TDDDO7 — Real-time Systems

Lecture 3: Scheduling and Resource sharing

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Recap from last lecture

* Cyclic scheduling
— Offline
— No priorities

« Rate Monotonic Scheduling
— Online

— (Fixed) priorities based on periods

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Dynamic priorities

« Next: We look at regimes that change priorities
dynamically

LINKOPING
Il.u UNIVERSITY

Priority-based scheduling

Earliest Deadline First

II LINKOPING
[UNIVERSITY

Autumn 2024

Earliest deadline first (EDF)

e Online decision
* Preemptive

* Dynamic priorities

Policy: Always run the process that is
closest to its deadline

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Assumptions on process set

Event that leads to release of process P. appears with
minimum inter-arrival interval T,

Each P, has a max computation time C,

The process must be finished before its relative
deadline D, <T;

Processes are independent (do not share resources
other than CPU)

EDF: The process with nearest absolute deadline (d,)
will run first

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Example (6)

Consider following processes: P, ||P,
WCET (C,) 5 10
Deadline (D;=T,) 20 12
Arrival times (r;) 0, 20,... 0,12,...

4‘ A
|

0 10 15 20 25 time

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Compare to RMS

For the same task set: P, ||P,
WCET (C,) 5 10
Deadline (D;=T,) 20 12
Arrival times (r;) 0, 20,... 0,12,...

A4 A
] L7

[_--- Preemption I

0 10 15 20 25 time

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Theorem

A set of periodic tasks P,...,P, for which D, =T, is
schedulable with EDF iff

U=C/T+..+C /T <1

For Example 6:
U=C,/T, +C,/T,=5/20+ 10/12 = 1.08!

LINKOPING
Il.u UNIVERSITY

uuuuuu 2024

Example (7)
Consider following task set: P,
WCET (C,) 2
Is it schedulable?
U=2/5+4/7=0.97

Yes!

N A

LINKOPING
Il.u UNIVERSITY

Autumn 2024 11

EDF vs. RMS

« EDF gives higher processor utilisation (Example 7
not schedulable with RMS!)

« EDF has simpler exact analysis for the mentioned
type of task sets

e But suffers from domino effect...

« RMS can be implemented to run faster at run-time (if
we ignore the time for context switching)

2 Bonus points!

[Deeper analysis of RMS and EDF based on Buttazzo W
2005 article!] $B

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Next...

 We remove the assumption that all tasks are
independent!

12

LINKOPING
Il.u UNIVERSITY

Resource sharing

II LINKOPING
[UNIVERSITY

Autumn 2024

Sharing resources other than CPU

« Assume that processes synchronise using
semaphores

« We schedule the processes with fixed priorities but
relax the independence requirement

14

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Priority Inversion

A low priority process (P,) locks the resource

A high priority process (P,) has to wait on the
semaphore (blocked state)

A medium priority process (P,) preempts P, and runs
to completion before P_!

15

LINKOPING
Il.u UNIVERSITY

Autumn 2024

How to avoid it?

 When P, is blocked by P, one raises the priority of P,
to the same level as P, temporarily

 Afterwards, when the semaphore is released by P, it
goes back to its prior priority level

* P, can not interrupt P, any more!

16

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Priority inheritance

e Jstransitive

e Can compute maximum blocking time for each
resource (high priority process P, is blocked only
under the time that P, uses the resource)

« Aslong as the resource is released!

 But... 1t does not avoid deadlock!

17

LINKOPING
Il.u UNIVERSITY

Autumn 2024

18

Example (8)

o Inheritance
Let P1 have lower priority than P2. !
. Preemption B}ocked
p1] S1 S23
P2 T S2 S1?‘
. Blocked
0 time
Here [S1 |denotes the process locks semaphore Si.

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Terminology

Note that:

* blocked — when waiting due to a resource (other than
CPU)

» not dispatched or preempted - when waiting for CPU

19

LINKOPING
Il.u UNIVERSITY

Autumn 2024 20

Ceiling Protocols
e.g. Immediate priority Ceiling Protocol (ICP):

« A process that obtains a resource inherits the resource’s
ceiling priority - the highest priority among all processes
that can possibly claim that resource

« Dynamic priority for a process is the max of own (fixed)
priority and the ceiling values of all resources it has locked

* When a resource is released, the process priority returns
to the normal level (or to another engaged resource’s
ceiling)

LINKOPING
Il.u UNIVERSITY

ICP and deadlocks/starvation

II LINKOPING
[UNIVERSITY

Autumn 2024 22

Properties

« The blocking delay for process Pi is a function of the
length of all critical sections

— We need to compute this (Bi) for each process!
* Do not even need to use semaphores!

« A process is blocked max once by another process

with lower priority
C__ Let’s prove thatD

LINKOPING
Il.u UNIVERSITY

Autumn 2024

ICP & Deadlock-related issues

* The ICP prevents deadlocks (How?)

« ICP prevents starvation (How?)

23

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Recall: Coffman conditions

1. Mutual exclusion
Access to resource is limited to one (or a limited
number of) process(es) at a time

2. Hold & wait
Processes hold allocated resources and wait for
another resource at the same time

24

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Coffman conditions

3. Voluntary release
Resources can only be released by a process voluntarily

4. Circular wait
There is a chain of processes where each process holds

a resource that is required by another process

25

LINKOPING
Il.u UNIVERSITY

Autumn 2024

Recall: Resource allocation graphs

Recall from the OS course: A dynamic snapshot of
which resources are allocated, and which resources are

wished N

e

R2

26

LINKOPING
Il.u UNIVERSITY

Autumn 2024

ICP & Deadlock

* The ICP prevents deadlocks (How?)

* We need to show that a set of n processes using FP
scheduling and ICP cannot end up in a deadlock

» Use proof by contradiction!

27

LINKOPING
Il.u UNIVERSITY

Autumn 2024 28

|ICP & Starvation

« Show that an arbitrary process that is waiting will not
wait for a resource indefinitely

 First, recall that it will not wait for a chain of waiting
processes indefinitely

« Second, show that waiting for a running process is
bounded by the combined impact of interference and
blocking, which can be computed

* A process that waits indefinitely will only do so if its
response time is beyond its deadline

LINKOPING
Il.u UNIVERSITY

Questions?

www.ida.liu.se/~TDDDO07

LINKOPING
Il.u UNIVERSITY

