
TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

Selected solutions for

TDDD07

Real-time Systems

Klervie Toczé

Massimiliano Raciti

Jordi Cucurull

Simin Nadjm-Tehrani

Scheduling and resource sharing

Real-Time Systems Laboratory

Department of Computer and Information Science

Linköping University, Sweden

September 2024

Copyright © 2024 Simin Nadjm-Tehrani

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

Suggested Solutions

1. Scheduling

Q1.1:

The task set is schedulable using cyclic scheduling, but the tasks suffer jitter.

Here is an example of scheduling, in which you can see that tasks are affected by jitter

Major cycle: lcm(50,30,20) = 300ms

Minor cycle: gcd(50,30,20)=10ms

You can try to change the order of execution of the tasks, but the jitter still remains. One of

the possible ways to schedule this task set without jitter is by reducing the periods, thus

executing tasks more frequently than required (see Example (3.2), i.e. Alternative 2 in the

slides of Lecture 2).

Task New Period

(ms)

A 40

B 20

C 20

Major cycle: lcm(40,20,20) = 40ms

Minor cycle: gcd(40,20,20)=20ms

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

Q1.2:

a)

Task Period WCET

A (Trajectory follower) 1500 100

B (Sensor &

measurement)

500 100

C (Disk storage) 3000 1000

D (Ground

communication)

500 200

Major cycle: lcm(1500,500,3000,500) = 3000ms

Minor cycle: gcd(1500,500,3000,500)=500ms

The task set is not schedulable. This is due to the disk storage task, that cannot be fitted in any

place inside the major cycle. The task set becomes schedulable if we assume that the disk

storage task can be divided into 6 processes as following:

C1=100ms,C2=200ms,C3=200ms,C4=100ms,C5=200ms, C6=200ms.

b) The new task set is:

Task Period WCET

Trajectory follower 1500 100

Sensor & measurement 1000 (incr. from 500) 100

Disk storage 3000 1000

Ground communication 500 100 (reduc. from 200)

RMS:

 %70
3000

2100

3000

6001000300200

500

100

3000

1000

1000

100

1500

100
==

+++
=+++=U

G for 4 tasks is:

%75)12(4)12(4

11

−=−= nnG

The task set is then schedulable using RMS.

However, the jitter requirements are not met. Since the trajectory follower is not the process

with higher priority, it can be preempted by higher priority processes, thus causing jitter.

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

c) This phenomenon is the priority inversion. When the sensor recording task is blocked

waiting for the busy resource hold by the disk storage (which has the lowest priority),

middle priority processes can preempt this one causing the sensor recording to wait for

them as well.

This problem can be solved using the priority inheritance protocol or the priority ceiling

protocol, although the second one is preferable since it prevents deadlocks.

Q1.3:

1) According to the description we have the following task set:

Process Period WCET
P1 – Stabiliser 50ms 5ms
P2 – Star follower 20ms 5ms
P3 – Energy manager 30ms 10ms

Minor cycle: gcd (50, 20, 30) = 10ms

Major cycle: lcm (50, 20, 30) = 300 ms

P2 P1 P3 P2 P3 P2 P1 P2 P3 P2 P3

 0 50 100

P2 P1 P2 P3 P2 P1 P3 P2 P2 P1 P3

100 150 200

P2 P3 P2 P1 P2 P3 P2 P1 P3 P2

200 250 300

Note: To guarantee that P1 provides an output every 50ms maximum, an extra execution of

P1 needs to be added.

2)

Process Period WCET Shares Critical Section

Time
Priority (π)

P1 – Stabiliser 50ms 5ms R2 – Position 1ms 3
P2 – Star follower 20ms 5ms R1 – Memory 2ms 5 (Highest)
P3 – Energy manager 30ms 10ms - - 4
P4 – Picture storage 50ms - R1 – Memory 2ms 2
P5 - Communication 100ms - R2 – Position 1ms 1(Lowest)

Ceiling (R1) = max (π2, π4) = 5

Ceiling (R2) = max (π1, π5) = 3

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

The blocking times are calculated. In order to simplify the process it is recommended to go

through the lower to higher priority processes. Let 𝑙𝑝{𝑍} denote the set of processes with

lower priority than Z:

BP5: There is no process with lower priority 𝑙𝑝{𝑃5} = {}. No process can block P5 then

𝐵𝑃5 = 0ms.

BP4: In this case 𝑙𝑝{𝑃4} = {𝑃5}. We have to check if P4 can be blocked by the lower priority

process P5:

(i) Process P5 locks R2 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅2) = 3 ≥ 𝜋𝑃4 = 2. Process P5 can block P4.

Process P4 can be blocked by process P5. The blocking time is

𝐵𝑃4 = 𝑚𝑎𝑥(𝑡𝑅2,𝑃5) = 1𝑚𝑠.

BP1: In this case 𝑙𝑝{𝑃1} = {𝑃4, 𝑃5}. We have to check if P1 can be blocked by any of these

two lower priority processes:

(i) Process P5 locks R2 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅2) = 3 ≥ 𝜋𝑃1 = 3. Process P5 can block P1.

(ii) Process P4 locks R1 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅1) = 5 ≥ 𝜋𝑃1 = 3. Process P4 can block P1.

Process P1 can be blocked by processes P5 and P4. Then, the blocking time is

𝐵𝑃1 = 𝑚𝑎𝑥(𝑡𝑅2,𝑃5, 𝑡𝑅1,𝑃4) = 2𝑚𝑠.

BP3: In this case 𝑙𝑝{𝑃3} = {𝑃5, 𝑃4, 𝑃1}. We have to check if P3 can be blocked by any of

these lower priority processes:

(i) Process P5 locks R2 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅2) = 3 ≱ 𝜋𝑃3 = 4. Process P5 cannot block P3.

(ii) Process P4 locks R1 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅1) = 5 ≥ 𝜋𝑃3 = 4. Process P4 can block P3.

(iii) Process P1 locks R1 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅2) = 3 ≱ 𝜋𝑃3 = 4. Process P1 cannot block P3.

Process P3 can only be blocked by process P4. Then, the blocking time is

𝐵𝑃3 = 𝑚𝑎𝑥(𝑡𝑅1,𝑃4) = 2𝑚𝑠.

BP2: In this case 𝑙𝑝{𝑃2} = {𝑃5, 𝑃4, 𝑃1, 𝑃3}. We have to check if P2 can be blocked by any of

these lower priority processes:

(i) Process P5 locks R2 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅2) = 3 ≱ 𝜋𝑃2 = 5. Process P5 cannot block P2.

(ii) Process P4 locks R1 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅1) = 5 ≥ 𝜋𝑃2 = 5. Process P4 can block P2.

(iii) Process P1 locks R1 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅2) = 3 ≱ 𝜋𝑃2 = 5. Process P1 cannot block P2.

(iv) P3 does not use resources hence it cannot block P2.

Process P2 can only be blocked by process P4. Then, the blocking time is

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

𝐵𝑃2 = 𝑚𝑎𝑥(𝑡𝑅1,𝑃4) = 2𝑚𝑠.

3) No, the schedulability test used for RMS cannot be applied because process P2 has a

deadline D smaller than the period T.

Q1.4:

1) According to the description we have the following task set:
Process Period WCET
P1 – Servo motor controller 1 4ms 0.5ms
P2 – Servo motor controller 2 4ms 0.5ms
P3 – Sensor analysis 10ms 2ms
P4 – Decision maker 10ms 1ms
P5 – Logging ? 2ms

Since the scheduler used is EDF, we use the schedulability test formula to isolate the

minimum possible period of the logging task:

∑ (
𝐶𝑖

𝑇𝑖
)

𝑁

𝑖=1

≤ 1

𝐶𝑃1

𝑇𝑃1
+

𝐶𝑃2

𝑇𝑃2
+

𝐶𝑃3

𝑇𝑃3
+

𝐶𝑃4

𝑇𝑃4
+

𝐶𝑃5

𝑇𝑃5
≤ 1

0.5

4
+

0.5

4
+

2

10
+

1

10
+

2

𝑇𝑃5
≤ 1

𝑇𝑃5 ≥ 4. 4̅ 𝑚𝑠

The logging task could be run with a period of 4.5 ms or longer. Possible assumptions are:

1.System overheads are not considered

2.Context switching is ignored

3. D =T

2) We calculate the major and minor cycles for the cyclic schedule:

Minor cycle: gcd (4, 4, 10, 10, 8) = 2ms

Major cycle: lcm (4, 4, 10, 10, 8) = 40ms

A first attempt to a cyclic schedule is:

P1 P2 P3 P1 P2 P4 P5 P1 P2

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

0 2 4 6 8 10

P3 P1 P2 P4 P5 P1 P2 P5

10 12 14 16 18 20

P1 P2 P3 P1 P2 P4 P5 P1 P2

20 22 24 26 28 30

P3 P1 P2 P4 P5 P1 P2

30 32 34 36 38 40

However, this schedule includes two times P3 within 10 ms (the deadline) from the first

execution start (a similar problem exists for P5). In order to fix this, we assume that P3 and P5

can be split in two and design the following schedule:

P1 P2 P3-1 P3-2 P5-1 P1 P2 P4 P5-2 P1 P2

0 2 4 6 8 10

P3-1 P5-1 P1 P2 P4 P5-2 P1 P2 P3-2 P5-1

10 12 14 16 18 20

P1 P2 P3-1 P3-2 P5-2 P1 P2 P4 P5-1 P1 P2

20 22 24 26 28 30

P3-1 P5-2 P1 P2 P4 P5-1 P1 P2 P3-2 P5-2

30 32 34 36 38 40

Note: the above solution introduces jitter for P3-2.

3) As the processes with the same period are mixed this is the new task set:

Process Period WCET Locking

time M

(shared

memory)

Priority (π)

P1 – Servo motor controllers 4ms 1ms 3 (Highest)
P2 – Sensor and decision maker 10ms 3ms 0.5ms 1 (Lowest)
P3 – Logging 8ms 3ms 1ms 2

To calculate the response time analysis we have to take into account the blocking times. Then,

first we have to calculate the ceiling of the resource M:

Ceiling (M) = max (π2, π3) = 2

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

The blocking times are calculated. In order to simplify the process it is recommended to go

through the lower to higher priority processes. Let 𝑙𝑝{𝑍} denote the set of processes with

lower priority than Z:

BP2: There is no process with lower priority 𝑙𝑝{𝑃2} = {}. No process can block P2 then

𝐵𝑃2 = 0𝑚𝑠.

BP3: In this case 𝑙𝑝{𝑃3} = {𝑃2}. We have to check if P3 can be blocked by the lower priority

process P2:

(i) Process P2 locks M and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑀) = 2 ≥ 𝜋𝑃3 = 2. Process P2 can block P3.

Process P3 can be blocked by process P2. The blocking time is

𝐵𝑃3 = 𝑚𝑎𝑥(𝑡𝑀,𝑃2) = 0.5𝑚𝑠.

BP1: In this case 𝑙𝑝{𝑃1} = {𝑃2, 𝑃3}. We have to check if P1 can be blocked by any of these

two lower priority processes:

(i) Process P2 locks M and 32)(1 == PMCeiling  . Process P2 cannot block P1.

(ii) Process P3 locks M and 32)(1 == PMCeiling  . Process P3 cannot block P1.

Process P1 cannot be blocked by P2 neither P3. Then, the blocking time is𝐵𝑃1 = 0𝑚𝑠.

After computing the blocking time, we have all we need to do the response time analysis.

This time it is easier if we start with the highest priority task and we proceed down to the

lowest.

RP1: This is the process with highest priority, hence no other processes can interrupt it:

RP1 = CP1 + BP1 + JP1 =1+0+0 =1ms

RP3: This process can be interrupted by P1.

wP3

0 = CP3 + BP3 = 3+0.5= 3.5ms

wP3

1 = CP3 + BP3 +
wP3

0

TP1

é

ê
ê

ù

ú
úCP1 = 3+0.5+

3.5

4

é

êê
ù

úú
1= 4.5ms

wP3

2 = CP3 + BP3 +
wP3

1

TP1

é

ê
ê

ù

ú
úCP1 = 3+0.5+

4.5

4

é

êê
ù

úú
1= 5.5ms

wP3

3 = CP3 + BP3 +
wP3

2

TP1

é

ê
ê

ù

ú
úCP1 = 3+ 0.5+

5.5

4

é

êê
ù

úú
1= 5.5ms

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

RP3 = wP3 + JP3 = 5.5+0 = 5.5ms

RP2: This process can be interrupted by P1 and P3.

wP2

0 = CP2 + BP2 = 3+0 = 3ms

wP2

1 = CP2 + BP2 +
wP2

0

TP1

é

ê
ê

ù

ú
úCP1 +

wP2

0

TP3

é

ê
ê

ù

ú
úCP3 = 3+ 0 +

3

4

é

êê
ù

úú
1+

3

8

é

êê
ù

úú
3 = 7ms

wP2

2 = CP2 + BP2 +
wP2

1

TP1

é

ê
ê

ù

ú
úCP1 +

wP2

1

TP3

é

ê
ê

ù

ú
úCP3 = 3+0 +

7

4

é

êê
ù

úú
1+

7

8

é

êê
ù

úú
3 = 8ms

wP2

3 = CP2 + BP2 +
wP2

2

TP1

é

ê
ê

ù

ú
úCP1 +

wP2

2

TP3

é

ê
ê

ù

ú
úCP3 = 3+ 0 +

8

4

é

êê
ù

úú
1+

8

8

é

êê
ù

úú
3 = 8ms

RP2 = wP2 + JP2 = 8+0 = 8ms

4) Sporadic task is a task that is not periodically scheduled, but for which we can set a

minimum inter-arrival time. An example could be a task reacting to the external event

produced by a user pressing the keys of a keyboard: here there is a minimum time we

can consider before two consecutive events.

Q1.5:

1) From the description we obtain the following set of tasks:

Process Period WCET
P1 – Cruise controller 10ms 3ms
P2 – Wheel pair regulators 5ms 1ms
P3 – Automatic braking ? 1ms

In order to calculate the maximum possible period, we will create an equation with the

formula that determines the CPU utilization of the task set and the maximum CPU utilisation

allowed:

∑ (
𝐶𝑖

𝑇𝑖
)

𝑁

𝑖=1

≤ 0.7

𝐶𝑃1

𝑇𝑃1
+

𝐶𝑃2

𝑇𝑃2
+

𝐶𝑃3

𝑇𝑃3
≤ 0.7

3

10
+

1

5
+

1

𝑇𝑃3
≤ 0.7

𝑇𝑃3 ≥ 5𝑚𝑠

The period of P3 must be equal or greater than 5ms.

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

2) From the description we obtained the following set of tasks:

Process Period WCET
P1 – Cruise controller 10ms 3ms
P2 – Wheel pair regulators 5ms 1ms
P3 – Automatic braking 5ms 1ms
P4 – Power usage control 30ms 2ms

Then we calculate the major and minor cycles:

Minor cycle: gcd (10, 5, 5, 30) = 5ms

Major cycle: lcm (10, 5, 5, 30) = 30ms

And the resulting cycle schedule is:

P2 P3 P1 P2 P3 P4 P2 P3 P1

0 5 10 15

P2 P3 P2 P3 P1 P2 P3

15 20 25 30

3) The task set table that we can extract from the exercise description is the following:

Process Priority (π) Locking

time R

Locking

time S

P1 2 0.5ms
P2 3 1ms 2ms
P3 1 1ms
P4 4

The ceiling of the two resources are calculated:

Ceiling (R) = max (π1, π2) = 3

Ceiling (S) = max (π2, π3) = 3

The blocking times are calculated. In order to simplify the process it is recommended to go

through the lower to higher priority processes. Let 𝑙𝑝{𝑍} denote the set of processes with

lower priority than Z:

BP3: There is no process with lower priority 𝑙𝑝{𝑃3} = {}. No process can block P3 then

𝐵𝑃3 = 0𝑚𝑠.

BP1: In this case 𝑙𝑝{𝑃1} = {𝑃3}. We have to check if P1 can be blocked by the lower priority

process P3:

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

(i) Process P3 locks S and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑆) = 3 ≥ 𝜋𝑃1 = 2. Process P3 can block P1.

Process P1 can be blocked by process P3. The blocking time is

𝐵𝑃1 = 𝑚𝑎𝑥(𝑡𝑆,𝑃3) = 1𝑚𝑠.

BP2: In this case 𝑙𝑝{𝑃2} = {𝑃3, 𝑃1}. We have to check if P2 can be blocked by any of these

two lower priority processes:

(i) Process P3 locks S and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑆) = 3 ≥ 𝜋𝑃2 = 3. Process P3 can block P2.

(ii) Process P1 locks R and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅) = 3 ≥ 𝜋𝑃2 = 3. Process P1 can block P2.

Process P2 can be blocked by processes P3 and P1. Then, the blocking time is𝐵𝑃2 =
𝑚𝑎𝑥(𝑡𝑆,𝑃3, 𝑡𝑅,𝑃1) = 1𝑚𝑠.

BP4: In this case 𝑙𝑝{𝑃4} = {𝑃3, 𝑃1, 𝑃2}. We have to check if P4 can be blocked by any of

these lower priority processes:

(i) Process P3 locks S and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑆) = 3 ≱ 𝜋𝑃4 = 4. Process P3 cannot block P4.

(ii) Process P1 locks R and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅) = 3 ≱ 𝜋𝑃4 = 4. Process P1 cannot block P4.

(iii) Process P2 locks R and S, and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑅) = 3 ≱ 𝜋𝑃4 = 4 and 𝐶𝑒𝑖𝑙𝑖𝑛𝑔(𝑆) =
3 ≱ 𝜋𝑃4 = 4. Then process P2 cannot block P4.

Then 𝐵𝑃4 = 0𝑚𝑠.

4) The statement is true because a task that is not periodic neither sporadic is aperiodic.

An aperiodic task does not allow an execution time analysis because it does not

present a minimum inter-arrival time.

Q1.6:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P3 E b3 b3 a3 a3 E

P1 B E a3 E b3 P P P P P P E

P2 E a3 a3 P P P P P P P P P P P b3 b3 E

Q1.7:

The priorities of the tasks, according to RMS, are:

Process Priority (π)

A 2

B 4

C 3

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

D 1

a)

The ceiling of a semaphore is the maximum priority of all processes that may lock the

semaphore. Denoting ⌈𝑋⌉ the ceiling of the resource X, we have that

⌈𝑆1⌉ = 𝑚𝑎𝑥(𝜋𝐴, 𝜋𝐵) = 4
⌈𝑆2⌉ = 𝑚𝑎𝑥(𝜋𝐶 , 𝜋𝐷) = 3

b)

The blocking time for each process can be calculated with the following algorithm. Let 𝑙𝑝{𝑍}

denote the set of processes with lower priority than Z.

It is convenient to start from the lowest priority process to the highest.

BD: D is the lowest priority process, thus no other lower priority processes can block it.

𝑙𝑝{𝐷} = {} thus𝐵𝐷 = 0.

BA: 𝑙𝑝{𝐴} = {𝐷}. Process D uses S2 and ⌈𝑆2⌉ = 3 ≥ 𝜋𝐴 = 2 then D can block process A

since it can get a higher priority when blocking S2. The blocking time is 𝐵𝐴 = 𝑡𝑆2,𝐷 = 4.

BC: 𝑙𝑝{𝐶} = {𝐷, 𝐴}. Let’s examine which process can block C.

(i) Process D uses S2 and ⌈𝑆2⌉ = 3 ≥ 𝜋𝐶 = 3. Process D can block C.

(ii) Process A uses S1 and ⌈𝑆1⌉ = 4 ≥ 𝜋𝐶 = 3. Process A can block C.

Thus, process C is blocked at most once by the processes D and A. This means that 𝐵𝐶 =
𝑚𝑎𝑥(𝑡𝑆2,𝐷 , 𝑡𝑆1,𝐴) = 4.

BB: 𝑙𝑝{𝐵} = {𝐷, 𝐴, 𝐶}.

(i) Process D uses S2 and ⌈𝑆2⌉ = 3 ≱ 𝜋𝐵 = 4. Process D cannot block B.

(ii) Process A uses S1 and ⌈𝑆1⌉ = 4 ≥ 𝜋𝐵 = 4. Process A can block B.

(iii) Process C uses S2 and ⌈𝑆2⌉ = 3 ≱ 𝜋𝐵 = 4. Process C cannot block B.

Only process A can block process B, then 𝐵𝐵 = 𝑡𝑆1,𝐴 = 1.

Q1.8:

The priorities of the tasks, according to RMS, are:

Process Priority (π)

A 1

B 2

C 3

Denoting ⌈𝑋⌉ the ceiling of the resource X, we have that:
⌈𝑆1⌉ = 𝑚𝑎𝑥(𝜋𝐴, 𝜋𝐵 , 𝜋𝐶) = 3
⌈𝑆2⌉ = 𝑚𝑎𝑥(𝜋𝐵, 𝜋𝐶) = 3
⌈𝑆3⌉ = 𝑚𝑎𝑥(𝜋𝐶) = 3

As before, let 𝑙𝑝{𝑍} denote the set of processes with lower priority than Z.

BA: A is the lowest priority of the set, thus 𝑙𝑝{𝐴} = {}. A cannot be blocked by any lower

priority process, 𝐵𝐴 = 0.

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

BB: 𝑙𝑝{𝐵} = {𝐴}. Process A uses S1 and ⌈𝑆1⌉ = 3 ≥ 𝜋𝐵 = 2 meaning that process A can

block process B. The blocking time is𝐵𝐵 = 𝑡𝑆1,𝐴 = 1.

BC: 𝑙𝑝{𝐶} = {𝐴, 𝐵}.

(ii) Process A uses S1 and ⌈𝑆1⌉ = 3 ≥ 𝜋𝐶 = 3. Process A can block C.

(iii) Process B uses S1 and ⌈𝑆1⌉ = 3 ≥ 𝜋𝐶 = 3. Process B can block C when using the

semaphore S1.

(iv) Process B uses S2 and ⌈𝑆2⌉ = 3 ≥ 𝜋𝐶 = 3. Process B can block C when using the

semaphore S2.

Thus, process C is blocked at most once by the processes B and A. This means that

𝐵𝐶 =

𝑚𝑎𝑥(𝑡𝑆1,𝐴, 𝑡𝑆1,𝐵, 𝑡𝑆2,𝐵) = 1.

We can now calculate the response time by solving the equation:

wi = Ci + Bi +
wi

Tj

é

ê
ê
ê

ù

ú
ú
ú
Cj

"jÎhp(i)
å

Ri = wi + Ji

Again, it is convenient to start from the highest priority process down to the lowest.

Response time RC: hp(C)={} so the response time is not affected by interference from higher

priority processes, then 𝑅𝐶 = 𝐶1 + 𝐵1 = 2 + 1 = 3

Response time RB: Only process C has higher priority than B, hp(B)={C}. Interference is

caused by C and the response time is:

wB

0 = CB + BB = 4

wB

1 = CB + BB +
wB

0

TC

é

ê
ê

ù

ú
úCC = 6

wB

2 = CB + BB +
wB

1

TC

é

ê
ê

ù

ú
úCC = 6

RB = wB

2 + JB = 6+0 = 6

Response time RA: Processes B and C have higher priority then A, hp(A)={B,C}.

Interference has the contribution from B and C and the response time is:

wA

0 = CA + BA = 4

wA

1 = CA + BA +
wA

0

TB

é

ê
ê

ù

ú
úCB +

wA

0

TC

é

ê
ê

ù

ú
úCC = 9

wA

2 = CA + BA +
wA

1

TB

é

ê
ê

ù

ú
úCB +

wA

1

TC

é

ê
ê

ù

ú
úCC =11

wA

3 = CA + BA +
wA

2

TB

é

ê
ê

ù

ú
úCB +

wA

2

TC

é

ê
ê

ù

ú
úCC =14

wA

4 = CA + BA +
wA

3

TB

é

ê
ê

ù

ú
úCB +

wA

3

TC

é

ê
ê

ù

ú
úCC =14

TDDD07 ht2 2024, Real-time Systems, Linköpings universitet

Theory Exercises, 2024

RA = wA + JB =14+0 =14

