
TDDD07 – Real-time Systems
Lecture 9: Dependability and Design

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Dependability topics
Lectures 7 - 9 cover theory and practical examples

• Basic notions of dependability and redundancy in
fault-tolerant systems

• Fault tolerance:

– Relating faults/redundancy to distributed systems
from lectures 4-6

– Relating timing and fault tolerance

Lecture 8: Adds industrial perspective

Lecture 9: Fault prevention and design aspects

2Autumn 2024

Treatment of faults
• Recall: four approaches for treating faults in

dependable systems

• This lecture:

1. Fault prevention

2. Fault removal

3. Fault tolerance

4. Fault forecasting

3Autumn 2024

Reading Material
• Ch. 15.1-15.4, 15.7 B&W or Ch. 5.2-5.3 in Carlsson et

al.

• Section 5.1 and 5.3 of article by Avezienis et al. 2004

• Platform-independent design: Huang et al. 2003

• UML-MARTE: Weissnegger et al. 2015

4Autumn 2024

Why dependability-by-design is
important (and hard)

System Requirements
• Functional requirements
– Describe the main objectives of the system,

referred to as “correct service” earlier
• Extra-functional requirements
– Cover other requirements not relating to main

function, in particular dependability, acceptable
frequency and severity of service failures

– Also called non-functional properties (NFP), e.g.
Timeliness, availability, energy efficiency

• Let’s start with one that we studied in this course…

6Autumn 2024

Design for timeliness
Basic approach:
• define end-to-end deadlines
• define deadlines for individual tasks
• ascertain (worst case) execution/communication

time for each task/message
• document assumptions/restrictions
• Prove/show that implementation satisfies

requirements

7Autumn 2024

8Autumn 2024

So, what is so hard about this?

Layers of design

9Autumn 2024

Hardware support

System software support

(kernels, communication protocols)

Programming environment support

Application modelling support

Fault prevention/removal

10Autumn 2024

Where should we look to find

faults prior to operation?

Historical snapshots
• Hardware design
– 1970´s Dedicated hardware
– 1980´s Microcomputers & ASICS
– 1990´s High performance Microcomputers,

FPGAs, MEMs
– 2000 ’s SoCware, Multicore

• Earlier predictable hardware is replaced with
components that are complex to analyse (caches,
pipelines, accelerators)

11Autumn 2024

Layers of design

12Autumn 2024

Hardware support

System software support (kernels)

Programming environment support

Application modelling support

Historical snapshots
• OS Scheduling principles

– 1970´s Fixed priority scheduling

– 1980´s Multiprocessor, Dynamic

– 1990´s Incorporating shared resources

– 2000´s Load variations, Multicore scheduling

• OS interfaces to optimise memory management e.g.
prefetching instructions to boost performance,
Virtualisers in cloud platforms

13Autumn 2024

Layers of design

14Autumn 2024

Hardware support

System software support (kernels)

Programming environment support

Application modelling support

Historical snapshots
• Programming environments
– 1970´s ”High” level programming
– 1980´s Real-time specific: Ada
– 1990´s OO languages, languages with formal

semantics
– 2000´s Software libraries (reuse), AUTOSAR

components in automotive

• Today: Data-driven, machine learning

15Autumn 2024

16Autumn 2024

Engineers: Fool me once,
shame on you – fool me

twice, shame on me

17Autumn 2024

Software developers: Fool me N
times, who cares, this is

complex and anyway no one
expects software to work...

Software: where do we find faults?

18Autumn 2024

10%
7%

27%
56%

Other

Code

Design

Requirements

[Cooling 2003]

Testing is not enough…
If a test fails, what was the cause?

• Undocumented assumptions on operational
conditions, external impact?

• Wrong program code?

• Unexpected impact of OS? Scheduling?

• Virtualiser overhead?

• Hardware timing dependencies?

• Embedded test code affecting timing?

19Autumn 2024

Platform-independent design

20Autumn 2024

Eliminating “butterfly effect”
means trying to isolate the
impacts of different layers

Back to basics
• define end-to-end deadlines

– Model the environment!

• define deadlines for individual tasks
– Specify system decomposition!

• ascertain (worst case) execution/communication
time for each task/message
– Assume hardware/bus characteristics!

• document assumptions/restrictions
– Model, model, model!

• Prove/show that implementation satisfies
requirements
– Analyse models, then test implementation!

21Autumn 2024

Non-digital hardware

22Autumn 2024

[Krus 2000]

An engineering discipline

Using mathematics can never be wrong!

23Autumn 2024

Model-based development
(MBD)

Model-based development
• In software-intensive systems

– Models as “higher level” programs

• Idea: use models to analyse the design, automatically
generate code from the model!

• Adequate support for modularisation: Well-tested
libraries with well-defined interfaces

25Autumn 2024

Layers of design

26Autumn 2024

Hardware support

System software support (kernels)

Programming environment support

Application modelling support

Historical snapshots
• Mathematical modelling & analysis tools

– 1970´s Sequential systems

– 1980´s Concurrent/Distributed systems

– 1990´s Timed models, Combining
discrete & continuous, UML

– 2000’s Incorporation in tools: MBD
(domain–specific or universal)

• Today: Models in learning-based systems,
explainable AI

27Autumn 2024

UML standard
• UML 2.0 models components with required and

provided interfaces

• Family of modelling techniques that are a further
development of languages in early 80’s, for example:
Ward & Mellor Diagrams

• Next two slides from an example

[Heitmeyer and Mandrioli, Wiley, 1996]

28Autumn 2024

Power plant: Functional part & safety part

29Autumn 2024

Monitor

Compute

safety

state

Coolant tank

Temperature

Pressure
compute
power
prodn

Fuel tank

Power request

Power production

OK

ModerateAlarm

HighAlarm

Cool ShutDown

Restart

Continue

Power request

Power production

Coolant

Monitor state machine

30Autumn 2024

Normal

Alert

Off

HighAlarm
ShutDown

ModerateAlarm
Restart

ModerateAlarm
Cool

OK
No Output

ModerateAlarm
Cool

OK
No Output

HighAlarm
No Output

HighAlarm
ShutDown

OK
Restart

Fault prevention and removal

32Autumn 2024

What do we want to do with models once we
create them?

Advances in 2000’s
• Tools to model digital hardware and software

components, support for functional analysis by
– Simulations

• Theory:

– Formal verification of functional properties

– Semi-automatic code generation

33Autumn 2024

Simulations of a model

Need a unique interpretation:

• The language should have (standard) operational
semantics to enable “execution” of the model

• The language should be platform-independent

34Autumn 2024

Simulations

35Autumn 2024

What do they show?

Formal proofs
• Can be used to Prove that specific bad things never

happen

• Create counterexamples, identify (design) faults
that lead to demonstrated bad things

– debugging the design

• Can be automated, but suffer from combinatorial
explosion

36Autumn 2024

Useful approaches
• Smart data structures for efficient representation of

state space

• Smart deduction engines (satisfiability checkers) that
find proofs fast

• Smart abstractions of the design to capture the
essential properties
– Synchronous languages (e.g. Esterel, Lustre), used

for Airbus 320 software

37Autumn 2024

Historical snapshots
• Mathematical modelling & analysis tools

– 1970´s Sequential systems

– 1980´s Concurrent/Distributed systems

– 1990´s Timed models, Combining
discrete & continuous, UML

– 2000’s Incorporation in tools: MBD
(domain–specific or universal?)

• Today: Model of learning-based systems, explainable
AI

38Autumn 2024

Adding time to UML
• Still in progress…

• No industry-wide tool support

• Recent development: UML profile for Real-time and
Embedded Systems (MARTE)

• Meta-models for a class of systems with timing and
performance parameters

39Autumn 2024

See case study in the
Weissnegger et al. paper

www.ida.liu.se/~TDDD07

Questions?

