
TDDD07 – Real-time Systems
Lecture 3: Scheduling and Resource sharing

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Recap from last lecture
• Cyclic scheduling

– Offline

– No priorities

• Rate Monotonic Scheduling

– Online

– (Fixed) priorities based on periods

2Autumn 2024

Dynamic priorities

• Next: We look at regimes that change priorities
dynamically

3Autumn 2024

Priority-based scheduling

Earliest Deadline First

Earliest deadline first (EDF)

• Online decision

• Preemptive

• Dynamic priorities

Policy: Always run the process that is
closest to its deadline

5Autumn 2024

Assumptions on process set
• Event that leads to release of process Pi appears with

minimum inter-arrival interval Ti

• Each Pi has a max computation time Ci

• The process must be finished before its relative
deadline Di Ti

• Processes are independent (do not share resources
other than CPU)

• EDF: The process with nearest absolute deadline (di)
will run first

6Autumn 2024

Example (6)

7Autumn 2024

Consider following processes: P1 P2
WCET (Ci) 5 10
Deadline (Di = Ti) 20 12
Arrival times (ri) 0, 20,... 0, 12,...

0 10 15

...?

time20 25

Compare to RMS

8Autumn 2024

For the same task set: P1 P2
WCET (Ci) 5 10
Deadline (Di = Ti) 20 12
Arrival times (ri) 0, 20,... 0, 12,...

0 10 15

...?

time20 25

Preemption

Theorem
A set of periodic tasks P1,...,Pn for which Di = Ti is
schedulable with EDF iff
U= C1/T1+...+Cn/Tn

For Example 6:
U=C1/T1 + C2/T2 = 5/20 + 10/12 = 1.08!

9Autumn 2024

Example (7)

Consider following task set: P1 P2
WCET (Ci) 2 4
Deadline (Di = Ti) 5 7

Is it schedulable?

U = 2/5 + 4/7 = 0.97

Yes!

10Autumn 2024

EDF vs. RMS
• EDF gives higher processor utilisation (Example 7

not schedulable with RMS!)

• EDF has simpler exact analysis for the mentioned
type of task sets

• But suffers from domino effect…

• RMS can be implemented to run faster at run-time (if
we ignore the time for context switching)

[Deeper analysis of RMS and EDF based on Buttazzo
2005 article!] $B

11Autumn 2024

2 Bonus points!

Next…
• We remove the assumption that all tasks are

independent!

12Autumn 2024

Resource sharing

Sharing resources other than CPU
• Assume that processes synchronise using

semaphores

• We schedule the processes with fixed priorities but
relax the independence requirement

14Autumn 2024

Priority Inversion
• A low priority process (P1) locks the resource

• A high priority process (P2) has to wait on the
semaphore (blocked state)

• A medium priority process (P3) preempts P1 and runs
to completion before P2!

15Autumn 2024

How to avoid it?
• When P2 is blocked by P1 one raises the priority of P1

to the same level as P2 temporarily

• Afterwards, when the semaphore is released by P1, it
goes back to its prior priority level

• P3 can not interrupt P1 any more!

16Autumn 2024

Priority inheritance
• Is transitive

• Can compute maximum blocking time for each
resource (high priority process P2 is blocked only
under the time that P1 uses the resource)

• As long as the resource is released!

• But … it does not avoid deadlock!

17Autumn 2024

Example (8)

18Autumn 2024

0 time

S1

S2 S1?

Preemption

Blocked

S2?

Blocked

Inheritance

SiHere denotes the process locks semaphore Si.

Let P1 have lower priority than P2.

P1

P2

Terminology
Note that:

• blocked – when waiting due to a resource (other than
CPU)

• not dispatched or preempted - when waiting for CPU

19Autumn 2024

Ceiling Protocols
e.g. Immediate priority Ceiling Protocol (ICP):

• A process that obtains a resource inherits the resource’s
ceiling priority - the highest priority among all processes
that can possibly claim that resource

• Dynamic priority for a process is the max of own (fixed)
priority and the ceiling values of all resources it has locked

• When a resource is released, the process priority returns
to the normal level (or to another engaged resource’s
ceiling)

20Autumn 2024

ICP and deadlocks/starvation

Properties
• The blocking delay for process Pi is a function of the

length of all critical sections

– We need to compute this (Bi) for each process!

• Do not even need to use semaphores!

• A process is blocked max once by another process
with lower priority

22Autumn 2024

Let’s prove that!

ICP & Deadlock-related issues
• The ICP prevents deadlocks (How?)

• ICP prevents starvation (How?)

23Autumn 2024

Recall: Coffman conditions
1. Mutual exclusion

Access to resource is limited to one (or a limited
number of) process(es) at a time

2. Hold & wait
Processes hold allocated resources and wait for
another resource at the same time

24Autumn 2024

Coffman conditions
3. Voluntary release
Resources can only be released by a process voluntarily

4. Circular wait
There is a chain of processes where each process holds

a resource that is required by another process

25Autumn 2024

Recall: Resource allocation graphs

26Autumn 2024

Recall from the OS course: A dynamic snapshot of
which resources are allocated, and which resources are
wished

P1 P2

P3

P4

R1

R2

ICP & Deadlock
• The ICP prevents deadlocks (How?)

• We need to show that a set of n processes using FP
scheduling and ICP cannot end up in a deadlock

• Use proof by contradiction!

27Autumn 2024

ICP & Starvation
• Show that an arbitrary process that is waiting will not

wait for a resource indefinitely

• First, recall that it will not wait for a chain of waiting
processes indefinitely

• Second, show that waiting for a running process is
bounded by the combined impact of interference and
blocking, which can be computed

• A process that waits indefinitely will only do so if its
response time is beyond its deadline

28Autumn 2024

www.ida.liu.se/~TDDD07

Questions?

