
Real-time Systems

Carlson, Isovic, Hansson, Lundqvist, Nolte, Ouiment, Pettersson, Punnekkat, Seceleanu
Mälardalen Real-Time Research Centre

School of Innovation, Design & Engineering, Mälardalen University
2009

Errata:

Page 62: “Figure 3.1 a)” should be “Figure 3.2 a)”

Page 90: The semaphore priority ceilings ceil(S2) = prio(t2) = 2 should be 3.

Page 98: D should be {4, 7, 10, 15, 16, 22, 23 }

Page 129: In Example 4.5.15, C = 75 should be 85

Page 152: “Section 7.2” should be “Section 5.2”

64 Chapter 3 – Real-Time Scheduling

 – periodic task i (Greek symbol τ is pronounced as “tau”)

 – the j
th

 invocation of τi

Parameters that characterize a task τi:

 – period time of the task

 – relative deadline of the task

 – worst-case execution time of the task

 – offset of the task

 – response time (the longest possible) of the task

Parameters that characterize a task instance :

 – arrival time of the instance

 – start time of the instance

 – finishing time of the instance

 – actual execution time of the instance

 – actual response time of the instance

 – absolute deadline of the instance

Now it gets easier to express the dependencies between the parameters, since we

can use mathematic expressions instead of words. For example, the relation be-

tween the absolute and relative deadline can be expressed as:

In the same way, the actual response time of a task instance can be obtained as:

The worst-case response time of a task, , is the maximum of all response times

of all individual task instances. We will see later in this chapter how is calcu-

lated.

Task types

The most common task type in real-time systems are periodic tasks, but there are

some other types as well, such as aperiodic and sporadic tasks. Here we describe

them in terms of their parameters.

Periodic tasks – A periodic task can be described by four parameters (offset,

execution time, deadline, and period time):

Chapter 3 – Real-Time Scheduling 65

As mentioned before in Chapter 2, a periodic task consists of an infinite sequence

of identical instances or jobs that are activated within regular time periods, which

are calculated as:

=

Another way to express the arrival times of the instances is (except the first one,

which is equal to offset):

=

If there is no offset specified, the task instances will be activated at times 0, Ti,

2Ti, 3Ti, ...

Sporadic tasks – This type of tasks is used to handle events that arrive at the sys-

tem at arbitrary points in time, but with defined maximum frequency. Just like

periodic tasks, they are invoked repeatedly with a (non-zero) lower bound on the

duration between consecutive invocations, but the difference is that a sporadic

task may invoke its instances irregularly. Before run-time, it is known what the

minimum time between consecutive instances is, which is called minimum inter-

arrival time (T
min

), but the actual time between arrivals of instances is not know

until run-time, i.e., it first becomes known when the instance arrives.

A sporadic task is usually expressed with three parameters (execution time, dead-

line, and minimum inter-arrival time):

The following must hold for all instances of a sporadic task:

=

Note “greater or equal” for arrival times, which means that the next instance can

be invoked the earliest after T
min

 time units, counted from the arrival of the current

instance. The exact arrival times are not known (until they actually occur at run-

time).

Note the difference to periodic tasks, where we know before run-time that the

instances will be invoked with exactly T time units in between. Periodic tasks are

activated with regular periodicity by the system clock, while sporadic tasks usual-

ly wait for some event, which in general is not periodic (e.g., arrival of a data

packet from a network).

Chapter 3 – Real-Time Scheduling 79

The term Ii, called interference, is the preemption time from higher-priority tasks.

For the highest-priority task in the system, the response time will be equal to its

own execution time, Ri=Ci, since no other tasks will preempt it. Other tasks will

suffer interference from higher-priority tasks. The problem now becomes finding

the interference time for a task τi.

Let τk be a task with higher priority than τi, which is released at the same time as

τi. i.e., at time t. Task τi will have an instance that becomes ready at t and finishes

its execution at time t+Ri (we assume this is the instance with the worst-case re-

sponse time). During its execution, the instance of τi will be pre-empted by the

higher-priority task τk. If τk has a shorter period than τi, then it will preempt τi sev-

eral times, i.e., several instances of τk will occur and preempt the current instance

of τi.

The number of instances of τk that occur in the interval [t, t+Ri], and hence inter-

fere with (preempt) τi can be calculated by dividing the length of the interference

interval by the activation frequency of τk, i.e., its period time:

The symbol is the ceiling function, and it is a round-up function. So, for ex-

ample .

The total time taken by task τk when it preempts and executes is simply the num-

ber of instances of τk, calculated as above, multiplied by its execution time, Ck:

So, for the total interference term, we simply add this up for all the tasks with

higher priority than τi:

where hp(τi) is the set of tasks that have higher priority than task τi .

Hence, the worst-case response time for a task τi is given by:

Since Ri is represented on both sides of the equation, it can be solved by forming a

recurrence relation, i.e., the next value is obtained based on the currently calculat-

ed value:

(5)

80 Chapter 3 – Real-Time Scheduling

The initial value of Ri is the execution time Ci, since the shortest possible re-

sponse time of τi is its worst-case execution time. The set of consecutive values

{R0, R1, R2,...} is monotonically non-decreasing, i.e., the next value is greater

than or equal to the previously calculated value, and the sequence will converge to

the smallest value of Ri that satisfies equation (5).

Simply said, we stop iterating when , and if Ri ≤ Di, we conclude that

the task is schedulable. Otherwise, if some of the iteration steps result in a value

of Ri that is larger than Di, we should stop with the iterations and conclude that

the task is not schedulable.

Example: Is the following task set schedulable by Rate Monotonic?

Task Ci Ti=Di

τ1 1 3

τ2 1 6

τ3 1 5

τ4 2 10

An observant reader will notice that this task set is the same as the one presented

in Section 3.8, where we explained the Rate Monotonic algorithm. We calculated

before that U=0.9 is larger than the upper bound 0.75. Hence, the utilization test

could not give us an answer to whether the task set is schedulable or not. It was

only after running and analyzing the execution trace that we could see that the set

was schedulable.

Instead of analyzing the execution trace, we can use Response Time Analysis to

come to the same conclusion before run-time. We use equation (5) to calculate

the response times for all tasks and compare them to their deadlines.

Response time of task τ1:

According to Rate Monotonic, task τ1 is assigned the highest priority. The set of

high-priority tasks hp(τ1) is empty; hence, the response time of τ1 will be equal to

its execution time:

Response time of task τ2:

Task τ2 will be assigned higher priority than τ4, but lower priority than τ1 and τ3,

which both have shorter periods. Hence, both τ1 and τ3 will influence the response

time of τ2.

Chapter 3 – Real-Time Scheduling 81

Response time of task τ3:

Response time of task τ4:

Chapter 3 – Real-Time Scheduling 89

worst-case timing performance of the ICPP protocol is the same as PCP, the anal-

ysis developed for PCP (i.e., the calculation of blocking factors) remains un-

changed for ICPP.

Response Time Analysis with blocking

We will now see how we can extend the response time analysis in order to include

the effects of blocking. As we showed above, a task τi can be blocked by lower-

priority tasks due to shared resources. The delay caused by blocking is called the

blocking factor, and for task τi is denoted as Bi. It is a function of the length of the

critical sections of the lower-priority tasks that can block. In other words, the

blocking factor of a task τi is the longest time a task can be delayed by the execu-

tion of lower-priority tasks.

In PCP, a given task τi is blocked by at most one critical section of any lower-

priority task, among all tasks that can lock a semaphore with a priority ceiling

greater than or equal to the priority of task τi.

What this means is: First, we identify all the tasks with lower priority than task τi.

Second, we identify all the semaphores that the lower-priority tasks can lock.

Third, we select from these only those semaphores where the ceiling of the sema-

phore has a priority higher than or the same as the priority of task τi. Finally, we

look at the computation time duration that each lower-priority task is holding its

semaphores (critical section), and the longest of these computation times is the

blocking factor, Bi.

Once when we calculated the blocking factor, it is easily added to the response

time analysis equation:

(6)

Example: Is the following task set schedulable by Rate Monotonic if Priority

Ceiling Protocol is used for shared resources?

τi Ci Ti=Di Sk cs(τi,Sk)

τ1 10 100 S1 1

τ2 12 40 S1

S2

2

1

τ3 6 50 S1 1

Chapter 3 – Real-Time Scheduling 93

As we can see in the example above, EDF will always give the highest priority to

the task whose current instance has the shortest deadline. As a consequence, dif-

ferent task instances from the same task might have different priority, depending

on the other tasks that are ready at the moment. Therefore, we say that the priority

assignment is dynamic. In Rate Monotonic, on the other hand, all instances of the

same task will have the same priority and will not be changed at runtime (unless

we use some of the semaphore protocols explained above).

Processor Demand Analysis

Processor utilization analysis for EDF is valid only if deadline is equal to period

for all tasks in a task set. If this is not the case, i.e., if deadline is less than period,

Processor Demand Analysis (PDA) can be used.

The processor demand for a task τi in a given time interval [0, L] is the amount of

processor time that the task needs in the interval in order to meet the deadlines

that fall within the interval. Let Ni represent the number of instances of τi that

must complete execution before L. We can calculate Ni by counting how many

times task τi has been released during the interval [0, L-Di], i.e., Ni can be ex-

pressed as:

The total processor demand for all tasks in the interval is thus:

Finally, a sufficient and necessary condition for EDF when deadlines are less than

periods is given by:

(8)

i.e., we check intervals from 0 to each of the deadlines, until we either have

checked intervals up to the LCM or the condition fails for some deadline.

Example: Is the following task set schedulable by EDF?

Task Ci Di Ti

τ1 3 4 6

τ2 4 7 8

94 Chapter 3 – Real-Time Scheduling

Deadlines up to the LCM:

D = {4, 7, 10, 15, 16, 22, 23}

Answer: The set is not schedulable; a deadline will be missed at time 16.

3.13 Comparison between Rate Monotonic and Earliest

 Deadline First

We will conclude this section about online scheduling by presenting a short com-

parison between EDF and RM, based on some selected criteria.

 RM and EDF have the same implementation complexity – A small additional

overhead is needed in EDF to update the absolute deadline at each instance re-

lease.

 RM is supported by commercial RTOSs – One big advantage of RM is that it

can be easily implemented on top of fixed priority kernels.

 Run-time overhead is smaller in EDF – Due to the smaller number of context

switches.

 EDF utilizes the processor better than RM – EDF achieves full processor utili-

zation, 100%, whereas RM only guarantees 69%.

 EDF is simpler to analyze if D = T – This is important for reducing admission

control overhead in small embedded systems.

 Jitter reduction – EDF is fair in reducing jitter, whereas RM only reduces the

jitter of the highest-priority tasks.

 Aperiodic task handling – EDF is more efficient than RM for handling aperi-

odic tasks.

Deadline missed!

128 Chapter 4 – Real-Time Networking

4.5.13 Sufficient response-time test

The worst-case response time of a frame is found in the busy period beginning

with a critical instant, where all frames of priority i and higher are simultaneous-

ly queued at their corresponding communication adapters. Following this, the

worst-case response time for frame i is given by

 (3)

where is the queuing jitter of frame i, i.e., the maximum variation in queuing

time relative to the start of the frame period , inherited from the sender task that

queues the frame, is the worst-case transmission time of frame i (given by

Equation (2)), and is the queuing delay given by solving the equation

(4)

where corresponds to the transmission time of the longest possible CAN

frame (i.e., the worst-case transmission time of a CAN frame with 8 bytes of pay-

load data), is the set of frames with priority higher than that of frame i. Note

that Equation (4) is a recurrence relation with an initial value that can be chosen

equal to , i.e., , and a terminating condition of either and/or

. Only if the latter condition is false is the frame schedulable.

4.5.14 Exact response-time test

For many applications, it is sufficient to use the slightly pessimistic response-time

calculation given by in Equation (3). However, the exact worst-case response

time of a CAN frame i sent on stream is found within what is called the

level-i busy period. Specifically, the individual frame response time has to be cal-

culated for each instance of frame i within its busy period. The worst-case re-

sponse time is experienced by one or more of the instances of a specific frame

within its corresponding busy period. Hence, in order to derive the exact worst-

case response time, the response time has to be calculated for all these frame in-

stances.

As a first step, the length of the level-i busy period is given by solving the fol-

lowing recurrence relation, starting with an initial value of , and finishing

when

(5)

where is the maximum blocking time due to lower-priority frames in the pro-

cess of frame transmission, is the set of frames with priority higher than or

equal to that of frame i, is the queuing jitter of frame k, i.e., the maximum vari-

ation in queuing time relative to the start of the frame period , inherited from

Chapter 4 – Real-Time Networking 129

the sender task that queues the frame, and is the frame transmission time for

frame k derived from Equation (2).

Now, looking at a specific frame i, the number of instances of frame i that be-

come ready for frame transmission before the end of the busy period is given by

(6)

For each instance () of frame i, the corresponding worst-case frame

response time must be derived. Letting q be the index of a frame instance, the

worst-case response time of frame instance number q is given by

 (7)

where represents the effective queuing time, given by the recurrence rela-

tion in Equation (8), starting with an initial value of , and finishing

when (q) or when (i.e., either when a

worst-case response time is found, or when the frame is found to be not schedula-

ble). In Equation (8), is the bit time.

(8)

Once all worst-case response times are calculated, the worst-case response

time for frame i is found as the maximum response time among these in-

stances' response times as follows:

(9)

Note that this exact analysis is also valid for frames with deadlines greater than

their period, which is not the case for the sufficient response-time test outlined

above.

4.5.15 Example

Here, an example of the above analyses is given in order to illustrate their differ-

ences. More precisely, a set containing 3 frames will be deemed not schedula-

ble using the sufficient response-time test, and schedulable using the exact re-

sponse-time test.

Consider the frame set outlined in Table 1. The basic assumptions on the system

are that the bus speed is 1 Mbps, i.e., , and there is no jitter, i.e.,

for all frames. All frames have 2 bytes of payload data, hence, according to Equa-

tion (2), . The bus utilization is rather high; ~97%. The reason for having

such a high bus utilization is to force a delicate scenario not suitable for the suffi-

cient analysis, but captured by the exact analysis.

130 Chapter 4 – Real-Time Networking

Frame i

1 1 187.5 187.5 75

2 2 262.5 262.5 75

3 3 262.5 262.5 75

4.5.16 Sufficient response-time test

Starting with the sufficient response-time test, using Equation (4) to calculate

together with Equation (3) to calculate for each frame i gives the following

(recall that Equation (4) is a recurrence equation terminating when):

The above results say that frame 1 and 2 are schedulable, i.e., and

. However, indicate that a deadline is missed. Hence, the frame

set is deemed not schedulable.

4.5.17 Exact response-time test

On the other hand, if exact analysis is used, the above frame set is, in fact,

schedulable. To show this, Equations (5) - (9) are used to calculate the frame re-

sponse times for all 3 frames.

As a first step, using Equation (5), the level-i busy period has to be calculated for

each frame to see, using Equation (6), if multiple instances of that frame are pre-

sent within the busy period. If that is the case, the response time has to be calcu-

lated for all these frame instances using Equations (7) - (8), and the maximum

response time among all instances has to be selected using Equation (9).

Starting with frame 1, using Equation (5), the level-1 busy period is calculated to

be . Now, according to Equation (6). Hence,

there is only once instance of frame 1 within the level-1 busy period. For this in-

stance, the response time is calculated using Equation (7) - (8):

Table 4.1:

Frame set under

analysis

Chapter 4 – Real-Time Networking 131

For frame 2, the same procedure is repeated using Equation (5) giving

, hence accord-

ing to Equation (6), i.e., there are two instances of frame 2 in the level-2 busy pe-

riod. Here, the response time is calculated for both these instances using Equa-

tions (7) - (8), and the maximum is selected using Equation (9):

Finally, for frame 3, there are 2 instances within the level-3 busy period as

 and . Following

the same reasoning as for frame 2, the response time is calculated:

To summarize, using exact analysis rather than sufficient analysis, the whole

frame set is schedulable as , and . The sufficient test is

much faster, as it requires fewer calculations to be performed. In most cases, the

sufficient analysis will yield the same frame sets as schedulable as the exact anal-

ysis will. However, there are cases, as shown in the example above, where only

the exact analysis will show that a set of frames is, in fact, schedulable.

4.5.18 Holistic analysis

In this section, we show a way of how to apply the CAN analysis presented above

in a distributed system comprised of end-to-end timing requirements. We assume

that a distributed system consists of a number of nodes that are interconnected

with a CAN bus. On the nodes, a number of tasks are executing, scheduled by a

preemptive fixed-priority real-time scheduler. Timing requirements can be both

	RealTimeSystems-Textbook_2009-LiU-better-quality-equations.pdf
	Hansson_RT_Textbook_2011
	Hansson_RT_Textbook_2011
	Klappentext_2014
	Hansson_RT_Textbook_2011
	Hansson_RT_Textbook_2011.pdf
	Hansson_RT_Textbook_2011
	Klappentext_2014
	Hansson_RT_Textbook_2011

	Copyright_2014
	Hansson_RT_Textbook_2011
	Hansson_RT_Textbook_2011
	Klappentext_2014
	Hansson_RT_Textbook_2011

