Robolab Real-time Rescue

Klervie Toczé

Real-time Systems Laboratory

Department of Computer and information Science

Agenda

- Lab goals and scenario
- Lab environment
- Assignments
- Passing requirements
- Practical issues

Lab goals and scenario

Lab goals

- Hands-on experience with a real-time system
- Learn how to:
 - Schedule real-time tasks
 - Schedule communication on a constrained channel

Train ability to present and document solutions

Scenario

- Search and rescue
- Teams of cooperating robots

Video

https://www.youtube.com/watch?v=FrgEbx6esYE

Lab environment

RoboLab room

Localisation

Robot agent overview

• Written in C

Runs on Linux

- Single process, multiple tasks
 - Internally scheduled
 - Straightforward implementation
 - No preemption

Robot agent architecture

Assignments

Overview

- Lab 1
 - Analyze real-time properties and design a schedule
- Lab 2
 - Enable real-time communication on a shared channel
- Lab 3 (gives bonus points for the exam)
 - Analyze and implement fault tolerance

Lab 1 assignments

Measure the tasks' execution time

• Determine the minimum and maximum acceptable periods

Design a schedule

Evaluate and measure

Lab 2 overview

- Shared communication channel
- One slot for each robot (TDMA-like)

- Server sends "go ahead" if transmissions are correct
- Robots stop unless go ahead is received

Lab 2 assignments

- Make the communication task run in the pre-defined time slot
- Prioritise messages and send only those that fit in the slot
- Test your solution together with one or more other robots
- Evaluate

Lab 3 assignments

- Identify fault models
- Suggest mechanisms to detect and manage the faults
- Implement them

Passing requirements

Overview

- Lab 1
 - preparatory questions
 - demonstration
 - code submission
- Lab 2
 - preparatory questions
 - demonstration assistant
 - code submission
- Lab report

Preparatory questions

- Read the compendium!
- Separate questions for labs 1 and 2
- Answer preparatory questions before the labs
- Send to your lab assistant at least **3 hours before** the lab session

• The lab assistant will reply with the required information to be able to start the system

Lab report

- Use the spellchecker!
 - Any report obviously not spellchecked will be sent back directly
- Proper structure and consistent formatting
- Read the compendium for report requirements
 - All the points have to be covered in order to pass!

Deadlines

• Demonstration: **2017-12-11**

• The report and source code: 2017-12-12

Lab assistant gives comments, you have one opportunity to hand in corrections

• Corrected version: **2018-01-12**

Practical issues

Lab registration

• Sign up for labs: deadline Nov 1

Room: close to SUo1

- Please attend the labs
 - Access to robots only during scheduled hours
- Be careful with the equipment
- Keep the order

Submitting solutions

- Two addresses for each lab assistant, see web page!
- Format for email subject:
 - "TDDDo7, Group X, Y for lab Z"
 - -X = [A|B|C][1-6]
 - $Y = \{ preparatory questions, code, question \}$
 - $-Z = \{1,2,3\}$

A guide to the GUI

Packets

Final notes

- Prepare!
- Investigate!
- Have fun!

http://www.ida.liu.se/~TDDD07/

www.liu.se

