
TDDD07 – Real-time Systems
Lecture 6: Distributed Systems III

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline,
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees,
focus on soft RT

2Autumn 2024

Reading Material

• CAN: Davis et al. (2007) with a focus on section 3 or
Ch. 4.5 in Carlsson et al

• QoS: El-Gendy et al. (2003)

3Autumn 2024

Recall: Two approaches
• We will look at two well-known methods for bus

scheduling

– Time triggered (TTP)

– Event triggered (CAN)

• Used extensively in aerospace and automotive
applications respectively

4Autumn 2024

Event-triggered (CAN) protocol

Response time analysis

• Scheduling analysis: Is every message delivered
before its deadline?

6Autumn 2024

Worst case response
According to [Tindell & Burns 94]:

Message response time =

Ji: Jitter (from event to placement in queue)+

wi: Queuing time (response time of first bit)+

Ci: Transmission time for whole message

Ri = Ji +wi + Ci – tbit

wi = tbit + Bi + Ii

Bi + Ii : Blocking and Interference time (as RMS)

7Autumn 2024

Jitter+wait+transmission

8Autumn 2024

… ……

jitter

Wait Transmission

Interference and Blocking
• Ii: waiting due to higher priority messages, bounded

if messages are sent periodically

• Bi: waiting due to lower priority messages, only one
can start before i

• Ji: jitter, has to be assumed bounded (by assumptions
on the node CPU scheduling policy!)

9Autumn 2024

Solving recurrent equations
• Blocking is fixed: max Cj of all lower priority

messages

• wi = Bi +  khp(i) (wi + Jk + tbit)/ Tk Ck

• w0
i = Bi

• wn+1
i = Bi +  khp(i) (wi

n + Jk + tbit)/ Tk Ck

• After fixed point is reached: Bi + wn+1
i + Ci  Di ?

10Autumn 2024

Solving recurrent equations
• Blocking is fixed: max Cj of all lower priority

messages

• wi = Bi +  khp(i) (wi + Jk + tbit)/ Tk Ck

• w0
i = Bi

• wn+1
i = Bi +  khp(i) (wi

n + Jk + tbit)/ Tk Ck

• After fixed point is reached: Bi + wn+1
i + Ci  Di ?

11Autumn 2024

• From [Davis et al. 2007]:

– To show how a w-term for each message was
computed based on original method from 1994

– Assume Ji= 0

12Autumn 2024

TX time
(Ci)

Deadline
(Di)

Period
(Ti)

PriorityMessage

1 ms2.5 ms2.5 mshighA

1 ms3.25 ms3.5 msmedB

1 ms3.25 ms3.5 mslowC

Exercise
• Check that computed response times according to

Tindell and Burns for the three messages meets every
deadline!

13Autumn 2024

The original analysis
• … was Optimistic!

• Constructed a case where (old) analysis shows
schedulability but in fact deadlines can be missed!

[Davis, Burns, Bril, Lukkien 2007]

14Autumn 2024

The correct analysis
• Takes account of the fact that different instances of

the same message may affect the length of a busy
period

and

• All instances should be shown to meet their
deadlines!

[Reading: Sec. 3.1 & 3.2, Davis et al. 07]

15Autumn 2024

Revised computation
• Rm(q)= Jm + wm(q) – qTm + Cm

• q=i, w(q) computes busy period for ith instance of
message m

• To know range of q, i.e. how many instances of
message m are relevant, we need to find the longest
busy period for message m, denoted tm

16Autumn 2024

Exercise
• Qm = (tm + Jm)/ Tm

• Redo the same exercise with the correct variant of the
busy period, where q stands for the qth instance of the
same message (q  {0,..., Qm -1})

wn+1
m (q) =

Bm + q.Cm +

 khp(m) (wn
m + Jk + tbit)/ Tk Ck

17Autumn 2024

Example revisited
• Now with the new formula where busy period term is

according to [Davis et al. 2007]

18Autumn 2024

TX time
(Ci)

Deadline
(Di)

Period
(Ti)

PriorityMessage

1 ms2.5 ms2.5 mshighA

1 ms3.25 ms3.5 msmedB

1 ms3.25 ms3.5 mslowC

Solution
• To know how many instances of message m are

relevant we need to find the longest busy period for
m, denoted tm. We focus on message C here.

19Autumn 2024

Longest busy period for message C
• t0

C = CC= 1
• t1

C = t0
C/TC CC + t0

C/TB CB+ t0
C/TA CA = 1+1+1= 3

• t2
C = t1

C/TC CC + t1
C/TB CB+ t1

C/TA CA = 1+1+2= 4
• t3

C = t2
C/TC CC + t2

C/TB CB+ t2
C/TA CA = 2+2+2= 6

• t4
C = t3

c/TC CC + t3
C/TB CB+ t3

C/TA CA = 2+2+3= 7
• t5

C = t4
C/TC CC + t4

C/TB CB+ t4
C/TA CA = 2+2+3= 7

• tC = 7

Using Qm = (tm + Jm)/ Tm
• means 2 instances of message C are relevant! QC= 2

and q: 0..QC-1

20Autumn 2024

Computing the queuing time
• w0

C (0) = BC+0.CC= 0
• w1

C (0) = (w0
C(0)+ tbit)/TB CB + (w0

C (0)+ tbit) /TA CA = 1+1 =2
• w2

C (0) = 1+1= 2
 wC (0) = 2
 RC (0) = wC (0) – qTC + CC = 3
• w0

C (1) = wC (0) + CC = 2+1= 3
• w1

C (1) = CC + (w0
C (1)+ tbit)/TB CB + (w0

C (1)+ tbit)/TA CA = 1+1+2 = 4
• w2

C (1) = CC + (w1
C (1)+ tbit)/TB CB + (w1

C(1)+ tbit)/TA CA = 1+2+2=5
• w3

C (1) = CC + (w2
C (1)+ tbit)/TB CB + (w2

C (1)+ tbit)/TA CA = 1+2+3 = 6
• w4

C (1) = CC + (w3
C(1) + tbit)/TB CB + (w3

C (1)+ tbit) /TA CA = 1+2+3 =
6

 wC (1) = 6
 RC (1) = wC (1) – qTC+ CC = 3.5

21Autumn 2024

Maximum response time
RC =max{q:0..QC-1} RC(q) = 3.5

• Recall deadline for message C= 3.25

22Autumn 2024

CAN error detection
• If a transmitted message is corrupted the Cyclic

Redundancy Check (CRC) field will be wrong
• The first receiver that notes this sends 000000
• Note that corruption at source and corruption in

transit cannot be distinguished

• This works as long as a node is not erroneous –
Babbling idiot!

23Autumn 2024

Further developments
• New solutions to combine event-triggered and time-

triggered messages have appeared:

– Simulating CAN over TTP, or TT-CAN

– FlexRay

– RT/TT-Ethernet

• In the past ten years there are many standardisation
efforts ongoing for industrial IoT to make the link
layer more reliable, e.g. Time-Sensitive Networking
(TSN) for 5G

DOI: 10.1109/COMST.2023.3275038

24Autumn 2024

Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline,
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees,
focus on soft RT

25Autumn 2024

QoS Guarantees

From messages to flows
When there is overload:

• Need to allocate available resources

– To some applications/flows (which ones?)

• Applications may need to adapt as load mix and
resource dynamics changes

– Same flow can get different treatments at different
nodes

27Autumn 2024

2014: >50% of Internet traffic

28Autumn 2024

Image from Pedersen and Dey 2016
DOI:10.1109/TNET.2015.2410298

And it keeps growing…

29Autumn 2024

QoS Overview
• Some basic notions: QoS parameters, requirement vs.

provision

• We focus on allocation (not adaptation)

• Quality of service in networked (wired) applications

– QoS mechanisms at nodes

– Network-wide: Intserv, Diffserv

30Autumn 2024

Which resources?
• Application nodes (edge nodes)

– CPU

– Memory (buffer space)

– Power

• Links

– Bandwidth

• Forwarding nodes: buffer space

31Autumn 2024

What is Quality of service?
• Providing QoS: ability to provide resource assurance

and service differentiation in a network

• Why is it important? See various actors’ (Netflix,
Verizon,…) stands (2014-2019)

https://www.technologyreview.com/2014/05/07/172935/talk-of-an-
internet-fast-lane-is-already-hurting-some-startups/

https://www.forbes.com/sites/stevensalzberg/2017/11/26/when-the-fcc-
kills-net-neutrality-heres-what-your-internet-will-look-
like/#6280dad4c687

https://www.theverge.com/2019/10/4/20898779/fcc-net-neutrality-
court-of-appeals-decision-ruling

32Autumn 2024

Philosophies
• Service differentiation

– When there are overloads some
connections/packets/applications are preferred to
others

• Fairness
– All should get something

33Autumn 2024

Which

to drop?

Opinions on both sides

34Autumn 2024

The Hill, 2016-11-27:

https://thehill.com/policy/technology/307460-trump-
picks-strike-fear-into-net-neutrality-backers

Image by Getty

FCC and ability to make decisions…

35Autumn 2024

https://www.sdxcentral.com/articles/
analysis/fcc-states-u-s-5g-global-
leadership-tied-to-its-spectrum-
authority/2023/04/

https://www.fcc.gov/about/leadership/
anna-gomez

https://www.reuters.com/world/us/tr
ump-taps-brendan-carr-chairman-
federal-communications-commission-
2024-11-18/

By Getty images

Adaptation
• Orthogonal to both:

– Adaptive flows may adapt to make room for non-
adaptive ones

• Back to basics…

36Autumn 2024

How do we characterise QoS?
• Application-level requirements

– Image quality (resolution/sharpness), viewing size,
voice quality

• Enforcement (provision) level indicators
– Bandwidth guarantee (measured as throughput)

– delay

– jitter

– loss ratio

– reliability (lack of erroneous messages and
duplications)

37Autumn 2024

QoS guarantees
• Need description of required/provided service

– service commitment: e.g. % of dropped packets,
average end-to-end delay

• In presence of a traffic model

– Traffic profile: definition of the flow entitled to the
service e.g. by arrival rates, burstiness, packet
size,…

38Autumn 2024

Application categories
• Elastic or inelastic

– Mail vs. video conference
• Interactive or non-interactive

– Voice communication vs. emergency warning at
accidents

• Tolerant or non-tolerant
– MPEG video-on-demand vs. automated control

• Adaptive or non-adaptive
– Audio/video streaming vs. electronic trading

• Real-time or non-real-time
– IP-telephony vs. A/V on demand (streaming)

39Autumn 2024

QoS Overview
• Some basic notions: QoS parameters, requirement vs.

provision

• We focus on allocation (not adaptation)

• Quality of service in networked (wired) applications

– QoS mechanisms at nodes

– Network-wide: Intserv, Diffserv

40Autumn 2024

QoS mechanisms
• Admission control

– To manage the limited resource in presence of
oversubscriptions

– Examples:
• Policing (does the application ask for the same level of

resources that was assumed as a traffic profile?)
• Shaping (influencing the rate of packets fed into the

network to adapt to current resource picture)

• Scheduling
• Buffer management

41Autumn 2024

Leaky bucket
• Arrival profile can be described in terms of a pair (r, b) where r

is the average bit rate, and b is an indication of burst size

42Autumn 2024

Shaping

Scheduling
Which packet should be forwarded at the network layer
(to serve which QoS parameters)?
• No QoS: FIFO
• Fixed priority scheduling (similar to CAN when

selecting from a queue)
– With no guarantees on per packet delay, some can

starve
• Weighted Fair Queuing (WFQ)
• Class based queuing

43Autumn 2024

WFQ rough description
• Instead of allocating to all packets from one flow at a

time, imagine an approximation to an ideally fair
scheduler: one packet from each flow in a given time
interval

• Allocate the outgoing bandwidth according to a
weight for each flow

• For flows that are described as a leaky bucket, the
max delay per packet is computable

44Autumn 2024

Class-based link sharing
• Hierarchical allocation of the bandwidth according to

traffic classes

• Each class allocated a max share under a given
interval, and the excess shared according to some
sharing policy

45Autumn 2024

Usenet

News

User type A

40%

User type B

60%

Real-time

30%
Real-time…

Link

… … … …ftp

5%

Buffer Management
• Scheduling is enough as long as buffers are infinite

– In reality buffers (queues) get full during
overloads

– Shall we drop all the packets arriving after the
overload starts?

• Buffer management is about determining which
stored packets to drop in preference to incoming
ones

– Can adopt differentiated drop policies

46Autumn 2024

QoS Overview
• Some basic notions: QoS parameters, requirement vs.

provision

• We focus on allocation (not adaptation)

• Quality of service in networked (wired) applications

– QoS mechanisms at nodes

– Network-wide: Intserv, Diffserv

47Autumn 2024

Across network nodes
• IP datagrams delivered with best effort

• IntServ was defined to deliver IP packets with
differentiated treatment across multiple routers
(1994)

• Introduced 3 service classes:

– BE: Best effort

– CL: Controlled Load (acceptable service when no
overload)

– GS: Guaranteed Service (strict bounds on e-to-e
delay)

48Autumn 2024

Intserv
• Each router keeps a “soft state” for each flow (a

session) currently passing through it

– GS: the leaky-bucket-based requirements from a
flow induce a max local delay in each router

• The soft state is created with a reservation scheme
RSVP, and refreshed while the session is in progress

49Autumn 2024

Sending Tspec & receiving Rspec

50Autumn 2024

Source

PATH RESV

Destination

RSVP routers

Intserv QoS specifications
• T-spec (traffic specification)

– A token bucket specification
token rate - r
bucket size - b
peak rate - p
maximum packet size - M
minimum policed unit - m

• R-spec (reservation specification)
– Service Rate – R

The bandwidth requirement

– Slack Term – S
The delay requirement

51Autumn 2024

Not deployed successfully!
• IntServ met resistance for several reasons, including:

– Not all routers RSVP enabled

– Set up time can be proportionately long compared
to session time

– Interactive sessions need to set up a path at both
ends

– Dynamic and major changes in traffic pattern

52Autumn 2024

Diffserv (1998)
• Based on resource provisioning (for a given SLA) as

opposed to reservation
• Applied to traffic aggregates as opposed to single

flows
• Forwarding treatment as opposed to end-to-end

guarantees
• Edge routers labelling packets/flows in forwarding to

next domain, and accepting only in-profile packets
when accepting from other domains

53Autumn 2024

Diffserv Service classes
Marked with two bits:
• (P) Premium class: intended for preferential

treatment to which policing is applied with a small
bucket size

• (A) Assured class: pass through policing with a
bucket size equal to the given burst

• Packets with A-bit compete with best effort packets
when buffers get full

54Autumn 2024

Scalability of Diffserv
• Admission control is now at edge nodes not every

path on a route

• No set-up time and per-flow state in each router

• At the cost of no end-to-end guarantees

• Current research (2020)
https://ieeexplore.ieee.org/document/9110430

55Autumn 2024

Differentiation revisited
• Differentiated connectivity made possible with 5G SA

(see page 13)

– Four classes identified in Figure 10

– Automotive, Gaming, Video

https://www.ericsson.com/49ed78/assets/local/report
s-papers/mobility-report/documents/2024/ericsson-
mobility-report-june-2024.pdf

56Autumn 2024

www.ida.liu.se/~TDDD07

Questions?

