
TDDD07 – Real-time Systems
Lecture 5: Distributed Systems II

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline,
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees,
focus on soft RT

2Autumn 2024

Recap from last lecture: Logical clocks

• e is concurrent with g

• g is concurrent with f

• but e is not concurrent with f!

• Comparing the LC values does not

tell us if two events are concurrent

in the sense of

• Vector clocks do more...

3Autumn 2024

Vector clocks (VC)
• Every node maintains a vector of counted events (one

entry for each other node)

• VC for event e, VC(e) = [1,…,n], shows the perceived
count of events at nodes 1,…,n

• VC(e)[k] denotes the entry for node k

4Autumn 2024

Implementation of VC
• Rule 1: For each local event increment own entry

• Rule 2: When sending message m, append to m the
VC(send(m)) as a timestamp T

• Rule 3: When event x is “receiving a message” at
node i,
– increment own entry: VC(x)[i]:= VC(x)[i]+1
– For every entry j in the VC: Set the entry to

max (T[j], VC(x)[j])

5Autumn 2024

Example (1) revisited with vector clocks

6Autumn 2024

P

Q

R

VC(a) = [1, 0, 0] VC(g) = [2, 0, 0]

VC(b) = [1, 2, 0]
VC(c) = [1, 3, 0]

VC(h) = [2, 4, 0]VC(e) = [0, 1, 0]

VC(f) = [0,1,1] VC(d) = [1, 3, 2]

Precedence in VC
• Relation < on vector clocks defined by:

VC(x) < VC(y) iff

– For all i: VC(x)[i] ≤VC(y)[i]

– For some i: VC(x)[i] < VC(y)[i]

• It follows that event x event y if

VC(x) < VC(y)

7Autumn 2024

Concurrency and VC
Hence:

• VC(x) < VC(y) iff x y

• If neither VC(x) < VC(y) nor VC(y) < VC(x)
then x and y are concurrent

8Autumn 2024

Exercise: Example (2)

9Autumn 2024

[0,0,0]

[0,0,0]

[0,0,0]

h

p

Pros and cons
• Vector clocks are a simple means of capturing

“happened before” exactly

VC(x) < VC(y) iff x y

• For large systems we have resource issues
(bandwidth wasted), and maintainability issues

10Autumn 2024

Recall: LC(x) < LC(y) x y →

Distributed snapshot
• Vector clocks help to synchronise at event level

– Consistent snapshots

• But reasoning about response times and fault
management needs quantitative bounds

11Autumn 2024

P
Q

R

Hard real-time comunication

Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline,
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees,
focus on soft RT

13Autumn 2024

Reading Material

• TTP: Kopetz (2003) with focus on TTP/C, and
Poledna (2014)

• CAN: Davis et al. (2007) with a focus on section 3 or
Ch. 4.5 in Carlsson et al

14Autumn 2024

Context
• In the scheduling lectures we looked at single

processor hard real-time scheduling

• RT communication is about scheduling the
communication medium

15Autumn 2024

...

...

RT communication in applications
• Vehicle electronics

– Power train and chassis
– Infotainment/telematics
– Body electronics

• A modern car configuration can have between 30 and
150 ECUs, distributed over several buses

• Avionics-specific standards
– ARINC 429 (70’s), AFDX (in Airbus 380)

16Autumn 2024

Message constraints
• Message delivery time bound dictated by application

– So called end-to-end deadlines

• Example: shortly after each driver braking, brake
light must know it in order to turn on!

17Autumn 2024

A more fundamental reason
Two interaction models in distributed systems

• Synchronous model

– Assumes that the rate of computation at different
nodes can be related, and there is a bound on
maximum message exchange latency

• Asynchronous model

– Has no assumptions on rate of processing in
different nodes, or bounds on message latency

18Autumn 2024

Can use timers and
timeouts

Only coordination possible
at event level

Real-time message scheduling
• Needed for providing the bound on maximum

message delay

• Essential for reasoning about system properties
under the synchronous model of distributed systems

– e.g. proof that a service will be provided despite a
single node crash will need bounds on message
delay

– We’ll come back to that in dependability lectures…

19Autumn 2024

Bandwidth as a resource

Scheduling messages

21Autumn 2023

DistributedSingle Node
BandwidthCPUResource

MessageTask/processScheduled
element

Message size &
frequency

WCET &
interarrival

Demand on
resource

Message delay &
Throughput

Deadlines met &
Utilisation

Performance
metric

Two approaches
• We will look at two well-known methods for bus

scheduling

– Time triggered (TTP)

– Event triggered (CAN)

• Used extensively in aerospace and automotive
applications respectively

22Autumn 2024

Time-triggered protocol

Time-triggered protocol (TTP)
• Origin in research projects in Vienna in early 90´s

[Kopetz et al.]

• Time division multiple access (TDMA)

24Autumn 2024

Node 1 Node n… Node n-1

Temporal firewall

• CC provides temporally accurate state information
(via clock synchronisation)

• When the data is temporally not valid, it can no
longer be exchanged

25Autumn 2024

…
CC

Host

CC

Host
CNI Node nNode 1

Message scheduling
• TDMA round implemented through the MEDL

(message description list)

– The communication system (collection of CC:s and
the bus) reads a message from the CNI of sending
node at the apriori known fetch instant and places
in the CNI of all other nodes at the apriori known
delivery instant, replacing the previous value

• No constraints on (local) node CPU scheduling

26Autumn 2024

Communication protocol
• Message Description List (MEDL): allocates a pre-

defined slot within which each node can send its
(pre-defined) message

27Autumn 2024

A TDMA round

Node 1 Node n… Node n-1

…

TTP error detection

BG: Buss Guardian (stops babbling idiots)

CRC: for corruption in transit

28Autumn 2024

…

BG
BG BG

CC

Host

BGBG
BG BG

CC

Host

BGBG

CNI

• The major success of the TTP is due to the possibility
of detecting additional faults including arbitrary
(Byzantine) faults

• We will come back to this later…

29Autumn 2024

Event-triggered protocol

The CAN bus
• Controller Area Network protocol that was developed

for use in all cars built in Europe

• Compulsory for the on-board diagnostics in USA car
models from 2008

• Why?

– Imagine: 2500 signals, 32 ECUs on one bus

31Autumn 2024

Amount of
wires…

Predecessor to CAN (1976)
Ethernet:
• Current versions give high bandwidth but time-wise

nondeterministic
• CSMA/CD

– Sense before sending on the medium
(Carrier Sense: CS)
– All nodes broadcast to all (Multiple Access: MA)
– If collision, back off and resend (Collision

Detection: CD)

32Autumn 2024

Collisions
• The original Ethernet has high throughput but

temporally nondeterministic

33Autumn 2024

Node 1 sends

Node 3 waits for sending

Node 2 waits for sending

Node 2 & 3 start to send

Collision

Backoff
• The period for waiting after a collision

• Each node waits up to two “slot times” after a
collision (random wait)

• If a new collision, the max. backoff interval is
doubled

• After 10 attempts the node stops doubling

• After 16 attempts declares an error

34Autumn 2024

Collisions and non-determinism
• Model the network throughput and compute

probabilistic guarantees that collisions will not be too
often
– Theoretical study: With 100Mbps, sending 1000

messages of 128 bytes per second, there is a 99%
probability that there will not be a delay longer
than 1 ms due to collisions over ~1140 years

[www.rti.com Ethernet study]
• If you cannot measure effects of collisions, make

collision resolution deterministic!

35Autumn 2024

CAN Protocol
• Developed by Bosch and Intel (1986)

• ISO Standard 1993

• Highest bandwidth 1Mbps, ~40m

• CSMA/CR: broadcast to all nodes

• CR: Collision resolution by bit-wise arbitration plus
fixed priorities (deterministic)

• Bus value is bitwise AND of the sent messages

36Autumn 2024

Message priority
• The ID of the frame is located at the beginning

– initial bits that are inserted into the bus are the
ID-bits

• ID also determines the priority of a frame

– priority of the frame increases as the ID decreases

37Autumn 2024

Bit-wise arbitration
Node 1 sends: 010...

Node 2 sends: 100...

Node 3 sends: 011...

• This is how ID for a message (frame) works as its
priority

38Autumn 2024

Note
• Two roles for message ID:

– Arbitration via priority

– Processes on every node that receives a message,
use the ID to work out whether that message is
any use to them or not

39Autumn 2024

… ……

Response time analysis

• Scheduling analysis: Is every message delivered
before its deadline?

40Autumn 2024

www.ida.liu.se/~TDDD07

Questions?

