Problem Set for Tutorial $1 - \text{TDDD08}^*$

Victor Lagerkvist^{$\dagger 1$}

¹Department of Computer and Information Science, Linköping University, Linköping, Sweden

- 1. Which of the following expressions are well-formed formulas in first-order logic?
 - (a) $\forall x(p(x) \rightarrow q(x))$ where p and q are predicate symbols.
 - (b) $p(x) \rightarrow q(x)$ where p and q are predicate symbols.
 - (c) $\exists x(p(f(x)) \land q(x))$ where p and q are predicate symbols and f a function symbol.
 - (d) $\exists x(p(f(x)) \land \exists xq(x))$ where p and q are predicate symbols and f a function symbol.
 - (e) $\forall x(f(x) \land p(x))$ where f is a function symbol and p a predicate symbol.
 - (f) $\forall x p(f(x))$ where p is a predicate symbol and f a function symbol.
 - (g) $\forall x f(p(x))$ where p is a predicate symbol and f a function symbol.
- 2. Translate the following sentences into first-order logic:
 - (a) "All employees have income."
 - (b) "Some employees are on holidays."
 - (c) "No employees are unemployed."
 - (d) "Some employees are not satisfied by their salary policy."
- 3. Translate the following formulas into natural language:
 - (a) $\forall x ((\operatorname{strongEngine}(x) \land \operatorname{car}(x) \land \operatorname{wheels}(x, 4)) \rightarrow \operatorname{fast}(x)).$
 - (b) $\forall x \forall y ((\operatorname{parent}(x, y) \land \operatorname{ancestor}(y)) \rightarrow \operatorname{ancestor}(x)).$
 - (c) $\forall x \forall y ((\operatorname{car}(x) \land \operatorname{onRoad}(x, y) \land \operatorname{highway}(y) \land \operatorname{normalConditions}(y)) \rightarrow \operatorname{fastSpeedAllowed}(x)).$
- 4. Consider the formula

 $\forall x (\text{shaves}(barber, x) \leftrightarrow \neg \text{shaves}(x, x)),$

which in natural language can be read as "The barber is a man in a town who shaves all those, and only those, men in town who do not shave themselves.". Does it have a model, i.e., is it satisfiable?

^{*}Some exercises taken from TDDD72.

[†]victor.lagerkvist@liu.se

- 5. Let a and b be constant symbols, f a binary function symbol, and l a unary predicate symbol. Consider the first-order sentence $l(a) \wedge \forall x(l(x) \rightarrow l(f(b, x)))$. Provide two interpretations: one which is a model and one which is not.
- 6. Consider the formula $\operatorname{nat}(zero) \wedge \forall x (\operatorname{nat}(x) \to \operatorname{nat}(f(x)))$. Provide two interpretations: one which is a model and one which is not.