
TDDD07 – Real-time Systems
Lecture 10: Real-time OS and wrapping up

Simin Nadjm-Tehrani

Real-time Systems Laboratory
Department of Computer and information Science

Reading Material
• Baskiyar (2005): main requirements and some

examples – not so contemporary!

• Parts of Ch. 2 in Carlsson et al. may be useful as
complementary text depending on your OS
background

• Use the lecture slides as a guide, and for more details
use a reference book e.g. chapter 10 in
https://link.springer.com/book/10.1007/978-3-031-
28701-5)

2Autumn 2024

What have we learnt so far?

Summary of the course
During the course we have …

• Studied methods for allocation of CPU as a resource

– Hard real-time systems: Three scheduling
algorithms (Cyclic, RMS, EDF)

– Soft real-time systems: Data centre scheduling
(adaptation wrt load and energy optimisation)

4Autumn 2024

Summary of the course
• We further looked at sharing multiple resources:

– Single CPU case: Potential for deadlocks and
starvation, a prevention technique (ICP)

– Cloud CPUs & energy: Virtual machines
• As well as sharing resources in networked

applications
– Communication bus in hard real-time systems,

dedicated applications (CAN vs. TTP scheduling)
– Bandwidth, buffer space in IP/Multimedia

networks

5Autumn 2024

Different requirement types
• From “every deadline met” to QoS expressions

• Who enforces predictability?
– RTOS in single CPU, Bus protocol in dist. system

– Admission controllers, Packet schedulers, Buffer managers
in soft real-time networked systems

• Relation between dependability and predictability
– Faults models

– Availability and some threats against it

• Host crashes, Software process crashes, transients

– Eliminating faults at design stage

6Autumn 2024

The industry perspective
Ericsson speaker (Blas) talked about:

• Fast vs. Critical, Key Performance Indicators

– Availability & accessibility

– Degrees of reliability

• Moving from dedicated HW to COTS and
virtualisation

• Replication of microservices (losing capacity but not
capability)

• Uniform HW for simplicity (=no diversity!)

7Autumn 2024

The industry perspective
• Move from special purpose hardware to COTS

– Makes benchmarking software from different
vendors possible

– Hard to make availability claims due to third party
software on the same node

• Different performance indicators

• Core isolation for predictability

8Autumn 2024

Real-time operating systems
An overview

This lecture: Real-time OS

10Autumn 2024

Hardware support

System software support

(kernels, communication protocols)

Programming environment support

Application modelling support

The role of OS
Depends on who you ask:

• The bare machine people

• The buy-kernel-and-complete people

• The sector-dependent OS people

• The language-dependent OS people

• The off-the-shelf OS people

• The reconfigurable OS people

• The middleware people

11Autumn 2024

If you’re serious
about doing real-time
why do you want an
operating system?

OSEK

Ada

POSIX-

compatible
ThreadX

uClinux
FPGA

Variations remain
• The 20-year perspective:

https://www.embedded.com/how-embedded-software-
development-has-evolved-over-20-years/

Shows a clear trend from commercial OS to open source
OS (see Figure 5)

12Autumn 2024

Sector interoperability
• Keeping competitive advantage but sharing interfaces

(Application APIs)

– AUTOSAR: 20 years in 2023
https://www.autosar.org/standards/classic-platform

• Did you look at the Toyoto Oklahoma court ruling
from 2013?

– Mentioned OSEK standard and Misra-C

13Autumn 2024

Linux alternatives
• Co-kernel approach

– e.g. Xenomai.org

• Running PREEMPT-RT Linux (patch) extensions
enabled for support of real-time services

• See the overview (figure 1) in section 2, Reghenzani
et al. 2019

https://doi.org/10.1145/3297714

14Autumn 2024

Game changer?
November 2023

• Microsoft makes its RTOS ThreadX open source
through eclipse foundation

• https://www.embedded.com/what-open-source-
azure-rtos-means-to-developers/

15Autumn 2024

Let’s start with basics

Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

17Autumn 2024

From Nanokernels
to Kernels

Task management
May be:
• Time-driven

– At each tick of a clock the kernel checks if some
tasks need to be queued, a task should start to run,
or a task should stop running

• Event-driven
– When an I/O operation is completed, or a task

signals completion, the kernel checks ...

18Autumn 2024

Task attributes
• On creation of threads RT kernels allow specification

of attributes such as

– Start time

– Deadline

– Priority

– ...

• Used for releasing, aborting, and scheduling

19Autumn 2024

Event-based task switching
Upon arrival of an event:

• Determine whether the current running task should
continue (based on scheduling policy)

• If not, determine the next task to be run

• Save the environment of the preempted task

• Prepare the selected task to be run

... in deterministic time!

20Autumn 2024

• Search, insert and delete tasks in ready queue

• Restore the state of the highest priority task

Recall our assumption of zero overhead!

Basic operations

21Autumn 2024

Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

22Autumn 2024

Task communication
• Shared memory and semaphores

– Priority inversion
– Deadlocks

• Message passing
– Can above problems still arise?

• Deterministic time:
– Locking and unlocking latency
– Message passing delays

23Autumn 2024

Yes! QNX Nuetrino

 uses inheritence

 to avoid it!

Can be made size-independent!

Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

24Autumn 2024

Time services
• Even event-driven OS need time

services to construct timers and
detect overruns

• OS may allow defining one or more
high resolution clocks with
get_value, set_value, get_resolution
operations

• Timers can be defined to signal an
event towards application processes
after a particular period

• Real-time POSIX allows queued
signals according to priority

25Autumn 2024

Hardware support

System software support

(kernels, communication protocols)

Programming environment support

Application modelling support

Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

26Autumn 2024

Interrupt services
When an interrupt event is generated:

• State of the current running task is saved

• Interrupt handler – Interrupt Service Routine (ISR)
– is executed

• Next task to be run (application task or the
scheduler) is invoked

27Autumn 2024

Deterministic interrupts
• RTOS vendor has to provide data on the timing

determinism for the given steps

• Interrupt service routines (ISR) have to be short

• But also predictable!

• If several interrupts are to be serviced, the relative
(fixed) priority determines the order

28Autumn 2024

Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

29Autumn 2024

Memory allocation
Different views:
• Real-time programmer should have absolute control

over resources used by the program
– Dynamic memory allocation (malloc, free) not

supported by RTOS

• Dynamic memory allocation takes non-deterministic
time due to fragmentation and should be replaced by
other mechanisms
– Pools instead of heap
– Control over garbage collection (GC) is an ingredient in

real-time Java

30Autumn 2024

Can GC be deferred?
• Swedish company Cinnober specialises Java

programs to reduce non-deterministic access time
when performing stock market transactions

• Uses replicated servers

• ”In most cases garbage collection will not take place
in both servers at the same time.”

31Autumn 2024

Computer Sweden 5 Dec 2013
https://www.idg.se/2.2683/1.536623/svenskar-bakom-java-genombrott

File system
• Traditional file systems not suitable for real-time OS!

• Those that support filing services also provide a
mechanism for efficient locking of task data into
main memory storage

• Avoiding unpredictable memory swaps!

32Autumn 2024

Device controllers
• Initialise device interrupt information and

disable/enable a device interrupt

• Upon generation of a hardware interrupt identify
which device is involved

• Managing interrupt-driven I/O can be difficult unless
the number of generated interrupts can be bounded

33Autumn 2024

In addition to OS function and
timing…

Other constraints
• So far, we only looked at timing constraints

• A general requirement for RTOS is low overhead,
also from a memory footprint point of view

• Smallest embedded systems profile of POSIX.13,
PSE51 can be written in thousands of lines of code

• Compare to Windows XP: ~30GB!

• Linux first release 10000 loc (2012:15m, 2022: 35m!)

35Autumn 2024

Finally…
• Thank you for your attention!

• Hope you are better performance engineers and
resource management experts after this course!

36Autumn 2024

http://www.ida.liu.se/~TDDD07/

Questions?

	TDDD07 – Real-time Systems�Lecture 10: Real-time OS and wrapping up
	Reading Material
	What have we learnt so far?
	Summary of the course
	Summary of the course
	Different requirement types
	The industry perspective
	The industry perspective
	Real-time operating systems
	This lecture: Real-time OS
	The role of OS
	Variations remain
	Sector interoperability
	Linux alternatives
	Game changer?
	Let’s start with basics
	Main functions of an OS
	Task management
	Task attributes
	Event-based task switching
	Basic operations
	Main functions of an OS
	Task communication
	Main functions of an OS
	Time services
	Main functions of an OS
	Interrupt services
	Deterministic interrupts
	Main functions of an OS
	Memory allocation
	Can GC be deferred?
	File system
	Device controllers
	In addition to OS function and timing…
	Other constraints
	Finally…
	Slide Number 37

