
Problem Set for Tutorial 4 — TDDD08

Wlodek Drabent∗1 and Victor Lagerkvist†1

1Department of Computer and Information Science, Linköping University, Linköping, Sweden

1. Determine which of the following pairs of terms that are unifiable, and provide the most
general unifier (mgu) in case there is one:

(a) p(f(X),X,f(Y)) and p(Y,f(Z),Z).

(b) p(f(X),f(Y),X) and p(Z,Z,W).

(c) p(X1,X2,X3) and p(f(X2,X2),f(X3,X3),a).

(d) [X,Y|Xs] and [a,b,c].

(e) [X,f(X)|X] and [Z,Y,Z].

Solution.

(a) The terms are not unifiable. Using the unification algorithm from the lecture slides we in the first
iteration obtain the set of equations {f(X)

.
= Y,X

.
= f(Z), f(Y)

.
= Z}. This set will then be

simplified to {Y .
= f(X), X

.
= f(Z), Z

.
= f(Y)}. This set is not in solved form (try to verify this

using the formal definition), and we continue in case 5 of the algorithm with the choice Y
.
= f(X).

Since Y occurs in Z
.
= f(Y) on the right-hand-side this case is applicable, and we therefore replace

every other occurence of Y with f(X), obtaining the set {Y .
= f(X), X

.
= f(Z), Z

.
= f(f(X))}.

This set of equations is also not in solved form, since no other case is applicable we continue with
case 5 with the choice Z

.
= f(f(X)), and replace each occurence of Z with f(f(X)), and obtain

the new set {Y .
= f(X), Z

.
= f(f(X), X

.
= f(f(f(X)))}. Again, this set of equations is not in

solved form, and we proceed to case 5 with the choice X
.
= f(f(f(X))). We then observe that X

is a proper subterm of f(f(f(X))), and have no other choice than to answer “no” and abort the
procedure.

(b) Yes, these two terms are unifiable, and using the unification algorithm from the lecture slides
we will first obtain the equations {f(X)

.
= Z, f(Y)

.
= Z,X

.
= W}, which will be simplified to

{Z .
= f(X), Z

.
= f(Y), X

.
= W}. Since this set is not in solved form we pick Z

.
= f(X) and

replace every other occurence of Z by f(X), and obtain the set {Z .
= f(X), f(X)

.
= f(Y), X

.
=

W}. Next, we pick f(X)
.
= f(Y) and replace this equation (case 1) by X

.
= Y , and obtain

{Z .
= f(X), X

.
= Y,X

.
= W}. This set is not in solved form and we proceed to case 5 with the

choice X
.
= Y , meaning that we replace every other occurence of X with Y and obtain the set

{Z .
= f(Y), X

.
= Y, Y

.
= W}. Last, we pick Y

.
= W and replace every other occurence of Y

with W and obtain the set {Z .
= f(W), X

.
= W,Y

.
= W}. This set is in solved form and we are

therefore done.

∗wlodek.drabent@liu.se
†victor.lagerkvist@liu.se

1

true

true

false

member(X0,[])

�
�
�
�
�
�

X0/b

A
A
A
A
A
A

member(X0,[b])

�
�
�
�
�
�
�
�

X0/a

A
A
A
A
A
A

member(X0,[a,b])

Figure 1: SLD-tree for the query member(X, [a,b]). The tree was drawn using the sldnftree library
in SWI-Prolog.

(c) Yes, the two terms are unifiable, and if one uses the unification algorithm one obtains an MGU
{X1

.
= f(f(a, a), f(a, a)), X2

.
= f(a, a), X3

.
= a}.

(d) Yes, the two terms are unifiable. First, recall that a term [A|As] is only syntactic sugar for .(A,
As), and that [X,Y|Xs] can be simplified to [X|[Y|XS]]. Thus, before we start applying the
unification algorithm we translate [X,Y|Xs] to .(X,.(Y, Xs)). The corresponding translation
of [a,b,c] results in the term .(a, .(b, .(c, []))) where [], the empty list, is treated as a
constant symbol. If we then attempt to unify these terms, using the same approach as before, we
will obtain the MGU {X .

= a, Y
.
= b,Xs

.
= .(c, [])}.

(e) This exercise is in principle not harder than the previous one, but perhaps looks more complicated.
We begin by expanding [X,f(X)|X] to the corresponding term: .(X, .(f(X), X)). We do the
same thing with [Z,Y,Z] and obtain the term .(Z,.(Y,.(Z,[]))). Then we attempt to unify
the two terms, using exactly the same approach as before, but discover that two two terms are
not unifiable.

2. Draw the SLD-tree for the program below and the query member(X,[a,b]), and sketch an
SLD-tree for the query member(a, Xs).

member(X, [X|_]).

member(X, [_|L]) :- member(X,L).

Solution. See Figure 2. We omit the anonymous variable when drawing the SLD-tree. For the second
query member(a, Xs) the resulting SLD-tree is infinite. This is due to the fact that member(a, Xs)

can be resolved either via the fact, in which case we obtain the empty clause, or is resolved via the rule
where unify Xs with [|L], and obtain the new goal member(a, L). However, using this goal we can
choose to use the rule again, and obtain the new goal member(a, L0), which, again, may lead to a
new goal member(a, L1), and so on.

2

true

false

s(X1,[],Y s11),
p(Xs1,Y s11)

#
#
#
#
#
#
#

Xs0/[]

A
A
A
A
A
A

Xs0/[X1|Xs1]

p(Xs0,[])

false

s(X0,[],Zs0),
p(Xs0,[a|Zs0])

#
#
#
#
#
#
#

X0/a, Y s10/[]

b
b
b
b
b
b
b
b
b

Y s10/[a|Zs0]

s(X0,[a],Y s10),
p(Xs0,Y s10)

P0/[X0|Xs0]

p(P0,[a])

Figure 2: SLD-tree for the query permutation(P, [a]). The tree was drawn using the sldnftree
library in SWI-Prolog, and the labels for several of the edges should for readability be placed to the
left or right of the edges.

3. Consider the following definitions of permutation/2 and select/3.

%permutation(Xs,Ys) is true if Xs is a permutation of Ys.

permutation([], []).

permutation([X|Xs], Ys) :- select(X, Ys, Ys1), permutation(Xs, Ys1).

%select(X, Ys, Ys1) is true if Ys1 is the list obtained by removing an

%occurrence of X in Ys.

select(X, [X|Ys], Ys).

select(X, [Y|Ys], [Y|Zs]) :- select(X, Ys, Zs).

Draw the SLD-tree for the query permutation(P, [a,b]) using Prolog’s selection rule of
always choosing the leftmost atom in the node of the tree. To make the drawing simpler, begin
by drawing the SLD-tree for the query permutation(P, [a]). Then, when you draw the SLD-
tree for the query permutation(P, [a,b]) you can re-use the SLD-tree for permutation(P,
[a]).

Solution. See Figure 3 and Figure 3. To make the tree easier to draw we write p instead of
permutation, and s instead of select.

3

true

false

s(X2,[],Y s12),
p(Xs2,Y s12)

#
#
#
#
#
#
#

Xs1/[]

A
A
A
A
A
A

Xs1/[X2|Xs2]

p(Xs1,[])

false

s(X1,[],Zs0),
p(Xs1,[b|Zs0])

#
#
#
#
#
#
#

X1/b, Y s11/[]

b
b
b
b
b
b
b
b
b

Y s11/[b|Zs0]

s(X1,[b],Y s11),
p(Xs1,Y s11)

Xs0/[X1|Xs1]

p(Xs0,[b])

true

false

s(X2,[],Y s12),
p(Xs2,Y s12)

#
#
#
#
#
#
#

Xs1/[]

A
A
A
A
A
A

Xs1/[X2|Xs2]

p(Xs1,[])

false

s(X1,[],Zs1),
p(Xs1,[a|Zs1])

#
#
#
#
#
#
#

X1/a, Y s11/[]

b
b
b
b
b
b
b
b
b

Y s11/[a|Zs1]

s(X1,[a],Y s11),
p(Xs1,Y s11)

Xs0/[X1|Xs1]

p(Xs0,[a])

false

s(X0,[],Zs1),
p(Xs0,[a,b|Zs1])

#
#
#
#
#
#
#

X0/b, Zs0/[]

PPPPPPPPPPPPPPPP
Zs0/[b|Zs1]

s(X0,[b],Zs0),
p(Xs0,[a|Zs0])

����������������������
X0/a, Y s10/[b]

PPPPPPPPPPPPPPPP
Y s10/[a|Zs0]

s(X0,[a,b],Y s10),
p(Xs0,Y s10)

P0/[X0|Xs0]

p(P0,[a,b])

Figure 3: SLD-tree for the query permutation(P, [a,b]). The tree was drawn using the sldnftree
library in SWI-Prolog, and the labels for several of the edges should for readability be placed to the
left or right of the edges.

4

4. Assume that we represent simple arithmetical expressions as terms as follows: var(x) is an
arithmetical term if x is a non-numerical atom, num(n) is an arithmetical term if n is an integer,
and if T1 and T2 are arithmetical terms then T1 + T2 and T1 ∗ T2 are arithmetical terms. For
example, var(x) + var(y) * var(z) + num(10) would be an example of an arithmetical
term. Note that an arithmetic term of this form can only be evaluated to a concrete value
once the values of all involved variables have been specified. A binding environment is a data
structure which for each variable x contains a numerical value n.

(a) Design a representation of a binding environment which supports the following operations:

i. init(B) is true if B is an empty binding environment (according to your own
definition).

ii. get(B, X, Value) is true if the arithmetical variable X has the value Value in the
binding environment B.

iii. set(B1, X, Value, B2) is true if B2 is the resulting of adding/updating the arith-
metical variable X to the value Value in the binding environment B1.

(b) Define the following predicates:

i. evaluate(B, Term, Result) is true if the result of evaluating the arithmetical term
Term with respect to the binding environment B is Result.

ii. assign(B1, X, Term, B2) is true if B2 is the binding environment resulting from
updating the binding environment B1 by assigning X the the value resulting from
evaluating Term with respect to B1.

Solution. For the first part, see exercise 2.3 in the lab compendium. For the second part, see the source
file associated with this tutorial.

5. In tutorial 2 this representation for trees with data in the leaves was introduced:

tree(l(_)).

tree(t(L, R)) :- tree(L), tree(R).

Define the following relations as Prolog programs:

(a) leftmost(Tree,Leaf) — Leaf is the leftmost leaf in Tree.

(b) rigthmost(Tree,Leaf) — correspondingly.

(c) leaves(Tree,Leaves) — Leaves is a list of the leaves (from left to right, i.e. infix order)
in Tree. For an extra challenge: is it possible to solve this without using append/3

or any auxiliary list processing predicate? Why, or why not?

(d) mirror(Tree1,Tree2) — the trees are mirror images of each other. Hint: what is the
mirror image of l(X), and what is the mirror image of t(l(X), l(Y))?

Solution. See the source file associated with this tutorial.

6. In exercise 4 we used Prolog’s built-in support for arithmetics, but it is possible to represent
numbers in logic programming through terms. For example, we could introduce the atom zero

to denote the number 0, and then introduce a function symbol s so that the term s(zero)

represents 1, the term s(s(zero)) represents 2, and so on. We could then define a predicate
which recognises all natural numbers (in this representation) as follows.

5

isnumber(zero).

isnumber(s(N)) :- isnumber(N).

Define the following relations as Prolog programs:

(a) greater(X,Y) — the number represented by X is greater than the number represented
by Y.

(b) add(X,Y,Z) — Z is the representation of the sum of the numbers represented by X and Y.

(c) mul(X,Y,Z) — correspondingly for multiplication.

Solution. See the source file associated with this tutorial.

6

