TDDDo8: Some Exam Remarks
Victor Lagerkvist

This document contains some tips which will (hopefully) make the
study period a bit smoother. It should not in any way be viewed as an
indication for which problems might or might not appear during the
exam.

Why are there no solutions to old exams?

Studying for an exam by learning from old solutions can easily be-
come a form of rote learning where one ignores the bigger picture
and only concentrates on memorising solutions. After graduation
you will practially never have the opportunity to compare your own
solution to a given solution. In fact, in general there are no perfect
solutions, only approximations, and thinking that you cannot solve
a problem without comparing it to a pre-given solution can lead to
very bad habits of mind. For most types of exercises in this course
there is not one, but typically many, good solutions, and you cannot
in general verify whether your own solution is correct by comparing
it to a pregiven solution. Note that TDDDO0S is a course on advanced
level and that by this stage in your education you should be able to
prepare for an exam without basing it solely on old solutions.

Last, there is a wealth of exercises and detailed solutions in the
course book, the lecture slides, and the tutorial exercises. And you
can easily find more examples online if you so desire. Hence, if you
think that it is easier to learn a certain technique (e.g. learning to
draw SLDNF-forests) by solving exercises with detailed solutions
then you already have the possibility of doing so. Importantly, there
is nothing magical about exam exercises which makes them stand
out from other exercises which you have encountered in the course (a
logic program is still a logic program, an SLD-tree is still an SLD-tree,
and so on).

Thus:

1. Focus on tutorials, exercises from the course book, and the lecture
slides/videos for learning a technique or a method.

2. Solve exam exercises to hone your skills and look through old
exams to get a better sense of what is expected, knowledge-wise.
Here, it is also a good idea to check which assumptions you are
allowed to make during exam-like exercises. For example, unless
specified otherwise, you are not allowed to use non-declarative
features of Prolog such as the cut.



TDDDO8: SOME EXAM REMARKS

3. Ask us if you are unsure of what an acceptable exam answer
would be in a certain scenario, e.g., what the write-up should con-
sist of. However, keep in mind that the answer is typically very
straightforward: your solution should include everything, includ-
ing all step-by-step calculations that you have done, which allows
us to verify your solution. And if you write a program it is a very
good idea to clearly comment each line, and to informally describe
the intended relation of each predicate. This makes the grading
easier and increases the odds of getting credits for a solution even
if it might not be formally entirely correct.

Why do I have to program on pen-and-paper during the exam?

Most exams feature one or two programming exercises where you
are asked to produce a logic or Prolog program solving a given task.
Here, we wish to test your declarative problem solving ability, and
we are not interested in whether you fully recall the syntax of Prolog
or not, or if you have made silly errors that would have been detected
immediately during an actual implementation of the program. In
fact, asking you to produce a program using nothing else than your
wits and pen-and-paper actually makes the task easier for you since
you can concentrate fully on solving the problem, rather than getting
distracted by tedious programming errors.

How can I verify my own solutions?

This is in general a difficult problem without a perfect solution.
Thankfully it is substantially easier for many of the techniques and
algorithms which we have developed during the course (otherwise,
we as teachers would find it very difficulty to grade your solutions).

Example 1. Assume that you are asked to produce a program solving a
given task, e.g., defining a predicate for a given relation. First, try to un-
derstand the intended relation(s). It may help to make some examples: a
few representative ground atoms which should be answers of your program
(in other words, queries where Prolog should answer “yes”). Similarly,
construct a few ground atoms which should not be answers. Do not for-
get border cases (like an empty list as an arqument, an atom similar to a
required answer, and so on).

Convince yourself that your program will produce the required answers
and will not produce the non-required ones. This may be done as follows.

While writing your program, take care that each atom which should be an
answer is produced by some clause of the program (out of some other atoms
that should be answers). This means that the atom has to be an instance of



TDDDO8: SOME EXAM REMARKS

a fact, or of the head of a rule from the program. Moreover, in the latter case
the body atoms of the rule instance should also be required to be answers.

On the other hand, no clause of your program is allowed to produce an
atom that should not be its answer (out of atoms that may be answers). So
check each clause for this: such an atom cannot be an instance of a fact. If
such an atom is the head of an instance of a rule, then at least one of the
body atoms should not be producible by the program.

Performing the above steps should not take more than a couple of min-
utes, and if you do not succeed this could be a sign that you either have for-
gotten something in your program, or that you do not fully understand your
own program. During the study period, you could also test your program in
a Prolog system. While tests of this form are of course not a substitute for
full correctness and completeness proofs, they greatly increase the chance of
finding a correct solution.

Note that if you are not able to produce any test cases, there there is a
large risk that you do not understand the given assignment. In this case it is
typically much better to re-read the assignment once more, possibly trying to
look up any concepts that are difficult to understand, than trying to produce
a correct program.

Example 2. Assume that you are asked to verify whether two given terms
are unifiable or not. Note that it is typically not so easy to “see” whether
the terms are unifiable, and intuition can in many cases mislead us, so it is
much better to attempt to follow the unification algorithm from the lecture
slides. If you are then uncertain whether your solution is correct, simply
try to (1) apply your MGU to the two terms and check that the resulting
two terms are indeed equal, or (2) double check all steps leading to a reject
answer in the unification algorithm. If you are practicing for the exam then
you can also simply try to unify the two terms in Prolog and see what you
get (be aware of the fact that Prolog omits the occurs check, and consider
using unify_with_occurs_check/2 instead of =/2).

Example 3. A common type of exercise is to produce the set of atomic logi-
cal consequences or the set of ground atomic logical consequences of a given
logic program (i.e., the least Herbrand model). Try to follow the bottom-up
method for constructing the least Herbrand model, as done during the lec-
ture and the corresponding tutorial. Once you have a set of ground atoms
which you believe might be a correct answer, pick a few (not so big) ground
terms and see whether they are provable from the program or not, e.g., by
drawing the corresponding proof trees. If you are practicing before the exam
you may also test out the program and a few queries in Prolog. Be aware of
the possibility of infinite loops in Prolog due to Prolog’s search strategy (and
consider using call_with_depth_limit/3 in SWI-Prolog to circumuvent
this).

The above hints are applicable to most exercises where you are



TDDDO8: SOME EXAM REMARKS

asked to produce, or verify, something, e.g., producing a program, a
DCG, or checking whether two terms are unifiable. Another class

of exercises is where you are asked to prove something. This is, in
general, harder to verify, but when we ask you to prove something
it is typically specified how it should be accomplished. The most
frequent types of exercises of this kind are proofs of correctness or
completeness of programs. Here, it is not so easy to “test” if a proof
is correct or not, but before attempting to produce a proof it is a good
idea to try to understand the given program. If you are practicing
before the exam, why not test a few example queries in Prolog? Do
you obtain anything that is unexpected? It can be useful to have this
in mind once you proceed to the actual proof since you will then
have a better intuition why or why not a program is correct with
respect to a given specification, or not.

How do I know that my solution is sufficently detailed? What do
I need to include?

This problem is related to the previous one but still a bit different in
nature. We already have detailed solutions to similar exercises in the
course book, during the lectures, and in the tutorials. If your level

of detail is very different to those suggestions then it is very likely
not sufficient. In particular, if you have a question along the lines of
“Do I really need to include this part?” then the answer is very likely
affirmative. We never deduct points for superflous details, but we
always have to deduct points when important details are missing.

What if I do not even understand the exercise?

Then you will have to go back to the original material and study the
basic concepts (e.g., tutorial exercises, lectures, or the course book.
Try to find the most fundamental concept which you do not under-
stand and concentrate on that. Yes, this can sometimes be more time
consuming, but you will also pick up other skills in the process, in-
creasing the likelihood of solving related (but not identical) exercises.



	Why are there no solutions to old exams?
	Why do I have to program on pen-and-paper during the exam?
	How can I verify my own solutions?
	How do I know that my solution is sufficently detailed? What do I need to include?
	What if I do not even understand the exercise?

