
TDDD07 – Real-time Systems
Lecture 4: Distributed Systems

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline,
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees,
focus on soft RT

2Autumn 2024

Reading material

• Note specially that from now on we have articles
covering our topics

• These are posted for each lecture, linked from the
course web page!

• For first part of this lecture, datacentre scheduling

– Xiao et al. 2013

3Autumn 2024

Overview

Distributed applications

5Autumn 2024

• Banking and finance
• On-line access & electronic services
• Peer-to-Peer networks
• Distributed control
– Cars, Airplanes, Smart factory

• Sensor networks
– Buildings, Env. monitoring

• Mobile/Cloud computing

Common in all these?
Distributed model of computing:

• Multiple processes

• Disjoint address spaces

• Inter-process communication

• Collective goal

6Autumn 2024

Reasons for distribution

7Autumn 2024

• Locality
– Engine control, brake system, gearbox control,

airbag,…
– Clients and servers

• Organisation of functions/code
– An extension of modularisation, avoiding single

points of failure

• Load sharing
– Web services, search, parallelisation of heavy

computations Multicore scheduling:
research topic - not part of

the course!

This lecture
(1) Can we guarantee scheduling of tasks arriving from
distributed nodes over a set of CPUs in the cloud?

(2) What are the fundamental time-related issues in
distributed systems?

– Time, clocks, and ordering of events

– And why faults cannot be ignored...

8Autumn 2024

Datacentre scheduling

Recall: Overloads with one CPU
• What happens if the task arrival rate is not

predetermined?

• What if the load is not predictable?

10Autumn 2024

Datacentre Scheduling

11Autumn 2024

• Tasks are encapsulated in virtual machines (VM)
• Arrive from different nodes and their resource need

varies over time
• Goals of scheduling: Allocate VMs to physical

machines (PMs) such that
– No PM is overloaded so that performance of tasks

is not degraded
– No PM is severely underloaded so that energy is

not wasted
• As load changes, decide which VM to migrate!

[Xiao et al. 2013]

Appi

Used concepts
• Skewness: Notion that describes uneven utilisation of

resources - minimise skewness over a set of PMs

• To deal with fluctuations it helps to predict the
forthcoming load on each PM

• Identify the candidates for overload

– Hotspot solver

• Identify any PM that runs at lower utilisation than an
energy-efficient one

– Coldspot solver

12Autumn 2024

Adaptation architecture
13Autumn 2024

Hotspot solver Coldspot solverPredictor

Migration list

Usher controller

PM1 PMk

…

Ap
pn

Ap
p1

LN
M

…
HypervisorProber

Ap
pm

Ap
p1

LN
M

…
HypervisorProber

Two mechanisms
• The hotspot solver detects if any PM’s sum of

resource usage is above the hot threshold
– It will migrate away some VM from that PM

• The coldspot solver detects if the PMs are on average
running at a utilisation below the green computing
(GC) threshold
– It will migrate away the VMs from some cold PM

to prepare it for shut down

14Autumn 2024

Adaptation architecture
15Autumn 2024

Hotspot solver Coldspot solverPredictor

Migration list

Usher controller

PM1 PMk

…

Ap
pn

Ap
p1

LN
M

…
HypervisorProber

Ap
pm

Ap
p1

LN
M

…
HypervisorProber

Estimating resource usage
• Predictor: Based on observation O(t) and previous

estimate E(t-1) they suggest the Fast Up Slow Down
(FUSD) estimation model:

E(t) = α . E(t-1) + (1 - α). O(t)

where α is a parameter (experimentally) chosen as -0.2 when O(t)
is rising and 0.7 when O(t) is falling

16Autumn 2024

Window of observations

17Autumn 2024

Left: uses only the current observation (W=1)
Right: uses the value below which 90% of the observed peak values in
the past 8 observations fall

Adaptation architecture
18Autumn 2024

Hotspot solver Coldspot solverPredictor

Migration list

Usher controller

PM1 PMk

…

Ap
pn

Ap
p1

LN
M

…
HypervisorProber

Ap
pm

Ap
p1

LN
M

…
HypervisorProber

Skewness and temperature
• The skewness for a server p (here a PM) as a function

of the individual resources ri used within it (here sum
of VM utilisations for a resource ri) and the average
resource utilisation

• A hotspot is a server that has high temperature

19Autumn 2024

Load adaptation algorithm
• Order the PMs, choose a PM with highest temperature first

• Choose one VM on that PM that would reduce PM’s
temperature (if migrated away)

• If many such VMs, choose the one that increases skewness
the least

• Find a PM that can accept this VM and not become a hot
spot

• If many such PMs, choose the one that reduces its skewness
most after accepting the VM

• If no such PM can be found proceed to the next VM on the
hot PM (and eventually to next PM)

20Autumn 2024

Adaptation architecture
21Autumn 2024

Hotspot solver Coldspot solverPredictor

Migration list

Usher controller

PM1 PMk

…

Ap
pn

Ap
p1

LN
M

…
HypervisorProber

Ap
pm

Ap
p1

LN
M

…
HypervisorProber

Green computing adaptation
• The algorithm is invoked when average PM resource

utilisation is below the GC threshold

• A PM is a cold spot if the utilisation of all of its
different resources is below a given cold threshold

• Start with the PM that has the lowest utilisation for
memory below the cold threshold

• Try to migrate all its VMs to another PM that will not
become hot/cold after migration (will stay below a
warm threshold) to avoid future hotspots

22Autumn 2024

Does adaptation work?

23Autumn 2024

Summary: Sharing the load
• A first attempt to study load adaptation vs. energy

optimisation
• Clearly shows how scheduling is related to load

control
• Note that there are no performance guarantees (live

migration is expected to somewhat increase response
time)

• Check the scalability arguments!

24Autumn 2024

Time-related concepts in
Distributed systems

Overview: Next three lectures
From one CPU to networked CPUs:

• First, from one CPU to multiple CPUs

– Allocating VMs on multiple CPUs: Cloud

• Next, fully distributed systems

– fundamental issues with timing and order of events

• Next, hard real-time communication

– Guaranteed message delivery within a deadline,
bandwidth as a resource

• Finally: QoS guarantees instead of timing guarantees,
focus on soft RT

26Autumn 2024

This lecture
(1) Can we guarantee scheduling of tasks arriving from
distributed nodes over a set of CPUs in the cloud?

(2) What are the fundamental time-related issues in
distributed systems?

– Time, clocks, and ordering of events

– And why faults cannot be ignored...

27Autumn 2024

This lecture
(1) Can we guarantee scheduling of tasks arriving from
distributed nodes over a set of CPUs in the cloud?

(2) What are the fundamental time-related issues in
distributed systems?

– Time, clocks, and ordering of events

– And why faults cannot be ignored...

28Autumn 2024

Reading Material
• Internal clock synchronisation

– Slides are a summary of the article
(up to section 2.2) in
https://dl.acm.org/doi/pdf/10.1145/
2455.2457

• Logical clocks
Chapter 6 (specially sections 6.1 and
6.2) of the Attiya et al. book

29Autumn 2024

Relevant questions
• Can we temporally order all events in a distributed

system?

• Can we draw any conclusions if we do not have a
global clock?

– What about a set of local clocks?

– What if no clocks at all?

30Autumn 2024

Motivating examples

Timing of events
From Kopetz (1997):

• Consider a nuclear reactor equipped with many
sensors that monitor different entities (e.g. Values of
pressures, flows in various pipes). If a pipe ruptures,
a number of entities will show values outside their
normal operating ranges. When an entity enters its
alarm region an alarm event is signalled to the
operator.

32Autumn 2024

Different views of the same system
The (global) system view:

• First, the pressure in the ruptured pipe changes
abruptly

• Then the flow changes causing many other entities to
react

• These in turn generate own alarms

The operator view:

• Operator sees a set of (correlated) alarms, called an
“alarm shower”

• Operator wants to identify the primary event

33Autumn 2024

Note on causality
• If event e occurs after event e’ then e cannot be the

cause of e’

• If event e occurs before event e’ then e can be the
cause of e’ (but need not be)

• Temporal order is necessary but not sufficient for
causal order

34Autumn 2024

Time vs. Events

Event detection
• The computer system must assist the operator to

detect the primary event that triggers the alarm
shower

• Knowledge of exact temporal order of the events is
helpful in identifying the primary event

35Autumn 2023

Other examples
• Detecting sequence of steps of an attack in a network

forensics scenario

• Network time-stamps a major input

https://doi.org/10.1007/978-3-319-46298-1_16

36Autumn 2024

Security in industrial control
• Smart factories will become a reality

– https://www.youtube.com/watch?v=CIAijpyN3_4

• It is not science fiction!
– DOI: 10.1109/ICPHYS.2018.8390796

• Will we have security problems?
• Most ICS protocols have synchronous request-

response patterns and detecting deviations helps to
detect anomalies/malware
– https://www.usenix.org/conference/raid2019/presentation

/lin

37Autumn 2024

Safety-critical systems
• Inaccurate local clocks can be a problem if the result

of computations at different nodes depend on time

– If the brake signal is issued separately in different
wheels, will the car stop and when?

38Autumn 2024

Brake-by-wire

39Autumn 2024

We need to know when time is
useful and when events will do

Relevant questions
• Can we temporally order all events in a distributed

system?

– Only if we can timestamp them with a value from
a global (universal) clock

• Can we draw any conclusions if we do not have a
global clock?

– What about a set of local clocks?

– What if no clocks at all?

41Autumn 2024

Time in Distributed Systems
• Physical time vs. Logical time

• Example clock synchronisation algorithm

• Logical clocks

• Vector clocks

42Autumn 2024

Local vs. global clock
• Most physical (local) clocks are not always accurate
• What is meant by accurate?
– Agreement with UTC
– Coordinated Universal Time (UTC) is in turn an

adjusted time to account for the discrepancy
between time measured based on rotation of
earth, and the International Atomic Time (IAT)

• An atomic global clock accurately measures IAT
• If we rely on value of local clocks, they need to be

synchronised regularly

43Autumn 2024

GPS as a reliable source?
• January 2024: Manipulation of GPS signals have

made reliance on current GPS questionable

https://www.satmars.com/en/2024/01/24/massive-
stoerung-des-gps-signals/

• September 2024: Flight safety needs to rely on
alternative sources

– https://ops.group/blog/gps-spoofing-final-
report/

44Autumn 2024

45Autumn 2024

Clock synchronisation

Clock synchronisation
Two types of algorithms:

• External synchronisation

– Tries to keep the values of a set of clocks agree
with an accurate clock, within a skew of δ

• Internal synchronisation

– Tries to keep a set of clock values close to each
other with a maximum skew of δ

47Autumn 2024

Lamport/Melliar-Smith Algorithm
• Internal synchronisation of n clocks

• Each clock reads the value of all other clocks at
regular intervals

– If the value of some clock differs from value of
own clock by more than δ, that clock value is
replaced by own clock value

– The average of all clocks is computed at each node

– Own clock value is updated to the average value

48Autumn 2024

Does it work?
• After each synchronisation interval the clocks get

closer to each other

• If the skews are within δ, and the clocks are initially
synchronised, then they are kept within δ from each
other

• But what if clocks are faulty? What is considered a
fault?

49Autumn 2024

Faulty clocks
• If a clock skew exceeds δ then its value is eliminated

– does not “harm” other clocks

• What if the skew is exactly δ?

– check it as an exercise!

• What is the worst case?

50Autumn 2024

A two-face faulty clock k

51Autumn 2023

Will be considered as correct by i and j…

c

c-2

c-

c+

i j

k

Bound on the faulty clocks
• To guarantee that the algorithm will keep all non-

faulty clocks within δ we need an assumption on the
number of faulty clocks

• For f faulty clocks the algorithm works if the number
of clocks n >3f

52Autumn 2024

Synchronisation example

“I also included a temperature compensated real time clock on Saboten
to maintain an accurate alarm for periodic wake from sleep.”

http://hackaday.com/2015/10/05/sensor-net-makes-life-easier-for-
rice-farmers/

53Autumn 2023

Ordering of events

Relevant questions
• Can we temporally order all events in a distributed

system?

– Only if we can timestamp them with a value from
a global (universal) clock

• Can we draw any conclusions if we do not have a
global clock?

– What about a set of local clocks?

– What if no clocks at all?

55Autumn 2024

Time in Distributed Systems
• Physical time vs. Logical time

• Example clock synchronisation algorithm

• Logical clocks

• Vector clocks

Are actually relating events…

56Autumn 2024

Event ordering with no clocks
• In the absence of clock synchronisation, we may use

order that is intrinsic in an application

57Autumn 2024

Client A

Client B

Server

ReqA RepA

ReqB

Logical time
• Based on event counts at each node
• May reflect causality
• Sending a message always precedes receiving it
• Messages sent in a sequence by one node are

(potentially) causally related to each other
– I do not pay for an item if I do not first check the

item’s availability

58Autumn 2024

Happened before
• Assume each process has a monotonically increasing

local clock

• Rule 1: if the time for event x is before the time for
event y then x y

• Rule 2: if x denotes sending a message and y denotes
receiving the same message then x y

• Rule 3: is transitive

59Autumn 2024








A strict partial order…

Lamport’s Logical clocks

Seminal paper from 1978…

• Logical clock: An event counter that respects the
“happened before” ordering

• Partial order: Hence, any events that are not in the
“happened before” relation are treated as concurrent

60Autumn 2024

Example (1)
What do we know here?

61Autumn 2024

P

Q

R

a g

b c he

f d

Implementing logical clocks
LC “time-stamps” each event

• Rule 1: Each time a local event takes place, increment
LC by 1

• Rule 2: Each time a message m is sent the LC value at
the sender is appended to the message (m_LC)

• Rule 3: Each time a message m is received set LC to
max(LC, m_LC)+1

62Autumn 2024

Exercise
• Calculate LC for all events in example (1)!

63Autumn 2024

What does LC tell us?

• x y → LC(x) < LC(y)

• Note that:

LC(x) < LC(y) does not imply x y

64Autumn 2024





Example (1)
What did we capture by LC?

65Autumn 2024

P

Q

R

a g

b c he

f d

Example (1)

• e is concurrent with g

• g is concurrent with f

• but e is not concurrent with f!

• Comparing the LC values does not

tell us if two events are concurrent

in the sense of

• Vector clocks do more...

66Autumn 2024



http://www.ida.liu.se/~TDDD07/

Questions?

