
TDDD08 � Tutorial 4

Who? Victor Lagerkvist

From? Theoretical Computer Science Laboratory, Linköpings Universitet,

Sweden

When? 28 september 2015

De�nite Clause Grammars and Search

De�nite clause grammars. Used for e.g. parsing (lab 3).

Search (lab 4). Searching through a state space (lab 4).

De�nite Clause Grammars

De�nite clause grammars (DCG) provides a declarative
and e�cient way to write parsers in Prolog. The name
stems from the fact that we essentially take a set of
context-free grammar rules and encodes it as a set of
de�nite clauses.

Examples on white board.

Search

Search problems in Prolog.

Depth-�rst search.

Breadth-�rst search.

Search problems

Many problems are encodable as search problems.
Examples:

Path �nding: Can we get from a to f in a graph, given
edge(X,Y)?

Planning: How can we get the goat, wolf and cabbage
across the river without anyone getting eaten?

Logic programming: Is there a successful SLD-derivation
from our query, using the available clauses.

All these share some basic structure. Graph example on
white board.

Search problems in logic programming

Given a start state, a transition relation, and a goal state
(or states), can we reach a goal state from the start
state?
Components:

A state space (vertices, states of the world, logic
programming goals, etc), represented as Prolog objects.

A transition relation, e.g. edge(X,Y) or
move(state(A1,B1),state(A2,B2)).

Start state e.g. start(State)

A goal condition (e.g. goal(State) predicate).

A search strategy, there are several.

General depth-�rst search

Suppose that the following predicates are provided:

init(State): Gives the initial state.

goal(State): State is a goal state.

action(State1,State2): There exists some action
(move, edge, etc) taking us from State1 to State2.

This is enough to write a general problem solver (for
problems with a �nite number of states).

General depth-�rst search

%% df_search(Path): True if Path is a path taken

%% from S0 to a goal state

df_search(Path) :-

init(S0),

df_search([S0], Path).

%% df_search(Partial,Path): True if Partial can

%% be extended into a path Path to a goal state

df_search([S|Visited], [S|Visited]) :-

goal(S).

df_search([S1|Visited], Path) :-

action(S1, S2),

nonmember(S2, [S1|Visited]),

df_search([S2,S1|Visited], Path).

Example, encoding of the previous problem:

init(a).

goal(c).

action(X, Y) :- edge(X, Y).

Maze example

Larger example: A small game, a maze with locked doors
and coloured keys.

State: Current room (a�e), carried keys (blue, green,
etc). Start with state(a,[no key]).

Actions:Pick up a key (if present), walk through a door
(if carrying the right key).

We use predicates has_key(Room, Key) and door(R1,

R2, Key) to encode the actual maze.

Maze example
Possible description:

has_key(a,blue_key).

has_key(d,green_key).

has_key(c,red_key).

door(a,b,no_key).

door(b,d,blue_key).

door(a,c,green_key).

door(a,e,red_key).

init(state(a,[no_key])).

goal(state(e,_)).

%% Action: walk through door

action(state(X,Keys), state(Y,Keys)) :-

(door(X,Y,Key) ; door(Y,X,Key)),

member(Key, Keys).

%% Action: pick up key

action(state(X,Keys), state(X,[Key|Keys])) :-

has_key(X, Key),

nonmember(Key, Keys).

Maze example

Solution:

| ?- df_search(P).

P = [state(e,[red_key,green_key,blue_key,no_key]),

state(a,[red_key,green_key,blue_key,no_key]),

state(c,[red_key,green_key,blue_key,no_key]),

state(c,[green_key,blue_key,no_key]),

state(a,[green_key,blue_key,no_key]),

state(b,[green_key,blue_key,no_key]),

state(d,[green_key,blue_key,no_key]),

state(d,[blue_key,no_key]),

state(b,[blue_key,no_key]),

state(a,[blue_key,no_key]),

state(a,[no_key])] ?

Remember that it returns the path backwards.

Other search orders

With depth-�rst search Prolog handles the search order
for us. With other search strategies we need to keep
track of this ourselves: maintain a set of all generated
candidates (partial paths), and expand them one at a
time.
Pseudocode:

search([Solution|OtherPaths], Solution) :-

contains_goal(Solution).

search([FirstPath|OtherPaths], Solution) :-

find_all_moves(FirstPath, NewStates),

expand(FirstPath, NewStates, NewPaths),

insert_paths(NewPaths, OtherPaths, Paths),

search(Paths, Solution).

The order of insertion controls the search order (e.g.,
sort by heuristic for A*).

Breadth-�rst search in the maze

% bf_maze(Path): Path is a path from start to goal

bf_maze(Path) :-

init(S0),

bf_maze([[S0]], Path).

% bf_maze(Paths, FinalPath): Paths is a list of

% candidate branches, FinalPath is the solution

bf_maze([[S|Path]|_], [S|Path]) :-

goal(S).

bf_maze([[S1|Path]|Partials], FinalPath) :-

findall(S2, action(S1,S2), NewStates),

expand([S1|Path], NewStates, NewPaths),

append(Partials, NewPaths, NewPartials),

bf_maze(NewPartials, FinalPath).

expand(L1, L2, L3) :-

findall([X|L1], member(X,L2), L3).

Breadth-�rst search in the maze

Breadth-�rst with loop detection is left as an exercise
(lab 4). This version will go in circles a lot, but it will
still �nd the shortest solution.

