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Dependability topics
Lectures 7 - 9  cover theory and practical examples

• Basic notions of dependability and redundancy in 
fault-tolerant systems

• Fault tolerance:

– Relating faults/redundancy to distributed systems 
from lectures 4-6

– Relating timing and fault tolerance

Lecture 8: Adds industrial perspective

Lecture 9: Fault prevention and design aspects
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Treatment of faults
• Recall: four approaches for treating faults in 

dependable systems

• This lecture:

1. Fault prevention

2. Fault removal

3. Fault tolerance

4. Fault forecasting
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Reading Material
• Ch. 15.1-15.4, 15.7 B&W or Ch. 5.2-5.3 in Carlsson et 

al.

• Section 5.1 and 5.3 of article by Avezienis et al. 2004

• Platform-independent design: Huang et al. 2003 

• UML-MARTE: Weissnegger et al. 2015
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Why dependability-by-design is 
important (and hard)



System Requirements
• Functional requirements
– Describe the main objectives of the system, 

referred to as “correct service” earlier
• Extra-functional requirements 
– Cover other requirements not relating to main 

function, in particular dependability, acceptable 
frequency and severity of service failures

– Also called non-functional properties (NFP), e.g. 
Timeliness, availability, energy efficiency

• Let’s start with one that we studied in this course…
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Design for timeliness
Basic approach:
• define end-to-end deadlines
• define deadlines for individual tasks 
• ascertain (worst case) execution/communication 

time for each task/message
• document assumptions/restrictions
• Prove/show that implementation satisfies 

requirements  
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So, what is so hard about this?



Layers of design
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Hardware support

System software support 

(kernels, communication protocols)

Programming environment support

Application modelling support



Fault prevention/removal
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Where should we look to find  

faults prior to operation?



Historical snapshots
• Hardware design
– 1970´s Dedicated hardware
– 1980´s Microcomputers & ASICS
– 1990´s High performance Microcomputers, 

FPGAs, MEMs
– 2000 ’s  SoCware, Multicore

• Earlier predictable hardware is replaced with 
components that are complex to analyse (caches, 
pipelines, accelerators)
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Layers of design
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Hardware support

System software support (kernels)

Programming environment support

Application modelling support



Historical snapshots
• OS Scheduling principles

– 1970´s Fixed priority scheduling

– 1980´s Multiprocessor, Dynamic

– 1990´s Incorporating shared resources

– 2000´s Load variations, Multicore scheduling

• OS interfaces to optimise memory management e.g. 
prefetching instructions to boost performance, 
Virtualisers in cloud platforms
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Layers of design
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Hardware support

System software support (kernels)

Programming environment support

Application modelling support



Historical snapshots
• Programming environments
– 1970´s ”High” level programming
– 1980´s Real-time specific: Ada 
– 1990´s OO languages, languages with formal 

semantics
– 2000´s Software libraries (reuse), AUTOSAR 

components in automotive

• Today: Data-driven, machine learning
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Engineers: Fool me once, 
shame on you – fool me 

twice, shame on me
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Software developers: Fool me N 
times, who cares, this is 

complex and anyway no one 
expects software to work...



Software: where do we find faults?
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[Cooling 2003]



Testing is not enough…
If a test fails, what was the cause?

• Undocumented assumptions on operational 
conditions, external impact?

• Wrong program code?

• Unexpected impact of OS? Scheduling?

• Virtualiser overhead?

• Hardware timing dependencies?

• Embedded test code affecting timing?
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Platform-independent design
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Eliminating “butterfly effect” 
means trying to isolate the 
impacts of different layers



Back to basics
• define end-to-end deadlines

– Model the environment!

• define deadlines for individual tasks
– Specify system decomposition!

• ascertain (worst case) execution/communication 
time for each task/message
– Assume hardware/bus characteristics!

• document assumptions/restrictions
– Model, model, model!

• Prove/show that implementation satisfies 
requirements  
– Analyse models, then test implementation!
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Non-digital hardware
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[Krus 2000]



An engineering discipline

Using mathematics can never be wrong!
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Model-based development
(MBD)



Model-based development
• In software-intensive systems

– Models as “higher level” programs

• Idea: use models to analyse the design, automatically 
generate code from the model! 

• Adequate support for modularisation: Well-tested 
libraries with well-defined interfaces
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Layers of design
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Hardware support

System software support (kernels)

Programming environment support

Application modelling support



Historical snapshots
• Mathematical modelling & analysis tools

– 1970´s Sequential systems

– 1980´s Concurrent/Distributed systems

– 1990´s Timed models, Combining 
discrete & continuous, UML

– 2000’s Incorporation in tools: MBD 
(domain–specific or universal)

• Today: Models in learning-based systems, 
explainable AI
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UML standard
• UML 2.0 models components with required and 

provided interfaces

• Family of modelling techniques that are a further 
development of languages in early 80’s, for example: 
Ward & Mellor Diagrams

• Next two slides from an example

[Heitmeyer and Mandrioli, Wiley, 1996]
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Power plant: Functional part & safety part
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Monitor state machine
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Fault prevention and removal
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What do we want to do with models once we 
create them?



Advances in 2000’s
• Tools to model digital hardware and software 

components, support for functional analysis by
– Simulations

• Theory:

– Formal verification of functional properties

– Semi-automatic code generation
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Simulations of a model

Need a unique interpretation:

• The language should have (standard) operational 
semantics to enable “execution” of the model

• The language should be platform-independent 
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Simulations
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What do they show?



Formal proofs
• Can be used to Prove that specific bad things never

happen

• Create counterexamples, identify (design) faults 
that lead to demonstrated bad things

– debugging the design

• Can be automated, but suffer from combinatorial 
explosion
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Useful approaches
• Smart data structures for efficient representation of 

state space

• Smart deduction engines (satisfiability checkers) that 
find proofs fast

• Smart abstractions of the design to capture the 
essential properties
– Synchronous languages (e.g. Esterel, Lustre), used 

for Airbus 320 software
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Historical snapshots
• Mathematical modelling & analysis tools

– 1970´s Sequential systems

– 1980´s Concurrent/Distributed systems

– 1990´s Timed models, Combining 
discrete & continuous, UML

– 2000’s Incorporation in tools: MBD 
(domain–specific or universal?)

• Today: Model of learning-based systems, explainable 
AI
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Adding time to UML
• Still in progress…

• No industry-wide tool support

• Recent development: UML profile for Real-time and 
Embedded Systems (MARTE)

• Meta-models for a class of systems with timing and 
performance parameters
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See case study in the 
Weissnegger et al. paper



www.ida.liu.se/~TDDD07

Questions?


