
TDDD07 – Real-time Systems
Lecture2: Scheduling II

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Recap from last lecture
• Real-time systems have well-defined timing

requirements, some soft/hard

• We look at the extreme case

– Computational systems that need to meet every
deadline for every instance of each process

2Autumn 2024

Release times
• Reading and reacting to continuous signals

– Periodicity

• Recognising/reacting to some aperiodic events

– Minimum inter-arrival time

 Sporadic processes

3Autumn 2024

Computation time (WCET)
• Depends on

– Hardware

– Application code (algorithm)

– Compiler

– Data

4Autumn 2024

Cyclic scheduling

Cyclic scheduling
• A schedule is created based on statically known and

fixed parameters (period, WCET)

• Off-line decision on which task runs & when it runs

– When executing: Run the processes in pre-
determined order using a table look-up

• To run processes in the “right” frequency find

– Minor cycle

– Major cycle

6Autumn 2024

Example (1)

7Autumn 2024

Consider following processes: P1 P2

Period(Ti)/Deadline 50 100
Worst case execution time (Ci) 10 30

0 100 150 200 250

Note: repetition!

...

50 time

A cyclic executive
8Autumn 2024

every_major_cycle do{
read all in_signals;
run_minor_cycle_1_processes;
wait_for_interrupt;
write all out_signals;
...
read all in_signals;
run_minor_cycle_n_processes;
wait_for_interrupt;
write all out_signals;
}

End of minor cycle

End of minor cycle

Finding Minor/Major Cycle

9Autumn 2024

First try:
Minor cycle: greatest common divisor
(sv. sgd)

Major cycle: least common multiplier
(sv. mgm)

Example (2):
process A B C
period 20 40 60

...
0 12020

Construction of a cyclic schedule
Off-line analysis in order to fix the schedule might be
iterative

• Each process Pi is run periodically every Ti (i.e.
should be completed once every Ti)

• Processes are placed in minor cycle and major cycle
until repetition appears

• Check: Are all process instances runnable with the
given periods and estimated WCET?

• If not, reconsider the minor/major cycle and/or some
process parameters

10Autumn 2024

When is the schedule correct?
• All processes should be run at least as often as every

(original) Ti

• All processes fit in the minor cycles they are placed in

and

• Repetition appears!

11Autumn 2024

Harmonic processes

12Autumn 2024

• Easy to find minor/major cycle

Recall example 2:
process A B C
period 20 40 60

...
0 12020

If sum of WCETs fits in...

13Autumn 2024

What if periods are not harmonic?
Or the WCET sum does not fit?

Next try…
• In either case we need to

– change the task set parameters

– recall that all processes should be run at least as
often as every (original) Ti

• Place the processes in new minor cycle and major
cycle until repetition appears

• If there is no option, Ti can be increased in cases
where the application allows it

14Autumn 2024

Example (3.1)

15Autumn 2024

process A B
period 75 100

Alternative 1:
Choose minor cycle as greatest
common divisor, and move processes
in time when they clash.

...
Drawbacks?

time0 25 100 150

Jitter control
• Many applications need to minimise jitter in reading

data from sensors or producing output to actuators

16Autumn 2024

Example (3.2)

17Autumn 2024

process A B
period 75 100

Alternative 2:
Run process B more often than necessary,
e.g. once every 75 time units.

time

...

0 75

minor cycle
Drawbacks?

Example (3.3)

18Autumn 2024

process A B
period 75 100

Alternative 3:
A mix of the last two

minor cycle
Drawbacks?

time0 50

...

If they don’t fit?
• Break some process that does not fit into two or more

processes and run the different parts in different
minor cycles

Drawbacks?

19Autumn 2024

Creates new processes
out of the old one!

Note: No preemption

20Autumn 2024

Now let’s check!
You should be able to answer how the typical

scheduling questions are answered in a cyclic
schedule context …

During run-time:

• What is the de facto “deadline” for each process?

• How does one know that processes meet their
deadlines?

• What happens if they don’t?

21Autumn 2024

What if dependent?
• So far we assumed all processes are independent

• Dependence can be due to sharing resources or
computation precedence requirements

• In a cyclic schedule:
– Computation precedence automatically taken care of as each

instance of a process reads the inputs at the beginning of a
minor cycle (produced by another process at the end of
some prior minor cycle)

– Mutual access to resources does not take place as each
process is running alone with no interruptions

22Autumn 2024

Summary
• Cycles can be hard to determine and can become

looong ...

• Long WCET can create problems

• Sporadic processes are run periodically

– Can lead to high processor utilisation

• Very inflexible!

23Autumn 2024

But…

• Simple at run-time

• No overheads for context switching

• Processes can exchange data without the need for
explicit (dynamic) synchronisation

24Autumn 2024

Better methods needed
For:

• Processes with long WCET

• Sporadic events

• Processes with long period but short deadline

• Run-time process dependence

– specially in terms of overruns

25Autumn 2024

Priority-based scheduling

Rate-Monotonic Scheduling (RMS)

Priority-base scheduling
• A preemptive method where the priority of the

process determines whether it continues to run or it
is disrupted

”Most important process first!”

27Autumn 2024

Rate Monotonic Scheduling (RMS)

• On-line

• Preemptive

• Priority-based with fixed (static) priorities

28Autumn 2024

Priorities

• Each process has a period Ti that is the shortest
interval between its release times

• Processes are assigned priorities dependent on length
of Ti

– The shorter Ti the higher the priority

29Autumn 2024

Example (4)

P1 P2 P3

Period (Ti) 20 50 30
WCET (Ci) 10 10 5
Priority high low medium

Let’s assume Di = Ti

30Autumn 2024

31Autumn 2024

Consider following scenario:

arrival time process
0 P1, P2, P3
20 P1
30 P3
40 P1
50 P2
60 P1, P3

0 10 20 30 40 50 60 70 80 90

...preemption

time

Schedulability Tests
• Sufficient

– if test is passed, then tasks are definitely schedulable

– if test is not passed, we don’t know

• Necessary

– if test is not passed, tasks are definitely not
schedulable

– if test is passed, we don’t know

• Exact test:

– sufficient & necessary at the same time

32Autumn 2024

RMS Schedulability

Theorem: (sufficient condition)

For n processes, RMS will guarantee their
schedulability if the total utilisation
U = C1/T1 + ... + Cn/Tn
does not exceed the guarantee level
G = n (2 1/n -1)

33Autumn 2024

For the example (4)
U = 10/20+10/50+5/30 = 0,87

n = 3  G = 3(2 1/3 -1) = 0,78

Schedulability is not guaranteed!

(but processes may still meet their deadlines...)

34Autumn 2024

When the test fails
• Try testing the critical instant: Assume that all

processes are released simultaneously at time 0, and
then arrive according to their periods

• Check whether each process meets its deadline for
all releases before the first deadline of the process
with lowest priority

35Autumn 2024

Example (4) - Revisited

36Autumn 2024

P1 P2 P3

Period (Ti) 20 50 30
WCET (Ci) 10 10 5
Priority high low medium

37Autumn 2024

Consider the scenario for example 4:

arrival time process
0 P1, P2, P3
20 P1
30 P3
40 P1
50 P2
60 P1, P3

0 10 20 30 40 50 60 70 80 90

preemption

time

Exact schedulability test
• Mathematical equations for computing worst case

response time Ri for each process

• Response time: the time between the release and
the completion time

• Process set schedulable if Ri ≤ Ti for all processes

38Autumn 2024

Response time analysis

39Autumn 2024

• Tasks suffer interference from higher priority tasks

• Iterative formula for calculating response time

• Assumptions?

[Joseph & Pandya 1986]

j
ihpj j

i
ii C

T
RCR 

 












)(

j
ihpj j

n
i

i
n
i C

T
wCw 


















)(

1

iii ICR 

Not schedulable task set
When response time analysis gives a “no” answer:

• Change U by reducing Ci (code optimisation, faster
processor, ...)

or

• Increase Ti for some process (can one do this?)

40Autumn 2024

Theorems
• Optimality: RMS is optimal among methods with

fixed priority

– In what sense?

• Lowest upper bound: For arbitrarily large n, it
suffices that processor utilisation is < 0.69

[Nice proofs in Buttazzo book] $B

41Autumn 2024

2 Bonus points!

What does the test mean?
Utilisation based test:

G = n (2 1/n - 1)

For a given n, the highest ceiling under
which we only find schedulable task sets

(irrespective of release times, with all possible Ci, Ti)

42Autumn 2024

Example (5)

P1 P2 P3

Period (Ti) 20 50 30
WCET (Ci) 7 10 5

U = 7/20 + 10/50 + 5/30 = 0,72
>0,69 but...
< G = 0,78

The schedulability of this task set
is guaranteed!

43Autumn 2024

Better methods needed
For:

• Processes with long WCET

• Sporadic events

• Processes with long period but short deadline

• Run-time process dependence

– specially in terms of overruns

44Autumn 2024

Did we fix these?

Summarising RMS
• Processes with long WCET

– RMS does not require splitting the code

• Sporadic events

– RMS only runs them when they arrive

• Processes with long period but short deadline

– Can allocate fixed priorities based on deadlines for
the cases Di  Ti - Deadline monotonic scheduling

• Run-time process dependence

– Overruns: highest priority task not affected!

45Autumn 2024

How about mutual access?

Priority-based scheduling

Earliest Deadline First (EDF)

Dynamic priorities

• Next: We look at regimes that change priorities
dynamically

47Autumn 2024

Earliest deadline first (EDF)

• Online decision

• Preemptive

• Dynamic priorities

Policy: Always run the process that is
closest to its deadline

48Autumn 2024

Assumptions on process set
• Event that leads to release of process Pi appears with

minimum inter-arrival interval Ti

• Each Pi has a max computation time Ci

• The process must be finished before its relative
deadline Di  Ti

• Processes are independent (do not share resources
other than CPU)

• EDF: The process with nearest absolute deadline (di)
will run first

49Autumn 2024

Preparatory reading
• Background reading on deadlocks (announced on the

web, see Chapter in Silberschatz, Galvin & Gagne)

• Specially important if you do not recall the deadlock
related notions as part of your earlier OS course!

– Deadlock prevention, avoidance, detection

– Starvation

50Autumn 2024

Next lecture assumes you know these....

www.ida.liu.se/~TDDD07

