THE GLOBE IN 3D

x

VRICON ORIGINS OF VRICON

A Maxar Company

MAXAR INTERNATIONAL SWEDEN

MAXAR

TECHNOLOGIES

MAXAR

THE GLOBE IN 3D

Office in Linköping, Sweden

65+25 personnel in Sweden R&D Marketing & Sales Support

~90 personnel in US Data production Marketing and Sales

~2 000 000 km2/month

WHY 3D?

Comparison showing Weymouth, UK, in Traditional 2D, Google Earth, and Vricon

This 35m high wall is not visible in typical lower-resolution datasets.

PRODUCTION FLOW

3 (optional) **Satellite Imagery Vricon 3D Surface Model** Other data products **Vricon DSM Vricon DSM-10** Vricon True Ortho **Vricon Point Cloud**

Multiple overlapping satellite images from archives

The Vricon 3D Surface Model is produced from:

→

- Multiple overlapping images
- A unique stereo algorithm
- Other data products can be derived from the Vricon 3D Surface Model

COVERAGE AND ACCURACY

- Absolute accuracy of 3m SE90 (Spherical Error 90%)
- Today (Oct 1 2021) ~36 Msqkm
- No Ground Control Points (GCPs) needed
- The accuracy has been independently validated by multiple institutions

THE GLOBE IN 3D

Advantages

- Absolute Accuracy: 3m SE90
- Resolution: 50 cm
- Consistent global coverage
- Unclassified, Shareable, Interoperable
- Urban/Human level of detail.

INNOVATION, PROGRESSION

- Unique scalable algorithms Patented and proven, sensor agnostic technology resulting from decades of Saab R&D in image processing, navigation and optronics
- 2. Massive satellite image archives More than 100 petabytes of constantly growing imagery are available now just within the DigitalGlobe archive
- 3. **High Performance Computing** Massive computation capacity affordable now
- 4. **Graphic devices** Normal computers and handheld devices ready to consume high accuracy 3D data

Precision 3D Registration – In real time

An introduction in P3DR full motion video

Overview:

- Introduction & Background
- Precision 3D Registration
- The real time aspect
- Under the hood
- Optimization steps
- System integration

Oscar Sjöberg

Software Engineer with a focus on computer vision at Maxar MSc in Engineering, image and signal processing

Intro

- Summer internship and part time
- Started in the Engine team
- Developing the 3d engine for rapid and effective visualization of the 3D data
- Used by SAAB flight simulation 60Hz

The Soft Real Time Aspect

Precision 3D Registration (P3DR Full Motion Video)

P3DR

What is P3DR?

 Georegister means that the internal <u>coordinate system</u> of a map or <u>aerial photo</u> image can be related to a <u>geographic coordinate system</u>.

Single Image Registration

Not registered

Registered

P3DR Real time aspects

- Maintain a capacity of 30-60Hz
- Latency of 150ms
- If load increases the rendering will be allowed less time to fully render – leads to suboptimal registration.

- Video conference
 - Static scene with few variations
 - Compression is easy
 - Dynamic scene
 - Plenty of compression artifacts
- P3DR
 - Static scene
 - Rendering gets cached
 - Dynamic scene
 - Rendering is suboptimal

P3DR Optimization

Image processing in real time systems

- Image handling for streaming services uses specialized hardware for decompression.
- 3D graphics render using GPU

CPU-based:

- Effective async rendering with thread pool
 - Caching previous result
- SIMD for image matching and operations (Similar Instructions Multiple Data)

P3DR Video Integration

Use cases

Integration of P3DR

- There is an abundance of drones.
- The associated meta data needs to be of a certain quality.
- How to evaluate how they will work with P3DR?
- Using applications like P3DR, in a non real time scenario.
- Finding inconsistencies in the meta data with regular data analysis.

Questions?