
TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

Selected solutions for

TDDD07

Real-time Systems

Distributed systems, QoS, Real-time communication

Massimiliano Raciti

Jordi Cucurull

Simin Nadjm-Tehrani

Real-Time Systems Laboratory

Department of Computer and Information Science

Linköping University, Sweden

November 2019

Copyright © 2019 Simin Nadjm-Tehrani

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

Suggested Solutions

Q2.1:

a)

Logic clock

Vector clock

b)

(a,e) and (c,f) are concurrent event.

Let VC(a) and VC(e) be the vector timestamps at the time when a or e occurs.

The events a and e are concurrent since none of VC(a) <VC(e) or VC(e) <VC(a)

Q2.2:

P

Q

R

a 1

g 3

b 2

c 2

h 4

e 1

f 2 d 3

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

In order to check whether there are events x and y in which LC(x) < LC(y) but is not the

case that x happen before y, we should determine all the “happens before relationships”.

ab (because from the point of view of P, a occurs before than b)

ac (because c is the event of reception of a message m and a is the event of sending m)

ec , ef, bd, cg, gh, fd, dh.

Using the transitive property (xy and yz -> xz), we get all the possible

relationships:

ab, ac, ad, ah, bd, bh, cg, ch, dh, ec, eg, eh, ef, ed fd, fh, gh.

Now, if we take the events b and g, we can see that LC(b)<LC(g), but we don’t have bg.

B and g were two “easy” examples, since graphically you can recognise that they are

concurrent. There are other cases anyway that are not so easy to recognise: c and d, for

example. LC(c)<LC(d) but we don’t have cd.

Q2.3:

An example of distributed real time system with hard deadlines can be the control system of

car, where many elements are distributed and linked with a bus. This system has hard

deadlines because the safety of the user depends on the correctly functionality of the service,

i.e. no deadline misses are allowed.

An example of distributed real time system with soft deadlines can be a regular

videoconference system, such as Skype. The system has soft deadlines because in case some

of them are missed it will just affect the video/sound quality of the call.

Q2.4:

 a) This is the scenario described:

Node a has an associated clock ac with time t. We represent the time calculated after

synchronisation as 'ac . This new time is calculated as:

4
' adacaba

a

cccc
c

+++
=

a b

c d

cab

cac cad

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

where adacab ccc ++ are the clocks the other nodes (b, c, and d) send to a.

In this scenario two of the nodes (b and c) will send a time that differ exactly δ from t.

There are two cases to consider for clock d:

1) The other node (d) will send a time that differs γ from t and γ < δ. Given this

information, three cases can be distinguished:

i. tca = += tcab −= tcac = tcad

new time is

4

1

4
' =

+−+++
= t

tttt
ca

then − 'aa cc .

ii. tca = += tcab += tcac = tcad

new time is

then − 'aa cc .

iii. tca = −= tcab −= tcac = tcad

new time is

then − 'aa cc .

Note that under all three cases (i..iii) the other three nodes will also get the same clock

value equal to . Then the synchronisation requirement at node a is met, meaning that a

remains within the allowed skew compared to all other nodes.

b) In the second case node d will send a time that differs γ from t and γ > δ.

Under this assumption, the value of node d in the calculations above will be replaced

by t.

Case i: tca = += tcab −= tcac

Case ii: tca = += tcac

Case iii: tca = −= tcac

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

Note that in this case we need not consider the new value for node d, since the algorithm

requires to synchronise all non-faulty nodes, and the number of faulty nodes (f) here within a

group of n (n=4) clocks satisfies the guarantee requirement (3f < n).

In all three cases (with similar calculations to case 1. above) and since b and c

were synchronised with a before the synchronisation, they remain synchronised after the

replacement of d’s clock value with or and dividing their respective sums by 4.

The worst case for deviation from (at b or c) is | - (4t+3) or | - (4t-3)

b)

Concurrent events

a: C1-Sending [0,1,0]

b: C2-Sending [0,0,1]

)()(bVCaVC and)()(aVCbVC

c: Reception C1 request [3,1,1]

d: Reception S response in C2 [2,0,2]

)()(dVCcVC and)()(cVCdVC

Q2.5

Consider the following two terms used in quality of service (QoS) requirements descriptions, and

identify for each term whether it is an application level description or an enforcement level indication:

loss ratio, video quality.

Loss ratio is an enforcement level indication, since it is a generic quality of service parameter

applicable to any underlying service to support applications. Video quality, instead, is an

application level description since it refers to a quality of service parameter specific of a video

application that it is directly noticeable by the user.

Q2.6:

[1,0,1] [0,0,0]

[0,0,0]

[2,0,1] [4,1,1]

a
[0,1,0] [4,2,1]

[0,0,0]

S

C1

C2

d
[2,0,2]

b
[0,0,1]

c
[3,1,1]

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

a) See course literature.

b) We have the following parameters

Node Period Ti (ms) Priority (π)

1 5 3

2 7 2

3 10 1

The formulas required to calculate the worst-case response time of each message are

the following

wi

n+1(q) = Bi + qCi +
wi

n + J j +tbit

Tj

é

ê
ê

ù

ú
ú C j

"jÎhp(i)

å

Ri (q) = Ji + wi (q) - qTi + Ci

Ri = max
q=0..Qi -1

(Ri (q))

In addition, before using them, the number of possible messages, Qi, that become

ready before the end of the busy period must be calculated with the following

formulas:

ti

n+1 = Bi +
t i

n + J j

Tj

é

ê
ê

ù

ú
ú C j

"jÎhep(i)

å

Qi =
t i + Ji

Ti

é

ê ê
ù

ú ú

The maximum blocking time for respective messages is sBB 13521 == and

sB 03 = . Frames sent by n3 have the lowest priority, reason why their blocking factor

is defined to zero. The transmission time is given by sC biti 135135 == .

In this first case we assume sJi 0= , i=1..3.

Response time R3: We calculate first the length of the busy period for message 3:

sCt 1353

0

3 ==

sC
T

Jt
C

T

Jt
C

T

Jt
Bt 4053

3

3

0

3

2

2

2

0

3

1

1

1

0

3

3

1

3 =

 +
+

 +
+

 +
+=

sC
T

Jt
C

T

Jt
C

T

Jt
Bt 4053

3

3

1

3

2

2

2

1

3

1

1

1

1

3

3

2

3 =

 +
+

 +
+

 +
+=

sttt 4053

1

3

2

3 ===

Then the number of instances Q3 that become ready:

1
3

33

3 =

 +
=

T

Jt
Q

iii qCBqw +=)(0where

ii Ct =0
where

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

The response time must be calculated for each of the Q3 instances:

sCBw 00)0(33

0

3 =+=

sC
T

Jw
C

T

Jw
CBw bitbit

2700)0(2

2

2

0

3

1

1

1

0

3

33

1

3 =

 ++
+

 ++
++=

sC

T

Jw
C

T

Jw
CBw bitbit

2700)0(2

2

2

1

3

1

1

1

1

3

33

2

3 =

 ++
+

 ++
++=

swww 2703

1

3

2

3 ===

sCTwJR 4050)0()0(33333 =+−+=

R3 = max
q=0..Q3 -1

(Ri (q))=R3(0) = 405ms

c)

Response time R3 with Jitter:

J1 = J2 = 5ms, J3 = 8ms

sCt 1353

0

3 ==

t3

1 = B3 +
t3

0 + J1

T1

é

ê
ê

ù

ú
ú C1 +

t3

0 + J2

T2

é

ê
ê

ù

ú
ú C2 +

t3

0 + J3

T3

é

ê
ê

ù

ú
ú C3 = 540ms

t3

2 = B3 +
t3

1 + J1

T1

é

ê
ê

ù

ú
ú C1 +

t3

1 + J2

T2

é

ê
ê

ù

ú
ú C2 +

t3

1 + J3

T3

é

ê
ê

ù

ú
ú C3 = 540ms

t3

2 = t3

1 = t3 = 540ms

Then the number of instances Q3 that become ready:

1
3

33

3 =

 +
=

T

Jt
Q

The response time must be calculated for each of the Q3 instances:

sCBw 00)0(33

0

3 =+=

w3

1 (0) = B3 + 0C3 +
w3

0 + J1 +tbit

T1

é

ê
ê

ù

ú
ú C1 +

w3

0 + J2 +tbit

T2

é

ê
ê

ù

ú
ú C2 = 405ms

w3

2(0) = B3 + 0C3 +
w3

1 + J1 +tbit

T1

é

ê
ê

ù

ú
ú C1 +

w3

1 + J2 +tbit

T2

é

ê
ê

ù

ú
ú C2 = 405ms

w3

2 = w3

1 = w3 = 405ms

R3(0) = J3 + w3(0) -0T3 +C3 = 8540ms

R3 = max
q=0..Q3 -1

(Ri (q))=R3(0) = 8540ms

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

Q2.7:

Message Period Ti (ms) Priority (π) Jitter (ms)

m1 20 high 1

m2 10 middle 2

m3 5 low 0

 Response time R3:

B3 = 0ms, since m3 is the lowest priority process.

First the length of the busy period for message 3 is calculated:

t3

0 = C3 =1ms

t3

1 = B3 +
t3

0 + J1

T1

é

ê
ê

ù

ú
ú C1 +

t3

0 + J2

T2

é

ê
ê

ù

ú
ú C2 +

t3

0 + J3

T3

é

ê
ê

ù

ú
ú C3 = 3ms

t3

1 = B3 +
t3

1 + J1

T1

é

ê
ê

ù

ú
ú C1 +

t3

1 + J2

T2

é

ê
ê

ù

ú
ú C2 +

t3

1 + J3

T3

é

ê
ê

ù

ú
ú C3 = 3ms

t3 = 3ms

Then the number of instances Q3 of message 3 that become ready before the end of the busy

period:

Q3 =
t3 + J3

T3

é

ê
ê

ù

ú
ú =1

The response time must be calculated for each of the Q3 instances, in this case just one.

w3

0(0) = B3 +0C3 = 0ms

w3

1 (0) = B3 + 0C3 +
w3

0 + J1 +tbit

T1

é

ê
ê

ù

ú
ú C1 +

w3

0 + J2 +tbit

T2

é

ê
ê

ù

ú
ú C2 = 2ms

w3

2(0) = B3 + 0C3 +
w3

1 + J1 +tbit

T1

é

ê
ê

ù

ú
ú C1 +

w3

1 + J2 +tbit

T2

é

ê
ê

ù

ú
ú C2 = 2ms

w3(0) = 2ms

R3(0) = J3 + w3(0) -0T3 +C3 = 3ms

R3 = max
q=0..Q3 -1

(Ri (q))=R3(0) = 3ms

Response time R2:

B2 =1ms

t2

0 = C2 =1ms

t2

1 = B2 +
t2

0 + J1

T1

é

ê
ê

ù

ú
ú C1 +

t2

0 + J2

T2

é

ê
ê

ù

ú
ú C2 = 3ms

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

t2

2 = B2 +
t2

0 + J1

T1

é

ê
ê

ù

ú
ú C1 +

t2

0 + J2

T2

é

ê
ê

ù

ú
ú C2 = 3ms

t2 = 3ms

Then the number of instances Q2 that become ready:

1
2

22
2 =

 +
=

T

Jt
Q

The response time must be calculated for each of the Q2 instances:

w2

0(0) = B2 +0C2 =1ms

w2

1 (0) = B2 + 0C2 +
w2

0 + J1 +tbit

T1

é

ê
ê

ù

ú
ú C1 = 2ms

w2

2(0) = B2 + 0C2 +
w2

1 + J1 +tbit

T1

é

ê
ê

ù

ú
ú C1 = 2ms

R2(0) = J2 + w2(0) -0T2 +C2 = 5ms

R2 = max
q=0..Q2 -1

(Ri (q))=R2(0) = 5ms

Response time R1:

B1 =1ms

t1
0 = C2 =1ms

t1
1 = B1 +

t1
0 + J1

T1

é

ê
ê

ù

ú
ú C1 = 2ms

t1
2 = B1 +

t1
1 + J1

T1

é

ê
ê

ù

ú
ú C1 = 2ms

t1 = 2ms
Then the number of instances Q1 that become ready:

Q1 =
t1 + J1

T1

é

ê
ê

ù

ú
ú =1

The response time must be calculated for each of the Q1 instances:

w1 (0) = B1 +0C1 =1ms

R1(0) = J1 + w1(0) -0T1 +C1 = 3ms

Q2.8:

Message period (ms) Jitter

m1 (high priority) 30 5

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

m2 (middle priority) 15 0

m3 (low priority) 5 0

In this case only the response time for the lowest priority message is required, i.e. m3.

t bit
 is considered to be smaller than 1ms

Response time R3:

B3 = 0ms, since m3 is the lowest priority process.

First the length of the busy period for message 1 is calculated:

msCt 13

0

3 ==

t3

1 = B3 +
t3

0 + J1

T1

é

ê
ê

ù

ú
úC1 +

t3

0 + J2

T2

é

ê
ê

ù

ú
úC2 +

t3

0 + J3

T3

é

ê
ê

ù

ú
úC3 = 0 +

1+ 5

30

é

êê
ù

úú
1+

1+ 0

15

é

êê
ù

úú
1+

1+ 0

5

é

êê
ù

úú
1= 3ms

t3

1 = B3 +
t3

1 + J1

T1

é

ê
ê

ù

ú
úC1 +

t3

1 + J2

T2

é

ê
ê

ù

ú
úC2 +

t3

1 + J3

T3

é

ê
ê

ù

ú
úC3 = 0 +

4 + 5

30

é

êê
ù

úú
1+

4+ 0

15

é

êê
ù

úú
1+

4+ 5

5

é

êê
ù

úú
1= 3ms

t3 = t3

2 = t3

1 = 3ms

Then the number of instances Q3 of message 3 that become ready before the end of the busy

period:

Q3 =
t3 + J3

T3

é

ê
ê

ù

ú
ú =

3+ 0

5

é

êê
ù

úú
=1

The response time must be calculated for each of the Q3 instances, in this case just one.

w3

0(0) = B3 +0C3 = 0ms

w3

1(0) = B3 + 0C3 +
w3

0 + J1 +t bit

T1

é

ê
ê

ù

ú
úC1 +

w3

0 + J2 +t bit

T2

é

ê
ê

ù

ú
úC2 = 0 + 0 +

0 + 5+t bit

30

é

êê
ù

úú
1+

0 + 0 +t bit

15

é

êê
ù

úú
1= 2ms

w3

2(0) = B3 + 0C3 +
w3

1 + J1 +t bit

T1

é

ê
ê

ù

ú
úC1 +

w3

1 + J2 +t bit

T2

é

ê
ê

ù

ú
úC2 = 0 + 0 +

2 + 5+t bit

30

é

êê
ù

úú
1+

2 + 0 +t bit

15

é

êê
ù

úú
1= 2ms

w3

2(0) = w3

1(0) = 2ms®w3 (0) = 2ms

 msCTwJR 310200)0()0(33333 =+−+=+−+=

R3 = max
q=0..Q3 -1

(Ri (q))=R3(0) = 3ms

Q2.9:

a) The priorities for messages in a CAN network must be the same fixed priorities used in

the priority-based scheduling of the processes in the nodes that are connected to the bus.

False. The CAN network is completely independent of the processes that run in each node

that it is connected to the bus, therefore the priorities can be different

TDDD07 ht2 2019, Real-time Systems, Linköpings universitet

Theory Exercises, 2019

b) If one node that is connected to a TTP bus crashes, this can be detected easier by the other

nodes than if the system would use a CAN bus.

True. TTP /C has a membership service that is in charge of monitoring the “health” of the

nodes, excluding them in case of failure.

c) If a process exceeds its assumed worst case execution time (WCET) at some point in time,

it is stopped from sending its final output on a TTP buss.

True. If the process exceeds the WCET and misses its assigned slot to transmit, it cannot send

the final output at that time.

d) On a CAN bus a high priority message can only be delayed (blocked) once by messages

of lower priority.

True. A high priority message can only be delayed by a lower priority messages that is

already being transmitted, since no preemption exists in the CAN bus.

