Problem Set for Tutorial 1 - TDDD08*

Victor Lagerkvist ${ }^{\dagger 1}$
${ }^{1}$ Department of Computer and Information Science, Linköping University, Linköping, Sweden

1. Which of the following expressions are well-formed formulas in first-order logic?
(a) $\forall x(p(x) \rightarrow q(x))$ where p and q are predicate symbols.
(b) $p(x) \rightarrow q(x)$ where p and q are predicate symbols.
(c) $\exists x(p(f(x)) \wedge q(x))$ where p and q are predicate symbols and f a function symbol.
(d) $\exists x(p(f(x)) \wedge \exists x q(x))$ where p and q are predicate symbols and f a function symbol.
(e) $\forall x(f(x) \wedge p(x))$ where f is a function symbol and p a predicate symbol.
(f) $\forall x p(f(x))$ where p is a predicate symbol and f a function symbol.
(g) $\forall x f(p(x))$ where p is a predicate symbol and f a function symbol.

Solution.
(a) Yes.
(b) Yes.
(c) Yes.
(d) Yes.
(e) No.
(f) Yes.
(g) No.
2. Translate the following sentences into first-order logic:
(a) "All employees have income."
(b) "Some employees are on holidays."
(c) "No employees are unemployed."
(d) "Some employees are not satisfied by their salary policy."

Solution. For example:
(a) $\forall x(\operatorname{employee}(x) \rightarrow \operatorname{income}(x))$.

[^0](b) $\exists x$ (employee $(x) \wedge$ holiday $(\mathrm{x}))$.
(c) $\forall x$ (employee $(x) \rightarrow \neg$ unemployed $(x))$.
(d) $\exists x(\operatorname{employee}(x) \wedge \neg \operatorname{satisfied}(x$, salary_policy $))$.
3. Translate the following formulas into natural language:
(a) $\forall x(($ strongEngine $(x) \wedge \operatorname{car}(x) \wedge$ wheels $(x, 4)) \rightarrow \operatorname{fast}(x))$.
(b) $\forall x \forall y((\operatorname{parent}(x, y) \wedge \operatorname{ancestor}(y)) \rightarrow \operatorname{ancestor}(x))$.
(c) $\forall x \forall y((\operatorname{car}(x) \wedge \operatorname{onRoad}(x, y) \wedge \operatorname{highway}(y) \wedge$ normalConditions $(y)) \rightarrow$ fastSpeedAllowed $(x))$.

Solution. For example:
(a) Four-wheel cars with strong engines are fast.
(b) A parent of an ancestor is also an ancestor.
(c) Under normal conditions, cars on highways can drive fast.
4. Consider the formula

$$
\forall x(\operatorname{shaves}(\text { barber }, x) \leftrightarrow \neg \operatorname{shaves}(x, x))
$$

which in natural language can be read as "The barber is a man in a town who shaves all those, and only those, men in town who do not shave themselves.". Does it have a model, i.e., is it satisfiable?
Solution. The formula does not have a model. Assume there exists a model M over a universe $\left\{d_{0}, d_{1}, \ldots\right\}$, and assume for simplicity that $\operatorname{barber}_{M}=d_{0}$, i.e., the constant symbol barber is mapped to the element d_{0} from the universe D. Assume first that shaves $\left(d_{0}, d_{0}\right)$ is true in M. Then $\neg \operatorname{shaves}\left(d_{0}, d_{0}\right)$ must be true, too, which is a contradiction. Similarly, assume that shaves $\left(d_{0}, d_{0}\right)$ is not true. Then $\left.\neg \operatorname{shaves}\left(d_{0}, d_{0}\right)\right)$ is true, and we conclude that $\operatorname{shaves}\left(d_{0}, d_{0}\right)$ must also be true, which is again a contradiction.
5. Let a and b be constant symbols, f a binary function symbol, and l a unary predicate symbol. Consider the first-order sentence $l(a) \wedge \forall x(l(x) \rightarrow l(f(b, x)))$. Provide two interpretations: one which is a model and one which is not.
Solution. Two possible interpretations are:
(a) A model: an interpretation I where the universe $D=\{a, b, f(a, a), f(a, b), f(b, a), f(b, b), f(f(a, a), a), \ldots\}$ contains all ground terms, where $a_{I}=a, b_{I}=b, f_{I}$ is the function $f_{I}\left(t, t^{\prime}\right)=f\left(t, t^{\prime}\right)$ for $t, t^{\prime} \in D$ which simply maps $t, t^{\prime} \in D$ to the ground term obtained by taking t and t^{\prime} and combining them with the symbol f, and where $l_{I}=\{a, f(b, a), f(b, f(b, a)), \ldots\}^{1}$.
(b) A non-model: there ary many possible choices. If we build upon the previous answer we could e.g. define $l_{I}=\{a\}$. Then the subformula $\forall x(l(x) \rightarrow l(f(b, x)))$ is not satisfied (why?).
6. Consider the formula $\operatorname{nat}($ zero $) \wedge \forall x(\operatorname{nat}(x) \rightarrow \operatorname{nat}(f(x)))$. Provide two interpretations: one which is a model and one which is not.
Solution. Two possible interpretations are:

[^1](a) A model: an interpretation I with universe $D=\mathbb{N}=\{0,1,2, \ldots\}$, where zero $I_{I}=0$, nat $_{I}=D$, and f_{I} is the function $f_{I}(x)=x+1$ over \mathbb{N}.
(b) A non-model: an interpretation I with universe $D=\mathbb{N}=\{0,1,2, \ldots\}$, where nat ${ }_{I}$ is finite, and f_{I} is the function $f_{I}(x)=x+1$ over \mathbb{N}.

[^0]: *Some exercises taken from TDDD72.
 †victor.lagerkvist@liu.se

[^1]: ${ }^{1}$ An interpretation of this form is known as an Herbrand interpretation and will play an important role later on in the course.

