Problem Set for Tutorial 1 — TDDD08*

Victor Lagerkvist^{†1}

- 1. Which of the following expressions are well-formed formulas in first-order logic?
 - (a) $\forall x(p(x) \to q(x))$ where p and q are predicate symbols.
 - (b) $p(x) \to q(x)$ where p and q are predicate symbols.
 - (c) $\exists x (p(f(x)) \land q(x))$ where p and q are predicate symbols and f a function symbol.
 - (d) $\exists x (p(f(x)) \land \exists x q(x))$ where p and q are predicate symbols and f a function symbol.
 - (e) $\forall x (f(x) \land p(x))$ where f is a function symbol and p a predicate symbol.
 - (f) $\forall x p(f(x))$ where p is a predicate symbol and f a function symbol.
 - (g) $\forall x f(p(x))$ where p is a predicate symbol and f a function symbol.

Solution.

- (a) Yes.
- (b) Yes.
- (c) Yes.
- (d) Yes.
- (e) No.
- (f) Yes.
- (g) No.
- 2. Translate the following sentences into first-order logic:
 - (a) "All employees have income."
 - (b) "Some employees are on holidays."
 - (c) "No employees are unemployed."
 - (d) "Some employees are not satisfied by their salary policy."

Solution. For example:

(a) $\forall x (\text{employee}(x) \to \text{income}(x)).$

¹Department of Computer and Information Science, Linköping University, Linköping, Sweden

^{*}Some exercises taken from TDDD72.

 $^{^{\}dagger}$ victor.lagerkvist@liu.se

- (b) $\exists x (\text{employee}(x) \land \text{holiday}(x)).$
- (c) $\forall x (\text{employee}(x) \rightarrow \neg \text{unemployed}(x)).$
- (d) $\exists x (\text{employee}(x) \land \neg \text{satisfied}(x, \text{salary_policy})).$
- 3. Translate the following formulas into natural language:
 - (a) $\forall x ((\text{strongEngine}(x) \land \text{car}(x) \land \text{wheels}(x,4)) \rightarrow \text{fast}(x)).$
 - (b) $\forall x \forall y ((\operatorname{parent}(x, y) \land \operatorname{ancestor}(y)) \rightarrow \operatorname{ancestor}(x)).$
 - (c) $\forall x \forall y ((\operatorname{car}(x) \land \operatorname{onRoad}(x, y) \land \operatorname{highway}(y) \land \operatorname{normalConditions}(y)) \rightarrow \operatorname{fastSpeedAllowed}(x)).$

Solution. For example:

- (a) Four-wheel cars with strong engines are fast.
- (b) A parent of an ancestor is also an ancestor.
- (c) Under normal conditions, cars on highways can drive fast.
- 4. Consider the formula

$$\forall x (\text{shaves}(barber, x) \leftrightarrow \neg \text{shaves}(x, x)),$$

which in natural language can be read as "The barber is a man in a town who shaves all those, and only those, men in town who do not shave themselves.". Does it have a model, i.e., is it satisfiable?

Solution. The formula does not have a model. Assume there exists a model M over a universe $\{d_0, d_1, \ldots\}$, and assume for simplicity that $\operatorname{barber}_M = d_0$, i.e., the constant symbol barber is mapped to the element d_0 from the universe D. Assume first that $\operatorname{shaves}(d_0, d_0)$ is true in M. Then $\neg\operatorname{shaves}(d_0, d_0)$ must be true, too, which is a contradiction. Similarly, assume that $\operatorname{shaves}(d_0, d_0)$ is not true. Then $\neg\operatorname{shaves}(d_0, d_0)$ is true, and we conclude that $\operatorname{shaves}(d_0, d_0)$ must also be true, which is again a contradiction.

5. Let a and b be constant symbols, f a binary function symbol, and l a unary predicate symbol. Consider the first-order sentence $l(a) \wedge \forall x (l(x) \to l(f(b,x)))$. Provide two interpretations: one which is a model and one which is not.

Solution. Two possible interpretations are:

- (a) A model: an interpretation I where the universe $D = \{a, b, f(a, a), f(a, b), f(b, a), f(b, b), f(f(a, a), a), \ldots\}$ contains all ground terms, where $a_I = a$, $b_I = b$, f_I is the function $f_I(t, t') = f(t, t')$ for $t, t' \in D$ which simply maps $t, t' \in D$ to the ground term obtained by taking t and t' and combining them with the symbol f, and where $l_I = \{a, f(b, a), f(b, f(b, a)), \ldots\}^1$.
- (b) A non-model: there ary many possible choices. If we build upon the previous answer we could e.g. define $l_I = \{a\}$. Then the subformula $\forall x(l(x) \to l(f(b,x)))$ is not satisfied (why?).
- 6. Consider the formula $\operatorname{nat}(zero) \wedge \forall x \, (\operatorname{nat}(x) \to \operatorname{nat}(f(x)))$. Provide two interpretations: one which is a model and one which is not.

Solution. Two possible interpretations are:

¹An interpretation of this form is known as an *Herbrand interpretation* and will play an important role later on in the course.

- (a) A model: an interpretation I with universe $D = \mathbb{N} = \{0, 1, 2, ...\}$, where $zero_I = 0$, $nat_I = D$, and f_I is the function $f_I(x) = x + 1$ over \mathbb{N} .
- (b) A non-model: an interpretation I with universe $D = \mathbb{N} = \{0, 1, 2, \ldots\}$, where nat_I is finite, and f_I is the function $f_I(x) = x + 1$ over \mathbb{N} .