o(si(z)) | i is odd} ∪ {e(si(z)) | i is even} ∪ {n(t) | t ∈ UA}. How can we arrive at this answer?

The general idea is to construct the elements of the least Herbrand model, i.e., the ground, logical
consequences of the program, in a bottom-up manner. Hence, we start by adding all ground
instantiations of the facts of the program. Then, if we have a ground instantiation of a rule whose
body is true in the current set, we add the head of the rule to the current set, too. Once all rules
are satisfied in this way, then we do not have to add anything further, and we are done. Hence,
conceptually, we keep track of the current set of true statements in a set, and in each iteration
go through each rule in the program and check whether we need to add anything new. For our
current program P this can be expressed via the following iterations, where the set Ii is the set
of “true” statements in iteration number i. Note that I0 = ∅. If you do not recall the meaning of
the T i

P -operator, then see either the course book or the corresponding lecture slides.

• I0 = ∅.
∗wlodzimierz.drabent@liu.se
†victor.lagerkvist@liu.se

1

• I1 = TP (∅) = {o(s(z)), e(z)}.
• I2 = T 2

P (∅) = TP (I1) = {o(s(s(s(z)))), e(e(z)), n(s(z)), n(z)} ∪ I1.
...

• Ii = T i
P (∅) = TP (Ii−1) = {o(s(s(t))), e(s(s(t′))), n(t), n(t′) | o(t), e(t′) ∈ Ii−1} ∪ Ii−1.

Here we see a clear pattern and conclude that the least Herbrand model is indeed {o(si(z)) |
i is odd} ∪ {e(si(z)) | i is even} ∪ {n(t) | t ∈ UA}.

(d) This is very straightforward. Note that we do not have to provide a “minimal” model, simply a
model which is not a Herbrand model. Thus, as the underlying domain we could simply choose
the natural numbers, map s to the successor function, and simply say that o/1, e/1, and n/1 are
true for all natural numbers. Then we do not have a Herbrand model since the universe is not the
Herbrand universe UA. We could of course also choose a more natural model where o/1 is true for
all odd numbers, e/1 is true for all even numbers, and where n/1 is true for all natural numbers.

2. Consider the following definite program P :

p(X,Y)← r(g(X), X). (1)

r(g(Z), f(Z)). (2)

r(g(X), Y)← r(X, f(Y)). (3)

(a) Assume that the vocabulary A contains one constant a and two one-argument function
symbols f, g. What is the Herbrand universe UA corresponding to A?

(b) Which of the following Herbrand interpretations are models of the program?

I0 = ∅
I1 = { r(g(t), f(t)) | t ∈ UA }
I2 = I1 ∪ { r(gi(f j(t)), t) | i, j ≥ 0, t ∈ UA }
I3 = I2 ∪ { p(t, u) | t, u ∈ UA }

(c) Find the least Herbrand model of the program.

(d) Give an example of a ground atom which is a logical consequence of P , but is not an
instance of r(g(Z), f(Z)).

(e) Give an example of a ground atom which is not a logical consequence of P , but it is an
instance of r(g(X), Y).

(f) Give an example of a non-ground atom which is a logical consequence of P , but is not an
instance of r(g(Z), f(Z)).

Solution.

(a) UA = {a, f(a), g(a), f(f(a)), f(g(a)), g(g(a)), g(f(a)), . . .}.
(b) We take each case in turn. First, I0 is clearly not a model since it does not satisfy (2). To see that

I1 is not a model, consider e.g. a ground instantiation r(g2(a), a)← r(g(a), f(a)) of (3). Clearly,
r(g(a), f(a)) ∈ I1, but r(g2(a), a) /∈ I1. For I2, consider the ground clause p(a, f(a))← r(g(a), a).
Then r(g(a), a) ∈ I2 but p(a, f(a)) /∈ I2. However, we claim that I3 |= P . First, since I3 contains
both I1 and I2, we will perform a case analysis with respect to the third clause, depending on
whether a ground instance contains a body atom from I1, or from I2 (but not from I1, to make
the two cases distinct). Thus:

2

i. Assume a ground instance of the third clause with the body atom from I1. Then it has to
be of the form r(g2(t), t)← r(g(t), f(t)) (t ∈ UA). But then the head is in I2 ⊆ I3.

ii. Assume a ground instance of the third clause where the body atom is included in I2, but
not in I1 (in I3 \ I1). Then it is of the form r(g(gi(f j(f(t′)))), t′)← r(gi(f j(f(t′))), f(t′))
(t′ ∈ UA). But then the head is in I2 ⊆ I3.

Thus, P is correct w.r.t. I3

(c) We try to construct the least Herbrand model bottom-up in a systematic manner.

• I1 = {r(g(t), f(t)) | t ∈ UA}.
• I2 = I1 ∪ {r(g(g(t)), t) | t ∈ UA}.
• I3 = I2 ∪ {r(g(g(g(f(t)))), t) | t ∈ UA}.

...

• Ii = Ii−1 ∪ {r(gi(f i−2(t)), t) | t ∈ UA}.
Let us explain the step from I2 to I3 in greater detail. We already know that r(g(g(t)), t) ∈ I2
for every ground term t ∈ UA. Hence, in particular, r(g(g(f(t))), f(t)) ∈ I2 for every ground
term t ∈ UA. But if r(g(g(f(t))), f(t)) is true, r(g(g(g(f(t)))), t) must be true, too, since
r(g(g(g(f(t)))), t)← r(g(g(f(t))), f(t)) is a ground initialisation of the clause (3).

Note also that in no step of the iteration are we going to be able to find a ground instantiation
of (1) where the body is true in the previous iteration. Now the general pattern is clear and we
conclude that the least Herbrand model is the set {r(g(t), f(t)) | t ∈ UA} ∪ {r(gi+2(f i(t)), t) |
i ≥ 0, t ∈ UA)}.

(d) For example, r(g(g(a)), a).

(e) For example, r(g(f(a)), a).

(f) For example, r(g(g(X)), X).

3. Write a DCG which recognises whether a string is a palindrome, i.e., whether the string
reads the same forwards and backwards. Translate your DCG to Prolog using the translation
described in Section 10.5 of the course book.

Solution. See the source file associated with this tutorial.

4. Consider the following fragment of the syntax of a programming language:

<exp> ::= begin <exp> end | skip | if <b_exp> exp | <id> := <num>

<b_exp> ::= <id> < <id> | <id> = <id>

First, write a DCG which recognises the above language, under reasonable assumptions with
respect to <id> and <num> (e.g., you may assume that <id> ::= x | <id> ::= y, to avoid
specifying exactly what strings constitute variables). Second, write a DCG exp(T) which
recognises the language and where T is a term corresponding to the accepted string. For
example, to parse strings of the form if <b exp> exp your program should include a DCG
rule along the lines of:

exp(if(B_term, Exp_term)) --> [if], b_exp(B_term), exp(Exp_term).

Solution. (Partial) See the source file associated with this tutorial.

3

5. Say that a string of left and right parenthesis (i.e., a string consisting of ’(’, and ’)’)) is balanced
if each left parenthesis has a matching right parenthesis. For example, (())() is balanced but
(()() is not. Write a DCG which recognises the language of all balanced strings of parenthesises,
i.e., {α ∈ {(,)}∗ | α is balanced}. Would your solution work as expected in Prolog (under the
standard translation)?

6. Write a DCG which recognises the language {anbncn | n ≥ 1}.
Solution. See the source file associated with this tutorial.

4

