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Definite Clause Grammars and Search

Definite clause grammars. Used for e.g. parsing (lab 3).

Search (lab 4). Searching through a state space (lab 4).




Definite Clause Grammars

Definite clause grammars (DCG) provides a declarative
and efficient way to write parsers in Prolog. The name
stems from the fact that we essentially take a set of
context-free grammar rules and encodes it as a set of
definite clauses.

Examples on white board.



Search

Search problems in Prolog.
Depth-first search.
Breadth-first search.




Search problems

Many problems are encodable as search problems.
Examples:

Path finding: Can we get from a to f in a graph, given
edge(X,Y)7

Planning: How can we get the goat, wolf and cabbage
across the river without anyone getting eaten?

Logic programming: Is there a successful SLD-derivation
from our query, using the available clauses.

All these share some basic structure. Graph example on
white board.



Search problems in logic programming

Given a start state, a transition relation, and a goal state
(or states), can we reach a goal state from the start
state?

Components:

A state space (vertices, states of the world, logic
programming goals, etc), represented as Prolog objects.

A transition relation, e.g. edge (X,Y) or
move (state(A1,B1),state(A2,B2)).

Start state e.g. start(State)
A goal condition (e.g. goal(State) predicate).

A search strategy, there are several.



General depth-first search

Suppose that the following predicates are provided:
init (State): Gives the initial state.
goal(State): State is a goal state.

action(Statel,State2): There exists some action
(move, edge, etc) taking us from Statel to State2.

This is enough to write a general problem solver (for
problems with a finite number of states).



General depth-first search

%#% df_search(Path): True if Path is a path taken
%% from SO to a goal state
df _search(Path) :-

init(S0),

df_search([S0], Path).

%% df_search(Partial,Path): True if Partial can
%% be extended into a path Path to a goal state
df_search([S|Visited], [S|Visited]) :-

goal(s).

df_search([S1|Visited], Path) :-
action(S1, S2),
nonmember (82, [S1|Visited]),
df_search([S2,S1|Visited], Path).

Example, encoding of the previous problem:

init(a).
goal(c).
action(X, Y) :- edge(X, Y).



Maze example

Larger example: A small game, a maze with locked doors
and coloured keys.

State: Current room (a—e), carried keys (blue, green,
etc). Start with state(a,[no key]).

Actions:Pick up a key (if present), walk through a door
(if carrying the right key).

We use predicates has_key(Room, Key) and door(R1,
R2, Key) to encode the actual maze.



Maze example
Possible description:

has_key(a,blue_key).
has_key(d,green_key).
has_key(c,red_key).

door(a,b,no_key).
door(b,d,blue_key).
door(a,c,green_key).
door(a,e,red_key).

init(state(a, [no_keyl)).
goal(state(e,_)).

%% Action: walk through door
action(state(X,Keys), state(Y,Keys)) :-
(door(X,Y,Key) ; door(Y,X,Key)),

member (Key, Keys).

%% Action: pick up key

action(state(X,Keys), state(X,[Keyl|Keys])) :-
has_key(X, Key),
nonmember (Key, Keys).




Maze example

Solution:

| 7- df_search(P).

P = [state(e, [red_key,green_key,blue_key,no_keyl),
state(a, [red_key,green_key,blue_key,no_keyl),
state(c, [red_key,green_key,blue_key,no_keyl),
state(c, [green_key,blue_key,no_keyl),
state(a, [green_key,blue_key,no_keyl),
state(b, [green_key,blue_key,no_keyl),
state(d, [green_key,blue_key,no_keyl),
state(d, [blue_key,no_keyl),
state(b, [blue_key,no_keyl),
state(a, [blue_key,no_keyl),
state(a, [no_keyl)] ?

Remember that it returns the path backwards.




Other search orders

With depth-first search Prolog handles the search order
for us. With other search strategies we need to keep
track of this ourselves: maintain a set of all generated
candidates (partial paths), and expand them one at a
time.

Pseudocode:

search([Solution|OtherPaths], Solution) :-
contains_goal(Solution).

search([FirstPath|OtherPaths], Solution) :-
find_all_moves(FirstPath, NewStates),
expand(FirstPath, NewStates, NewPaths),
insert_paths(NewPaths, OtherPaths, Paths),
search(Paths, Solution).

The order of insertion controls the search order (e.g.,
sort by heuristic for A¥).



Breadth-first search in the maze

% bf_maze(Path): Path is a path from start to goal
bf_maze(Path) :-

init(s0),

bf_maze([[S0]1], Path).

% bf_maze(Paths, FinalPath): Paths is a list of
% candidate branches, FinalPath is the solution
bf_maze([[S|Path]|_], [S|Path]) :-
goal(S).
bf_maze([[S1|Path] |Partials], FinalPath) :-
findall(S2, action(S1,52), NewStates),
expand([S1|Path], NewStates, NewPaths),
append(Partials, NewPaths, NewPartials),
bf_maze(NewPartials, FinalPath).

expand(L1l, L2, L3) :-
findall([X|L1], member(X,L2), L3).




Breadth-first search in the maze

Breadth-first with loop detection is left as an exercise
(lab 4). This version will go in circles a lot, but it will
still find the shortest solution.




