\% Version 1.1 2020-10-03
\%Exercise 3.1: see exercise 2.3 in labpm. Hint: if the binding
\%environment is to be represented as a list, then a single binding can be \%represented by a term $=(x, n)$, which in Prolog may be written as $x=n$ \%since $=$ is predefined as an operator.
\%Exercise 3.b.
\% eval (Bindings, Term, Value) - Value is the value of arithmetic term Term \% with respect to the binding environment Bindings
\% Base case: the current expression is simply an integer. We can test this
\% using the built-in predicate integer/1.
eval(_Bindings, num(Val), Val) :- integer(Val).
\%If the expression consists of a single variable we look up its value
\%using the binding environment.
eval(Bindings, var(X), Val) :- atom(X), get(Bindings, X, Val).
\%If we have a compound expression we recursively evaluate it and
\%combine the values. Note that a term $+(X, Y)$ can be written as $X+Y$
\%in Prolog since + is a predefined operator.
eval (Bindings, $X+Y, V a l):-$
eval (Bindings, X, Val1),
eval(Bindings, Y, Val2),
Val is Vall + Val2.
eval(Bindings, X * Y, Val) :-
eval (Bindings, X, Val1),
eval(Bindings, Y, Val2),
Val is Vall * Val2.
\% assign (B1, X, Term, B2) - B2 is the binding environment resulting from \% binding environment $B 1$ by assigning to X the value of arithmetic term X \% with respect to the binding environment B1
\%We evaluate the term in B1, and obtain a value Val. B2 is B1 except for \%variable X having value Val
assign (B1, X, Term, B2) :-
eval (B1, Term, Val), set (B1, $X, V a l, B 2)$.
\%Exercise 4.
tree (l(_)).
tree (t (L, R)) :- tree(L), tree (R).
\% leftmost(Tree, LeftMost) - LeftMost is the leftmost leaf of Tree
\% rightmost (Tree, LeftMost) - LeftMost is the rightmost leaf of Tree \% (provided that Tree is a tree)
\%leftmost/2 and rightmost/2 are defined in a similar way: if we have a \%leaf then we simply return it. Otherwise the leftmost leaf of the tree \%is the leftmost leaf of the left subtree. The same for rightmost.
leftmost (l(X), l(X)).
leftmost (t(L, _R), LeftMost) :-
leftmost (L, LeftMost).
rightmost (l(X), l(X)).
rightmost(t(_L, R), RightMost) :rightmost(R, RightMost).
\% leaves (Tree, Leaves) - Leaves is the list of the values in the leaves of \% tree Tree (from left to right)
\% In the base case we obtain a singleton list.
leaves (I (X), [X]).
\%In the recursive case we solve the two subproblems and combine the solutions \%to the subproblems with append/3.
leaves (t (L, R), LeavesList) :-
leaves (L, Left),
leaves (R, Right),
append(Left, Right, LeavesList).
\%The problem can be solved without using append/3 by introducing an
\%additional argument. The idea is to represent a list [e1,..., en] by a pair \%of terms [e1,...,en|t] and t. Such representation is called a difference \%list and will be revisited during lecture 6.
leaves_no_append (l(X), [X|Xs], Xs).
leaves_no_append (t(L, R), Head, Tail) :leaves_no_append(L, Head, LeftTail), leaves_no_append(R, LeftTail, Tail).
\% mirror(Tree1, Tree2) - trees Tree1,Tree2 are mirror images of each other
\%Base case: a leaf is a mirror of itself.
mirror(l(X), l(X)).
\%Recursive case: solve the subproblems and swap left and right.
mirror (t (L, R), t(R1, LI)) :-
mirror (L, L1),
mirror($\mathrm{R}, \mathrm{R} 1$).
\%Exercise 5.
\% Here we write "number" to abbreviate "the term representing a natural number"
\% isnumber (X) - X is a number
\% greater $(X, Y)-X, Y$ are numbers and $X>Y$
\% add $(X, Y, Z) \quad-X, Y, Z$ are numbers and $X+Y=Z$
\% mult $(X, Y, Z) \quad-X, Y, Z$ are numbers and $X * Y=Z$

```
isnumber(zero). % O is a natural number
isnumber(S(X)) :- isnumber(X). % if X is a natural number then s+1 is
greater(s(X), zero) :- isnumber(X). % if X is a natural number then s+X>0
greater(s(X), s(Y)) :- greater(X, Y). % if X>Y then X+1>Y+1
add(zero, X, X) :- isnumber(X). % if X is a natural number then }s+X=
add(s(X), Y, s(Z)) :- add(X, Y, Z). % if X+Y=Z then X+1+Y=Z+1
mult(zero, X, zero) :- isnumber(X).
mult(s(X), Y, Z) :- mult(X, Y, XY), add(XY, Y, Z).
% How this program should be extended to perform subtraction and division ?
% You can make the program less inefficient (but defining different relations),
% e.g.
% add1(X,Y,Z) - if Y or Z is a number then X,Y,Z are numbers and X Y Y = Z
add1 (zero, X, X).
add1(s(X), Y, s(Z)) :- add1(X, Y, Z).
% Here computing X+Y needs X+1 steps instead of X+Y+1.
% (addl/3 is correct w.r.t. the informal specification given above, and
% complete to a specification analogical to that for add/3.)
```

