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Reading Material
• Baskiyar (2005): main requirements and some 

examples – not so contemporary!

• Parts of Ch. 2 in Carlsson et al. may be useful as 
complementary text depending on your OS 
background

• Use the lecture slides as a guide, and for more details 
use a reference book e.g. chapter 10 in 
https://link.springer.com/book/10.1007/978-3-031-
28701-5 )
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What have we learnt so far?



Summary of the course
During the course we have …

• Studied methods for allocation of CPU as a resource

– Hard real-time systems: Three scheduling 
algorithms (Cyclic, RMS, EDF)

– Soft real-time systems: Data centre scheduling 
(adaptation wrt load and energy optimisation)
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Summary of the course
• We further looked at sharing multiple resources:

– Single CPU case: Potential for deadlocks and 
starvation,  a prevention technique (ICP)

– Cloud CPUs & energy: Virtual machines
• As well as sharing resources in networked 

applications
– Communication bus in hard real-time systems, 

dedicated applications  (CAN vs. TTP scheduling)
– Bandwidth, buffer space in IP/Multimedia 

networks 
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Different requirement types
• From “every deadline met” to QoS expressions

• Who enforces predictability?
– RTOS in single CPU, Bus protocol in dist. system

– Admission controllers, Packet schedulers, Buffer managers 
in soft real-time networked systems

• Relation between dependability and predictability
– Faults models

– Availability and some threats against it

• Host crashes, Software process crashes, transients

– Eliminating faults at design stage
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The industry perspective
Ericsson speaker (Blas) talked about:

• Fast vs. Critical, Key Performance Indicators 

– Availability & accessibility

– Degrees of reliability

• Moving from dedicated HW to COTS and 
virtualisation

• Replication of microservices (losing capacity but not 
capability)

• Uniform HW for simplicity (=no diversity!)
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The industry perspective
• Move from special purpose hardware to COTS

– Makes benchmarking software from different 
vendors possible

– Hard to make availability claims due to third party 
software on the same node

• Different performance indicators

• Core isolation for predictability
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Real-time operating systems
An overview



This lecture: Real-time OS
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Hardware support

System software support 

(kernels, communication protocols)

Programming environment support

Application modelling support



The role of OS
Depends on who you ask:

• The bare machine people

• The buy-kernel-and-complete people

• The sector-dependent OS people

• The language-dependent OS people

• The off-the-shelf OS people

• The reconfigurable OS people

• The middleware people
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If you’re serious 
about doing real-time
why do you want an 
operating system?

OSEK

Ada

POSIX-

compatible
ThreadX

uClinux
FPGA



Variations remain
• The 20-year perspective:

https://www.embedded.com/how-embedded-software-
development-has-evolved-over-20-years/

Shows a clear trend from commercial OS to open source
OS (see Figure 5)
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Sector interoperability
• Keeping competitive advantage but sharing interfaces 

(Application APIs)

– AUTOSAR: 20 years in 2023
https://www.autosar.org/standards/classic-platform

• Did you look at the Toyoto Oklahoma court ruling 
from 2013?

– Mentioned OSEK standard and Misra-C
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Linux alternatives
• Co-kernel approach

– e.g. Xenomai.org

• Running PREEMPT-RT Linux (patch) extensions 
enabled for support of real-time services

• See the overview (figure 1) in section 2, Reghenzani
et al. 2019

https://doi.org/10.1145/3297714
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Game changer?
November 2023

• Microsoft makes its RTOS ThreadX open source 
through eclipse foundation

• https://www.embedded.com/what-open-source-
azure-rtos-means-to-developers/
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Let’s start with basics



Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management
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From Nanokernels 
to Kernels



Task management
May be:
• Time-driven

– At each tick of a clock the kernel checks if some 
tasks need to be queued, a task should start to run, 
or a task should stop running

• Event-driven
– When an I/O operation is completed, or a task 

signals completion, the kernel checks ...
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Task attributes
• On creation of threads RT kernels allow specification 

of attributes such as 

– Start time

– Deadline

– Priority

– ...

• Used for releasing, aborting, and scheduling
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Event-based task switching
Upon arrival of an event:

• Determine whether the current running task should 
continue (based on scheduling policy)

• If not, determine the next task to be run

• Save the environment of the preempted task

• Prepare the selected task to be run

... in deterministic time!
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• Search, insert and delete tasks in ready queue

• Restore the state of the highest priority task

Recall our assumption of zero overhead!

Basic operations
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Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

22Autumn 2024



Task communication
• Shared memory and semaphores

– Priority inversion
– Deadlocks

• Message passing 
– Can above problems still arise?

• Deterministic time:
– Locking and unlocking latency
– Message passing delays
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Yes! QNX Nuetrino

 uses inheritence 

 to avoid it!

Can be made size-independent!



Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management

24Autumn 2024



Time services
• Even event-driven OS need time 

services to construct timers and 
detect overruns

• OS may allow defining one or more 
high resolution clocks with 
get_value, set_value, get_resolution
operations

• Timers can be defined to signal an 
event towards application processes 
after a particular period

• Real-time POSIX allows queued 
signals according to priority
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Hardware support

System software support 

(kernels, communication protocols)

Programming environment support

Application modelling support



Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management
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Interrupt services
When an interrupt event is generated:

• State of the current running task is saved

• Interrupt handler – Interrupt Service Routine (ISR) 
– is executed 

• Next task to be run (application task or the 
scheduler) is invoked
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Deterministic interrupts
• RTOS vendor has to provide data on the timing 

determinism for the given steps

• Interrupt service routines (ISR) have to be short 

• But also predictable!

• If several interrupts are to be serviced, the relative 
(fixed) priority determines the order
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Main functions of an OS

• Task management

• Inter-task communication and synchronisation

• Timer services

• Interrupt services

• Memory management (DMA)

• Device I/O management
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Memory allocation
Different views:
• Real-time programmer should have absolute control 

over resources used by the program 
– Dynamic memory allocation (malloc, free) not 

supported by RTOS

• Dynamic memory allocation takes non-deterministic 
time due to fragmentation and should be replaced by 
other mechanisms
– Pools instead of heap
– Control over garbage collection (GC) is an ingredient in 

real-time Java
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Can GC be deferred?
• Swedish company Cinnober specialises Java 

programs to reduce non-deterministic access time 
when performing stock market transactions

• Uses replicated servers 

• ”In most cases garbage collection will not take place 
in both servers at the same time.”
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Computer Sweden 5 Dec 2013
https://www.idg.se/2.2683/1.536623/svenskar-bakom-java-genombrott



File system
• Traditional file systems not suitable for real-time OS!

• Those that support filing services also provide a 
mechanism for efficient locking of task data into 
main memory storage 

• Avoiding unpredictable memory swaps!
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Device controllers
• Initialise device interrupt information and 

disable/enable a device interrupt

• Upon generation of a hardware interrupt identify 
which device is involved

• Managing interrupt-driven I/O can be difficult unless 
the number of generated interrupts can be bounded
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In addition to OS function and 
timing…



Other constraints
• So far, we only looked at timing constraints

• A general requirement for RTOS is low overhead, 
also from a memory footprint point of view

• Smallest embedded systems profile of POSIX.13, 
PSE51 can be written in thousands of lines of code

• Compare to Windows XP: ~30GB!

• Linux first release 10000 loc (2012:15m, 2022: 35m!)
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Finally…
• Thank you for your attention!

• Hope you are better performance engineers and 
resource management experts after this course!
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http://www.ida.liu.se/~TDDD07/

Questions?
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