Platform-independent Design for Embedded
Real-time Systems®

Jinfeng Huang, Jeroen Voeten
Faculty of Electrical Engineering Eindhoven University of Technology
5600MB Eindhoven, The Netherlands
E-mail: {J.Huang,J.P.M.Voeten}@Qtue.nl

Andre Ventevogel Leo van Bokhoven
TNO Industrial Technology Magma Design Automation B.V.
5600HE Eindhoven, the Netherlands 5600MB Eindhoven, The Netherlands

Abstract

With the increasing complexity of the emerging embedded real-time systems, traditional
design approaches can not provide sufficient support for the development of these systems
anymore. They especially lack the ability to trace and analyse real-time system properties. In
this paper, we investigate the design difficulties for embedded real-time systems and propose
several principles for coping with these difficulties, which should be incorporated by an
“adequate” design approach. Several prevailing design approaches are evaluated against these
principles and their merits and drawbacks are examined and illustrated by examples. Finally,
a platform-independent approach (POOSL[vdPV97, Gei02] 4 rotalumis[vB02]) is introduced
to remedy these design problems for embedded real-time systems. Initial experiments have
been performed that confirm the advantages of this approach.

1 Introduction

Over the past decades, we have witnessed a significant increase of the application of embedded
real-time (RT) systems. These applications range from microchip product lines with microsecond
response time to electric appliance controllers with seconds or minutes response time. The
common feature of these systems is that the correctness of the system depends not only on
the value of the computation but also on the time when the results are produced [SR88]. To
guarantee the timeliness feature in the system implementation, we expect the system behaviour
to be predictable and we would like to ensure in advance that all critical timing constraints
are met. However, with the increase of complexity, traditional design approaches are not well-
suited for developing time-critical applications. We list below several typical characteristics in
traditional design approaches that lead to unpredictable behaviour of embedded RT systems.

o (Craft-based system implementation: Traditional methods are often bottom-up and driven
by the specifics of the implementation platform. Critical timing constraints are dealt with
in ad-hoc heuristic fashions. During system development, developers make implementation
choices based on rough estimations of computation time. However, computation time is

*This research is supported by PROGRESS, the embedded systems research program of the Dutch organisation
for Scientific Research NWO, the Dutch Ministry of Economic Affairs, the Technology Foundation STW and the
Netherlands Organisation for Applied Scientific Research TNO.

in fact influenced by many non-deterministic factors of the underlying platform . This
severely hampers to make adequate estimations of computation time. Hence inadequate
estimations can easily result in faulty design and implementation decisions.

o Ineffective design languages: Traditional programming or modelling languages usually do
not provide sufficient support for embedded RT systems.

1. These developing languages usually have platform-dependent execution semantics,
which means that the behaviour of the system is heavily affected by the (non-
deterministic characteristics of the) underlying platform. This makes it very difficult
to establish design correctness.

2. Design languages often have inadequate support for modularisation. Modularity
means that the system can be decomposed into independent subsystems and the
composition of these subsystems have little impact on their own properties and
functionalities[Par90]. Object-orientation helps developers improve the modularity
of the software by grouping together data-structures and operations and encapsu-
lating them from the outside world. In this way, a complex system can be divided
into independent subsystems that can more easily be designed , analysed and com-
posed. However, in embedded RT systems, module independency is ruined by the
fact that all modules running on one processor share the time resource. Therefore,
after the composition of subsystems, the original real-time properties of the individual
subsystems can not be sustained.

3. Last but not the least, design languages often have little or no support for expressing
timing requirements (such as deadlines and periods). This means that timing re-
quirements cannot be taken into account when the system is mapped onto the target
platform.

Due to the above pitfalls, embedded real-time systems lack portability, adaptability, main-
tainability and reusability. Furthermore, the correctness and performance has to be established
by extensive testing on the target platform. The disadvantages are obvious:

e Tests are usually carried out at the observable boundary of the system. It is hard to locate
the specific internal details that cause (timeliness) errors.

e Additional test code may change the (real-time) behaviour of the system and may cause
new errors (Heisenberg principle in testing [Vrad8, Ros96]).

e Tests can only be carried out at a late stage in the design cycle. Failures detected at this
stage often lead to expensive and time-consuming design iterations.

e Test results are affected by many uncontrollable external (environmental) and internal
(non-deterministic factors). Some “rare” errors are hard to capture or repeat by test.

2 The Dream: Platform-Independent Design

The key problem of traditional approaches mentioned in the previous section is that low-level
details have a big influence on the system behaviour as a whole. Traditional design approaches
do not provide facilities to abstract from these details adequately. In this sense, embedded

LA platform, in this context, refers to those hardware and software infrastructures on which the implementation
relies. Typically, a platform includes hardware, operating systems and middle-ware as well. Non-deterministic fac-
tors of the platform are caused by techniques which have been widely applied to boosting the overall computation
performance, such as caches, pipelines, instruction pre-fetch techniques and memory management[But97].

RT system design suffers from “butterfly-effects” a cache miss might result in a missed dead-
line. To cope with this problem, design approaches should offer adequate abstraction facili-
ties and shield the design from the details of the platform. Platform-independent approaches
[LDG02, SHvRHO01] have been proposed to address this problem, which ideally have the following
characteristics:

o A well-founded * and expressive modelling language:
The core of such a design approach is a modelling language which can help designers
express and verify their design ideas in an adequate way. This means that the language
should be expressive, should have platform-independent semantics, operational semantics
and adequate support for modularization:

1. Adequate expressive power: embedded RT systems often have features of timeliness,
concurrency, distribution and complex functionality. To be able to expresses these
features in a model, a modelling language should have facilities to describe timing,
concurrency, communication, system structure, data types and non-determinism.

2. Platform-independent semantics: the non-deterministic factors introduced by the un-
derlying platform make the simulation and verification results of the design model
unreliable and unpredictable. Platform-independent semantics of the modelling lan-
guage gives a unique interpretation of the model and makes simulation and verification
unambiguous. Furthermore, it provides the flexibility to reuse the design model and
target it to different or modified platforms.

3. Operational semantics: operational semantics of the modelling language lends itself
naturally to executability [z1000]. Inconsistency between different aspects can then be
located and correctness and performance properties can be checked either exhaustively
(e.g. model-checking) or non-exhaustively (e.g. simulation). As a result, many design
errors can be corrected in an early development stage, avoiding costly and time-
consuming iterations.

4. Modularity support: modularity is generally considered as the only available way for
managing complexity of a system [GJ87]. Since complexity is a common feature of
current embedded RT systems, it is necessary to embody modularity in the modelling
language. This means that a concept of modules should be supported in such a way
that module composition does not cause the real-time properties of the individual
components to change. This allows components to be composed on basis of their
interfaces, without having to understand the internal details.

e Automatic and correctness-preserving transformation:
System generation should take a design model as blueprint and build a complete hard-
ware/software implementation. Preferable, the generation of the implementation should
be largely automated. Furthermore, the transformation should also guarantee that the
implementation behaves the same as the model. In this way, many errors caused by
human-factors can be avoided during the system generation and correctness of the system
can be guaranteed during the transformation.

The above characteristics of a design approach can help designers overcome the existing
drawbacks of traditional design approaches and serve as guidelines for new embedded RT system
design approaches. In the sequel, we will discuss several prevailing design approaches for RT
systems and evaluate them based on the above characteristics.

2 A well-founded language refers a language with formal semantics which enables an unambiguous interpretation
on its expressions.

Rational Rose | Cinderella TAU
Real Time SDL Generation 2 | Esterel
(ROOM) (CSDL) (Tau2)
Design language UML SDL SDL+UML Estered
Timing limited limited limited good
Expre | Sructure, data type,
-ssive concurrency, yes yes yes yes
Power communication
non-determinism yes yes yes no
Platfogrlgﬁﬁgsendmt no no yes yes
Operational Semantics yes yes yes yes
Modularity Support limited limited yes yes
@
Rat?onal Rose Cinderdlla | (TAU2) _TAU Egerd
Real Time (ROOM) | SDL (CSDL) | Generation 2
C, C++,
Target language C, C++, Java no C, C++ Java,
Hardware
Automatic generation yes no yes yes
Corretiness—pre;eerw ng no no no yes
transformation

(b)

Figure 1: Comparison of several design approaches
* The semantics of SDL is based on SDL-96 in CSDL[CSD]. ** TAU2 integrates concepts of
SDL-2000 and UML 2.0 in its modelling language[TAU].

3 Comparison of several design approaches for embedded RT
systems

Figure 1 gives a brief comparison of several typical design approaches 2, all of which provide
a powerful design language and most of which also support automatic software/hardware gen-
eration. In this way, software/hardware productivity can be improved and costly design inter-
pretation errors can be reduced. However, none of them satisfies all those characteristics of
platform-independent design. In the following, we will investigate how those characteristics are
supported by these approaches.

3.1 Expressive power

Timing: CSDL and TAU2 only support time delays. There is no explicit timing expression in
Esterel. Instead, it captures the time passing by counting activations of the system [BG92]. The
modelling of physical time can be accomplished by counting activations issued at a regular time
interval. Due to the deterministic characteristic of Esterel models (see below in this section), this
form of real-time mechanism is adequate enough for describing and analysing timing constraints.
Compared to the other three approaches, ROOM [Ros] provides various timing services to express
different timing constraints, such as delay timers, periodic timers, informIn timers. However,
its platform-dependent semantics has an ambiguous interpretation of time expressions in the
model, which inhibits designers from analysing and predicting timing behaviour of the model.

Structure, data type, concurrency and communication: These features are supported
by all of the above approaches. In this paper we are not going into detail about how these
approaches support these features. For more information, we refer to [VvdPGS98, TVKO03|.

3Figure la gives a comparison of design languages of these approaches and Figure 1b gives a brief comparison
of their code generation ability and quality.

Non-determinism: Non-determinism is an essential way to manage the system complexity.
It not only leaves freedom to obtain optimal implementations but also largely reduces the com-
plexity of the model by abstracting it from irrelevant implementation details. Except for Esterel,
all the three approaches can describe an embedded RT system at a high level of abstraction by
using non-determinism. At the same time, they offer the possibility to model interested details
of the system. Esterel sacrifices non-determinism to obtain a deterministic model of the system,
in which the system behaviour is predictable. The cost of the deterministic characteristics is
that complex behaviour is difficult to be modelled and analysed efficiently.

3.2 Platform-independent semantics

CSDL relies on an asynchronous timer mechanism which is able to access a global clock referring
to the physical clock 4. In this time mechanism, the delay between the moment of timer expira-
tion and the moment at which the model reacts to this expiry is unbounded [VvdPGS98]. The
unbounded delay is caused by several factors, such as the waiting time of timer-expired message
before it is inserted into the input message queue of the process, the time for consuming all
messages before the timer message and the interaction time between the process and its input
message queue [Leu95]. When a timer is set to ¢ seconds, the interpretation of this timer is in
fact an arbitrary time duration d; (d; € [t,00)). Such a weak interpretation of timers cannot
provide enough expressive power to describe the timing behaviour of real-time systems. The
unbounded uncertainty of d; contradicts with the predictability of real-time system behaviour.

Example 1 Consider a simple digital clock, which issues an action at the end of each second to
count the time passing. Due to the unbounded uncertainty of a timer in CSDL, it is impossible
to ensure that actions can be issued at (or close to) the expected time points.

The time mechanism in CSDL is heavily affected by the platform-dependent physical clock. Such
a platform-dependent timing mechanism cannot provide facilities to debug and analyse timing
behaviour of a model, because any debugging and analysis observation may introduce extra time
passing, which changes the real-time behaviour of the model and leads to unreliable debugging
and analysis results. The same problem holds for the ROOM approach.

Different from CSDL and ROOM, TAU2 adopts a two-step execution model[NS91]. The
state of a system can change either by asynchronously executing some atomic actions such as
communication and data computation without time passing (phase 1) or by letting time pass
synchronously without any action being performed (phase 2). The semantics of Esterel is based
on the perfect synchrony hypothesis[Ber92, BG92|, which assumes that a system’s reaction to
an input is instantaneous. The time measurement is achieved by counting the number of events.
The computation models of both TAU2 and Esterel adopt a virtual time, whose progress is not
affected by the physical-time passing directly. In this way, real-time behaviour of their models is
always predictable with respect to this virtual time. Therefore, the above unbounded uncertainty
problem does not exist in these design approaches. Furthermore, in these approaches, a model
can be uniquely interpreted and analysed by verification and simulation techniques. Based on
the analysis results, the model can be refined to meet predefined timing requirements. A clock
example in section 4.1 illustrates that timing behaviour can be adequately modelled by such
design approaches.

3.3 Modularity support

All of these approaches have object-oriented characteristics supporting data and functionality
encapsulation. Due to the platform-dependent semantics of CSDL and ROOM, timing charac-

4 Although SDL-2000 uses a virtual time to count the time passing in its models[z1000], SDL-96 adopts physical
time[Leu95].

3.0q
26
2.6
2.4 4
2.2
2.0
1.8
1.6
1.44
1.2
1.0+
0.84
0.6+
0.44
0.24
0.0

Timing errors (second)

T T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1600 1800

Virtual Time (second)

Figure 2: Accumulated timing errors of a TAU 2 clock implementation

teristics of every module in the model are disturbed by the time consumption of other modules in
the model and by other processes running on the same platform. On the contrary, both Esterel
and TAU2 assume the underlying platform to be infinitely fast and the timing behaviour of the
system is not constrained by the computational power of the underlying platform. Therefore,
the composition of separate modules does not change their timeliness. As a consequence, the
analysis of the design is easier and predictable.

3.4 Correctness-preserving transformation

As shown in Figure 1b, all approaches facilitate automatic software or hardware generation ex-
cept for CSDL. In ROOM, automatic code generation is accomplished by linking a model to
a so-called service library which acts as a virtual machine on top of different target platforms.
In this sense, the implementation is in fact an executable model and problems encountered in
the model, such as platform-dependent semantics, are automatically inherited in the implemen-
tation. Although TAU2 can provide a reliable way to analyse a model and refine it to ensure
the correctness, it does not have a transformation mechanism to guarantee that correctness
properties verified in the model can be transferred to the implementation. In the automatically
generated implementation, timing expressions are simply interpreted as unbounded physical
time, which faces the same unbounded uncertainty problem as in the CSDL model. The issuing
time of actions can deviate much from those observed in the model. Furthermore, the ordering
of events can also be different from those observed in the model. Here are several examples.

Example 2 Accumulated timing errors:

Consider a digital clock whose functionality is similar to that described in Fxample 1. The
difference is that its accuracy is one tenth of a second instead of 1 second. Figure 2 shows
that the timing errors ® are accumulated during the execution of the implementation, which is
automatically generated from the clock model in TAU2.

Example 3 Incorrect functionality caused by accumulated timing errors:

Consider a controller for a flash board showing 4 consecutive letters "IEEE”, with the fol-
lowing functionality. The four letters of the word are sequentially displayed on the board, and
then wiped off altogether at the same time. The iteration will continue unless it is interrupted
manually. One solution to designing this controller is to use three parallel processes. Process I
emits letter I every 0.3 seconds, process E emits letter E every 0.1 seconds and process space
issues four blank spaces every 0.3 seconds to erase the letters. The three processes starts from

>Timing errors represent the deviation of the issuing time of actions in the implementation from that in the
model, i.e., they represent difference between the virtual time and the physical time of the issuing actions.

sd Trace interaction UseCase1 {1/1}

‘ env[1] ‘ ‘ 1] ‘ ‘ E[1] ‘ ‘ space[1] ‘
Time: 0.0 itimer /* 0.0100% " * *
% % etimer /7 0.020 % spacetimer /* 0.2500 */

. itimer
Time: 0.01 out_signal('l)
itimer /* 0.3000 */
etimer

out_signal('E")

Time: 0.02 etimer /* 0.1000 */
etimer
_ out_signal('E’)
Time: 0.12 etimer /* 0.1000 */
etimer
§ out_signal('E’)
Time: 0.22

etimer /* 0.1000 */

spacetimer
out_signal(')
Time: 0.25 spacetimer /* 0.3000 */
itimer
. out_signal('l)
Time: 0.31 itimer /* 0.3000 */

etimer
out_signal('E’)
Time: 0.32

Figure 3: The sequence diagram of the controller

[%]shortcut to mainclass_apc.exe — Iﬂlﬂ

1 EEE IEEE E IEEE IEEE 1EEE IEEE 1EEE 1EEE -
I EEE I1EEE EIEE EIEE EIEE EIEE EIEE IEEE I
EE I1EEE 1 EEE EEE IEEE 1 EEE IEEE IEE IEEE I1EEE IE
E I1EEE IEEE IEEE 1EEE IEEE I1EEE 1EEE IEEE I1EEE IE
E 1EEE IEEE IEEE 1EEE IEEE I1EEE 1EEE IEEE 1EEE IE
E I1EEE IEEE IEEE 1EE IEEE IEEE IEEE IEEE I1EEE IEE

Figure 4: Output of the controller

rasiingoanan | O Process
P Process Charstring rs="comect " timer gtimer ();

timer ptimer ();

start

| set(ptimer, now+2);]

[set(gtimer, now+1.99);]

timer

(€)

=/ Shortcut to mainclass_apc.exe = |ﬂ|z|
orrect correct correct correct correct correct correct correct correct correct .
orrect correct co ect correct correct correct correct correct correct correct
orrect correct

=l

()

Figure 5: Two parallel processes and the output of their TAU2 implementation

0.01,0.02 and 0.25 second respectively. Figure 3 illustrates a piece of the sequence diagram cre-
ated during the model simulation (working with the virtual time). It is easy to verify that this
model behaves correctly according the functionality specification. However, we will see a different
picture when we look at the behaviour of the implementation (working with the physical time).
Figure 4 gives a snapshot of the output of the implementation. We can see that after several
iterations, the accumulated timing errors have led to an incorrect output sequence.

Example 4 Incorrect functionality caused by duration actions: Not only can accumu-
lated timing errors lead to incorrect event order, computational expense of individual actions can
also result in unexpected behaviour. Consider the simple example of Figure 5a. Two parallel
processes P and Q synchronize at the beginning of each iteration to avoid the accumulation of
timing errors. P sets a timer with 2 seconds delay and Q sets a timer with 1.99 seconds delay.
After the timer of Q expires, Q sends a “Rly-sig” message to P. At the P side, there are two
possibilities:

1. P receives the timer expiration message and outputs the message “wrong”.

2. P receives the reply message from Q, resets its own timer and outputs the message “cor-
rect”.

It is not difficult to verify that the output message of the P should always be “correct” in the model.
However, the automatically generated software implementation exhibits unexpected behaviour (see
Figure 5b).

Different from TAU2, Esterel provides a correctness-preserving transformation from a model
to an implementation. The Esterel language is a synchronous concurrent programming language
based on perfect synchrony hypothesis, which assumes computation actions to take zero time.
A pure Esterel model can be implemented in a digital circuit or software by using a formal
transformation. Such a transformation keeps the semantics of the Esterel model to the hard-
ware/software implementation except that perfect synchrony hypothesis is replaced by digital
synchrony hypothesis (i.e. zero time is replaced by one cycle clock). The correctness of the
generated implementation relies on the fact that perfect synchrony does not deviate very much
from digital circuit synchrony [Ber92].

4 Towards Platform-independent Design

In the previous section, we have reviewed several typical design approaches for embedded RT
systems and analysed the drawbacks and merits of each approach. Among them, TAU2 pro-
vides a relatively good support for modelling complex embedded RT systems but it provides no
facilities for correctness-preserving transformation from a model to its implementation. Esterel
has full support for correctness-preserving transformation for automatic hardware/software gen-
eration but its modelling language lacks the ability to model complex interactive RT software
systems [Ber00]. In this section we propose an approach that considers all aspects introduced
in section 2 and aims at platform-independent design. It provides an expressive and well-
founded language (POOSL) for modelling and analysing complex embedded RT systems and
a correctness-preserving transformation tool (rotalumis) for automatic software generation. Its
ability to preserve correctness during transformation have been proven in [HVGO03].

4.1 POOSL

In this section we give a brief overview of the POOSL language (Parallel Object-Oriented Spec-
ification Language), which is employed in the SHEsim tool and developed at the Eindhoven

170" event
sm':saus_mel . =] %2 Inspector on System.Clock /A =101 x| rﬁ
Eﬂs gaas Defiritions genanns gumns netance Vaisbies Value I

3 17.04 ¥ Al =
E hd v
=) Local Variables Selected Action
Clock =11 Loon(o =
Active Statements delay 0.1;
. waiting for: 0.1d trz=tm+0.1:
» || Loow()i). -

- 0 \ [=]

Time: §7.0d o | o Ste i

) \
Current time: 17" second Event

Figure 6: A clock model in SHEsim

University of Technology. The POOSL language is equipped with a complete mathematical
semantics and can formally describe concurrency, distribution, communication, real-time and
complex functionality features of a system in a single executable model.

Similar to TAU2, the semantics of the POOSL language is based on a two-phase execution
model which guarantees a unique interpretation of the model. Hence, the behaviour of the
model is not affected by underlying platforms. The detailed mathematical framework behind
the POOSL language is given in [vdPV97, vB02], and a formal description of its execution engine
can be found in [Gei02]. Figure 6 shows a simple clock in POOSL which performs the same
functionality as in Example 2. Each event is accurately issued at the expected (virtual) time in
this model (for example, the 170th event is issued at the 17th second.).

Because of the expressiveness and well-founded semantics of the POOSL language, it has
been successfully applied to model and analyse many industrial systems such as an internet
router[TVvBT01], a network processor[TVKO03] a microchip manufacture device[HVvdP*02]
and a multimedia application[vWVtB02].

4.2 Rotalumis

In this section, we outline the formal transformation mechanism of software generation tool rota-
lumis, which can transform a POOSL model into a software implementation for single processor
platforms [vBVG99]. Different from other software generation tools, the rotalumis supports the
correctness-preservation during the transformation by applying the following techniques.

1. Execution trees are used to bridge the gap between the expressibility difference between
POOSL and C++ language. POOSL provides ample facilities to describe system charac-
teristics such as parallelism, preemption, nondeterministic choice, delay and communica-
tion that are not directly supported by C++4. In order to provide a correct and smooth
mapping, execution trees are adopted to represent individual processes of the model and a
scheduler calculates their next step actions in the execution of the model. The correctness
of this execution method with respect to the semantics of the POOSL model has been
proven in [Gei02]. Therefore, the generated C++ software implementation will always
have the same (untimed) event order as observed in the POOSL model. More details
about the execution trees can be found in [vB02].

2. Correctness property preservation is guaranteed by the e-hypothesis in the software imple-
mentation, which assumes that the timed execution trace of the implementation is always
e-neighbouring % to a timed execution trace in the model. It has been proven that the

SA timed execution trace is a state sequence with a time interval attached to every state. If two timed

0.005 284 |- TauError

2.6 — RotError
24
0.004 221
) g2 20
I} o
$0.003 g 184
& ©» 1.6
0 0 1.4]
o —_ a
5002 S 124
o ()
2 1.0
£ 0.001 2 o8]
= £
= 0.6
0.000 + ; 7 | 044 -
300 400 500 600 700 024 -~

Virtual Time (second) ¥, 0.0-’/ m

T T T T T T T T T
0 2007400 600 800 1000 1200 1400 1600 1800

(a) s

Virtual Time (second)
Figure 7: A comparison of the timing errors

evolvement of execution trees always follows one of these state traces in the model. Fur-
thermore, during the execution, the scheduler of execution trees tries to synchronize the
virtual time and the physical time, which ensures that the execution of the implemen-
tation is always as close as possible to a trace in the model with regard to the distance
between timed state sequences. Due to the limitation of the platform, the scheduler may
fail to guarantee the timing constraints specified in the model, even with e-neighbouring
relaxation. In this case, designers can get the information about the missed actions. Cor-
respondingly, they can either refine the model and reduce computation cost, or replace the
target platform by a platform of better performance.

In Figure 7b, we give a comparison of the timing errors of two automatically generated clocks
from TAU2 and rotalumis respectively, which run on the same platform 7. The functionality of
the clocks is as stated in Example 2. The clock generated by rotalumis is supposed to satisfy
0.1-hypothesis (i.e, the scheduler tries to synchronize the virtual time and the physical time
within 0.1 second difference.). Figure 7a shows that the timing errors of the implementation is
controlled within 0.1 second and does not accumulate with the time passing ®. In addition to
the clock example, errors in Example 3 and Example 4 can also be avoided in the generated
implementations by rotalumis.

5 Conclusions

In this paper, we have analysed the difficulties experienced when designing complex embedded
RT systems and proposed several essential characteristics that an “adequate” design approach
should possess in order to overcome these difficulties. Several prevailing approaches have been
evaluated based on how well they support these characteristics. The experiments on these ap-
proaches indicate that none of them has full support for complex embedded RT system design.
A platform-independent design approach is proposed which considers all essential character-
istics. The approach consists of two individual procedures, platform-independent design and
correctness-preserving transformation. Platform-independent design guarantees an unambigu-
ous interpretation to the design description, whose performance and correctness can be analysed

execution traces are e-neighbouring, they have exactly the same state sequence and the least upper bound of the
absolute difference between the left-end points of the corresponding intervals is less than or equal to €. For more
information, see [HVGO3].

"CPU 150Mhz, Memory 128M and Windows 2000

8Several peaks in Figure 7a are caused by the underlying OS (Windows 2000). We have tried to execute the
same implementation in other OS, such as Windows 98, and no such high peaks exist. In most situations, timing
errors are around 5% 107° seconds in rotalumis. Note that the timing errors of both implementations are observed
after the issuing of the actions, i.e. the actual timing errors should be less than those shown in Figure 7.

by verification and simulation techniques. Based on the analysis results, a design description
can be refined to meet the predefined requirements — a prerequisite for the procedure of the
correctness-preserving transformation from the model to the implementation. The correctness-
preserving transformation takes a model as input, and generates a complete and executable
implementation whose correctness is guaranteed during the transformation. The time and cost
to perform test is thereby saved. The tools for both procedures have been developed at the
Eindhoven University of Technology. The SHEsim tool with the POOSL language provides a
platform-independent environment for designing, simulating and analysing a model. The rotalu-
mis tool can automatically transform a POOSL model into executable code for target platforms
preserving the correctness properties verified in the model. Initial experiments have been per-
formed that confirm the advantages of this approach.

References

[Ber92] G. Berry. A hardware implementation of pure esterel. In Academy Proceedings
in Engineering Sciences, volume 17, pages 95-130. Indian Academy of Sciences,
1992.

[Ber00)] G. Berry. Proof, Language and Interaction: FEssays in Honour of Robin Milner,

chapter The Foundations of Esterel, pages 425-454. MIT Press, 2000.

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Programming,
19(2):87-152, 1992.

[But97] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Al-
gorithms and Applications. Kluwer Academic Publishers, Boston, 1997.

[CSD] Cinderella SDL 1.3. http://www.cinderella.dk/.

[Gei02] M.C.W Geilen. Formal Techniques for Verification of Complex Real-time Systems.

PhD thesis, Eindhoven University of Technology, The Netherlands, 2002.

[GJ87] C. Ghezzi and M. Jazayeri. Programming Language Concepts: 2nd Edition. John
Wiley & Sons, Inc., New York, 1987.

[HVGO03| Jinfeng Huang, Jeroen Voeten, and Marc Geilen. Real-time Property Preservation
in Approximations of Timed Systems. In Proceedings of First ACM & IEEE In-
ternational Conference on Formal Methods and Models for Codesign, Mont Saint-
Michel, France, June 2003. IEEE Computer Society Press.

[HVvdP102] Jinfeng Huang, Jeroen Voeten, Piet van der Putten, Andre Ventevogel, Ron Ni-
esten, and Wout van de Maaden. Performance evaluation of complex real-time

systems, a case study. In Proceedings of 3rd workshop on embedded systems, pages
77-82, Utrecht, the Netherlands, Oct 2002.

[LDGO2] L. Lavagno, S. Dey, and R. Gupta. Specification, modeling and design tools for
system-on-chip. In Design Automation Conference, 2002. Proceedings of ASP-
DAC 2002. Tth Asia and South Pacific and the 15th International Conference on
VLSI Design. Proceedings., pages 21-23. IEEE Computer Society Press, 2002.

[Leu95s] S. Leue. Specifying Real-Time Requirements for SDL Specifications - A Temporal
Logic-Based Approach. In Proceedings of the Fifteenth International Symposium
on Protocol Specification, Testing, and Verification, Chapmann & Hall, 1995.

[NS91]

[Par90)

[Ros]
[Ros96]

[SHvRHO1]

[SR8S]

[TAU]
[TVKO03]

[TVvBT01]

[vB02]

[VBVG99)

[vdPV97]

[Vra9g]

[VvdPGS98]

[VWVtB02]

[21000]

X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In K. G. Larsen, editor, Proceedings of the 3rd workshop on Computer-Aided Ver-
ification, Alborg, Denmark, July 1991.

H. A. Partsch. Specification and transformation of programs: a formal approach
to software development. Springer-Verlag New York, Inc., 1990.

Rational Rose RealTime. http://www.rational.com/tryit/rosert/index.jsp.

J. B. Rosenberg. How Debuggers Work: Algorithms, Data Structures, and Archi-
tecture: 1st edition. John Wiley & Sons, Inc., Oct 1996.

A. Sintotski, D.K. Hammer, O. van Roosmalen, and J. Hooman. Formal platform-
independent design of real-time systems. In Proceedings 13th Euromicro Confer-
ence on Real-Time Systems, pages 163—-170. IEEE Computer Society Press, 2001.

J. Stankovic and K. Ramamritham, editors. Tutorial on Hard Real-Time Systems.
IEEE Computer Society Press, 1988.

TAU Generation 2. http://www.taug2.com/.

B.D. Theelen, J.P.M. Voeten, and R.D.J. Kramer. Performance Modelling of a
Network Processor using POOSL. Journal of Computer Networks, Special Issue
on Network Processors, 41(5):667-684, April 2003.

B.D. Theelen, J.P.M. Voeten, L.J. van Bokhoven, P.H.A. van der Putten, G.G.
de Jong, and A.M.M. Niemegeers. Performance modeling in the large: A case
study. In Proceedings of the Furopean Simulation Symposium, pages 174-181,
Ghent (Belgium), October 2001.

L.J. van Bokhoven. Constructive Tool Design for Formal Languages from seman-
tics to executing models. PhD thesis, Eindhoven University of Technology, The
Netherlands, 2002.

L.J. van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen. Software Synthesis for
System Level Design Using Process Execution Trees. In Proceedings of 25th Fu-
romicro Conference, pages 463-467, Milan, Italy, 1999. IEEE Computer Society
Press, Los Alamitos, California.

P.H.A. van der Putten and J.P.M. Voeten. Specification of Reactive Hard-
ware/Software Systems. PhD thesis, Eindhoven University of Technology, The
Netherlands, 1997.

H.P.E. Vranken. Design for test and debug in hardware/software systems. PhD
thesis, Eindhoven University of Technology, The Netherlands, 1998.

J.P.M. Voeten, P.H.A. van der Putten, M.C.W. Geilen, and M.P.J. Stevens. Sys-
tem Level Modelling for Hardware /Software Systems. In Proceedings of EUROMI-
CRO’98, pages 154-161, Los Alamitos, California, 1998. IEEE Computer Society
Press.

F.N. van Wijk, J.P.M. Voeten, and A.J.W.M. ten Berg. An abstract modeling
approach towards system-level design-space exploration. In Proceedings of the
Forum on specification and Design Language, Marseille, France, September 2002.

Z.100 Annex F1: Formal Description Techniques (FDT)-Specification and De-
scription Language (SDL). Telecommunication standardization sector of ITU, Nov
2000.

