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Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud 

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline, 
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees, 
focus on soft RT
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Reading material

• Note specially that from now on we have articles 
covering our topics

• These are posted for each lecture, linked from the 
course web page!

• For first part of this lecture, datacentre scheduling  

– Xiao et al. 2013 

3Autumn 2024



Overview



Distributed applications
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• Banking and finance
• On-line access & electronic services
• Peer-to-Peer networks
• Distributed control 
– Cars, Airplanes, Smart factory

• Sensor networks
– Buildings, Env. monitoring

• Mobile/Cloud computing



Common in all these?
Distributed model of computing:

• Multiple processes

• Disjoint address spaces

• Inter-process communication

• Collective goal
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Reasons for distribution
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• Locality
– Engine control, brake system, gearbox control, 

airbag,…
– Clients and servers

• Organisation of functions/code
– An extension of modularisation, avoiding single 

points of failure

• Load sharing
– Web services, search, parallelisation of heavy 

computations Multicore scheduling: 
research topic - not part of 

the course!



This lecture
(1) Can we guarantee scheduling of tasks arriving from 
distributed nodes over a set of CPUs in the cloud? 

(2) What are the fundamental time-related issues in 
distributed systems?

– Time, clocks, and ordering of events

– And why faults cannot be ignored...

8Autumn 2024



Datacentre scheduling



Recall: Overloads with one CPU
• What happens if the task arrival rate is not 

predetermined?

• What if the load is not predictable?
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Datacentre Scheduling
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• Tasks are encapsulated in virtual machines (VM)
• Arrive from different nodes and their resource need 

varies over time 
• Goals of scheduling: Allocate VMs to physical 

machines (PMs) such that 
– No PM is overloaded so that performance of tasks 

is not degraded
– No PM is severely underloaded so that energy is 

not wasted
• As load changes, decide which VM to migrate!

[Xiao et al. 2013]

Appi



Used concepts
• Skewness: Notion that describes uneven utilisation of 

resources - minimise skewness over a set of PMs

• To deal with fluctuations it helps to predict the 
forthcoming load on each PM 

• Identify the candidates for overload

– Hotspot solver

• Identify any PM that runs at lower utilisation than an 
energy-efficient one 

– Coldspot solver 
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Adaptation architecture
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Two mechanisms
• The hotspot solver detects if any PM’s sum of 

resource usage is above the hot threshold
– It will migrate away some VM from that PM

• The coldspot solver detects if the PMs are on average 
running at a utilisation below the green computing 
(GC) threshold
– It will migrate away the VMs from some cold PM 

to prepare it for shut down
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Adaptation architecture
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Estimating resource usage
• Predictor: Based on observation O(t) and previous 

estimate E(t-1) they suggest the Fast Up Slow Down 
(FUSD) estimation model:

E(t) = α . E(t-1) + (1 - α). O(t)

where α is a parameter (experimentally) chosen as -0.2 when O(t) 
is rising and 0.7 when O(t) is falling

16Autumn 2024



Window of observations
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Left: uses only the current observation (W=1)  
Right: uses the value below which 90% of the observed peak values in 
the past 8 observations fall



Adaptation architecture
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Skewness and temperature
• The skewness for a server p (here a PM) as a function 

of the individual resources ri used within it (here sum 
of VM utilisations for a resource ri) and the average 
resource utilisation 

• A hotspot is a server that has high temperature 
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Load adaptation algorithm
• Order the PMs, choose a PM with highest temperature first

• Choose one VM on that PM that would reduce PM’s 
temperature (if migrated away)

• If many such VMs, choose the one that increases skewness 
the least

• Find a PM that can accept this VM and not become a hot 
spot 

• If many such PMs, choose the one that reduces its skewness 
most after accepting the VM

• If no such PM can be found proceed to the next VM on the 
hot PM (and eventually to next PM)
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Adaptation architecture
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Green computing adaptation
• The algorithm is invoked when average PM resource 

utilisation is below the GC threshold

• A PM is a cold spot if the utilisation of all of its 
different resources is below a given cold threshold

• Start with the PM that has the lowest utilisation for 
memory below the cold threshold

• Try to migrate all its VMs to another PM that will not 
become hot/cold after migration (will stay below a 
warm threshold) to avoid future hotspots
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Does adaptation work?
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Summary: Sharing the load
• A first attempt to study load adaptation vs. energy 

optimisation 
• Clearly shows how scheduling is related to load 

control
• Note that there are no performance guarantees (live 

migration is expected to somewhat increase response 
time) 

• Check the scalability arguments!
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Time-related concepts in 
Distributed systems



Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud 

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline, 
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees, 
focus on soft RT
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This lecture
(1) Can we guarantee scheduling of tasks arriving from 
distributed nodes over a set of CPUs in the cloud? 

(2) What are the fundamental time-related issues in 
distributed systems?

– Time, clocks, and ordering of events

– And why faults cannot be ignored...
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This lecture
(1) Can we guarantee scheduling of tasks arriving from 
distributed nodes over a set of CPUs in the cloud? 

(2) What are the fundamental time-related issues in 
distributed systems?

– Time, clocks, and ordering of events

– And why faults cannot be ignored...
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Reading Material
• Internal clock synchronisation

– Slides are a summary of the article
(up to section 2.2) in
https://dl.acm.org/doi/pdf/10.1145/
2455.2457

• Logical clocks
Chapter 6 (specially sections 6.1 and
6.2) of the Attiya et al. book
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Relevant questions
• Can we temporally order all events in a distributed 

system?

• Can we draw any conclusions if we do not have a 
global clock? 

– What about a set of local clocks?

– What if no clocks at all?
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Motivating examples



Timing of events
From Kopetz (1997):

• Consider a nuclear reactor equipped with many 
sensors that monitor different entities (e.g. Values of 
pressures, flows in various pipes). If a pipe ruptures, 
a number of entities will show values outside their 
normal operating ranges. When an entity enters its 
alarm region an alarm event is signalled to the 
operator.
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Different views of the same system
The (global) system view:

• First, the pressure in the ruptured pipe changes 
abruptly

• Then the flow changes causing many other entities to 
react

• These in turn generate own alarms

The operator view:

• Operator sees a set of (correlated) alarms, called an 
“alarm shower”

• Operator wants to identify the primary event
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Note on causality
• If event e occurs after event e’ then e cannot be the 

cause of e’

• If event e occurs before event e’ then e can be the 
cause of e’ (but need not be)

• Temporal order is necessary but not sufficient for 
causal order
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Time vs. Events



Event detection
• The computer system must assist the operator to 

detect the primary event that triggers the alarm 
shower

• Knowledge of exact temporal order of the events is 
helpful in identifying the primary event
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Other examples
• Detecting sequence of steps of an attack in a network 

forensics scenario

• Network time-stamps a major input

https://doi.org/10.1007/978-3-319-46298-1_16
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Security in industrial control
• Smart factories will become a reality

– https://www.youtube.com/watch?v=CIAijpyN3_4

• It is not science fiction!
– DOI: 10.1109/ICPHYS.2018.8390796

• Will we have security problems?
• Most ICS protocols have synchronous request-

response patterns and detecting deviations helps to 
detect anomalies/malware 
– https://www.usenix.org/conference/raid2019/presentation

/lin
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Safety-critical systems
• Inaccurate local clocks can be a problem if the result 

of computations at different nodes depend on time

– If the brake signal is issued separately in different 
wheels, will the car stop and when?
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Brake-by-wire
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We need to know when time is 
useful and when events will do



Relevant questions
• Can we temporally order all events in a distributed 

system?

– Only if we can timestamp them with a value from 
a global (universal) clock

• Can we draw any conclusions if we do not have a 
global clock? 

– What about a set of local clocks?

– What if no clocks at all?
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Time in Distributed Systems
• Physical time vs. Logical time 

• Example clock synchronisation algorithm

• Logical clocks

• Vector clocks
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Local vs. global clock
• Most physical (local) clocks are not always accurate
• What is meant by accurate?
– Agreement with UTC
– Coordinated Universal Time (UTC) is in turn  an 

adjusted time to account for the discrepancy 
between time measured based on rotation of 
earth, and the International Atomic Time (IAT)

• An atomic global clock accurately measures IAT
• If we rely on value of local clocks, they need to be 

synchronised regularly
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GPS as a reliable source?
• January 2024: Manipulation of GPS signals have 

made reliance on current GPS questionable

https://www.satmars.com/en/2024/01/24/massive-
stoerung-des-gps-signals/

• September 2024: Flight safety needs to rely on 
alternative sources

– https://ops.group/blog/gps-spoofing-final-
report/

44Autumn 2024



45Autumn 2024



Clock synchronisation



Clock synchronisation
Two types of algorithms:

• External synchronisation

– Tries to keep the values of a set of clocks agree 
with an accurate clock, within a skew of δ

• Internal synchronisation

– Tries to keep a set of clock values close to each 
other with a maximum skew of δ
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Lamport/Melliar-Smith Algorithm
• Internal synchronisation of n clocks

• Each clock reads the value of all other clocks at 
regular intervals

– If the value of some clock differs from value of 
own clock by more than δ, that clock value is 
replaced by own clock value

– The average of all clocks is computed at each node

– Own clock value is updated to the average value
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Does it work?
• After each synchronisation interval the clocks get 

closer to each other

• If the skews are within δ, and the clocks are initially 
synchronised, then they are kept within δ from each 
other 

• But what if clocks are faulty? What is considered a 
fault?
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Faulty clocks
• If a clock skew exceeds δ then its value is eliminated 

– does not “harm” other clocks

• What if the skew is exactly δ? 

– check it as an exercise!

• What is the worst case?
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A two-face faulty clock k

51Autumn 2023

Will be considered as correct by i and j…

c

c-2

c-

c+

i j

k



Bound on the faulty clocks
• To guarantee that the algorithm will keep all non-

faulty clocks within δ we need an assumption on the 
number of faulty clocks

• For f faulty clocks the algorithm works if the number 
of clocks n >3f
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Synchronisation example

“I also included a temperature compensated real time clock on Saboten
to maintain an accurate alarm for periodic wake from sleep.”

http://hackaday.com/2015/10/05/sensor-net-makes-life-easier-for-
rice-farmers/
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Ordering of events



Relevant questions
• Can we temporally order all events in a distributed 

system?

– Only if we can timestamp them with a value from 
a global (universal) clock

• Can we draw any conclusions if we do not have a 
global clock? 

– What about a set of local clocks?

– What if no clocks at all?
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Time in Distributed Systems
• Physical time vs. Logical time 

• Example clock synchronisation algorithm

• Logical clocks

• Vector clocks

Are actually relating events…
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Event ordering with no clocks
• In the absence of clock synchronisation, we may use 

order that is intrinsic in an application
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Logical time
• Based on event counts at each node
• May reflect causality 
• Sending a message always precedes receiving it 
• Messages sent in a sequence by one node are 

(potentially) causally related to each other
– I do not pay for an item if I do not first check the 

item’s availability
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Happened before
• Assume each process has a monotonically increasing 

local clock

• Rule 1: if the time for event x is before the time for 
event y then    x      y

• Rule 2: if x denotes sending a message and y denotes 
receiving the same message then x      y

• Rule 3:        is transitive
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A strict partial order…



Lamport’s Logical clocks

Seminal paper from 1978…

• Logical clock: An event counter that respects the 
“happened before” ordering

• Partial order: Hence, any events that are not in the 
“happened before” relation are treated as concurrent
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Example (1)
What do we know here?
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Implementing logical clocks
LC “time-stamps” each event

• Rule 1: Each time a local event takes place, increment 
LC by 1

• Rule 2: Each time a message m is sent the LC value at 
the sender is appended to the message (m_LC)

• Rule 3: Each time a message m is received set LC to 
max(LC, m_LC)+1
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Exercise
• Calculate LC for all events in example (1)!

63Autumn 2024



What does LC tell us?

• x        y      → LC(x)  <   LC(y)

• Note that:

LC(x)   <   LC(y) does not imply   x       y
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Example (1)
What did we capture by LC?
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Example (1)

• e is concurrent with g

• g is concurrent with f

• but e is not concurrent with f!

• Comparing the LC values does not         

tell us if two events are concurrent

in the sense of  

• Vector clocks do more...

66Autumn 2024





http://www.ida.liu.se/~TDDD07/

Questions?


