
Symbolic Execution

Ahmed Rezine

IDA, Linköpings Universitet

Hösttermin 2022



Outline

Overview

Model checking

Symbolic execution

Theories and SMTLIB



Outline

Overview

Model checking

Symbolic execution

Theories and SMTLIB



Program verification and Approximations

We often want to answer whether a program is safe or not (i.e.,
has some erroneous reachable configurations or not):

Safe Program Unsafe Program



The general verification problem is “very difficult”
I Deciding whether all possible executions of the program are

error-free is so hard that if we could write a program that
could always do it for arbitrary
computer-programs-to-be-analyzed then we would always be
able to answer whether a Turing machine halts.

I This problem is proven to be undecidable, i.e., there is no
algorithm that is guaranteed to terminate and to give an exact
answer to the problem.



Problem is “very difficult”: what to do?

I Identify sub-problems on which one can decide: e.g. finite
state machines, push-down automata, timed automata, Petri
nets, well-structured transition systems.

I Proceed with approximations that will hopefully give some
guarantees.



Verification problem and approximations

I An analysis procedure takes as input a program to be checked
against a property. The procedure is an analysis algorithm if it
is guaranteed to terminate.

I An analysis algorithm is sound in the case where each time it
reports the program is safe wrt. some errors, then the original
program is indeed safe wrt. those errors (pessimistic analysis)

I An algorithm is complete in the case where each time it is
given a program that is safe wrt. some errors, then it does
report it to be safe wrt. those errors (optimistic analysis)

I In general, you have to give up on one of the three:
termination, soundness or completeness.



Verification problem and approximations

I The idea is then to come up with efficient approximations to
give correct answers in as many cases as possible.

Over-approximation Under-approximation



Program verification and the price of approximations

I A sound analysis cannot give false negatives
I A complete analysis cannot give false positives

False Positive False Negative



In this lecture

We will briefly introduce an under-approximation based verification
method:
I Symbolic execution: partial, aims for completeness

More verification techniques (e.g., model checking, axiomatic
reasoning, abstract interpretation): Software Verification
(TDDE34)

https://www.ida.liu.se/~TDDE34/info/index.en.shtml
https://www.ida.liu.se/~TDDE34/info/index.en.shtml


Outline

Overview

Model checking

Symbolic execution

Theories and SMTLIB



The UPPAAL model checker



Outline

Overview

Model checking

Symbolic execution

Theories and SMTLIB



Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2022) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables



Symbolic Testing

I Main idea by JC. King in “Symbolic Execution and Program
Testing” in the 70s

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (Σ)
I PC collects constraints on variables’ values along a path,
I Σ associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path



Introduction

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')



Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.



Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?



Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)



Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)



Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)
I Equality over Uninterpreted functions (EUF)
I Arrays (A)



Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(P; x2; x3); x2) = x3

I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?



Introduction

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theory

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...



Introduction: from SAT to SMT

I Eager approach with “bit-blasting” (UCLID):
I Encode SMT formula in propositional logic
I Use off-the-shelf SAT solver
I Still dominant for bit-vector arithmetic

I Lazy-approach (CVC4, MathSat, Yices, Z3, ...)
I Combine SAT (CDCL) and theory solvers
I Sat-solver enumerates models for the boolean part
I Theory solvers check satisfiability in the theory



Outline

Overview

Model checking

Symbolic execution

Theories and SMTLIB



SMT competition and SMTLIB

I Drive development, since 2005
I 15th instance at https://smt-comp.github.io/2020
I Papers at SAT, CADE, CAV, FMCAD, TACAS, ...
I SMTLIB key initiative to promote common input and output

for SMT solvers, benchmarks, tutorials, ...
I at http://smtlib.cs.uiowa.edu/

https://smt-comp.github.io/2020
http://smtlib.cs.uiowa.edu/


Equality with uninterpreted Functions (EUF)

I Consider a � (f (b) + f (c)) = d ^ b � (f (a) + f (c)) 6= d ^ a = b
I Formula is unsat, could be abstracted with
I h(a; g(f (b); f (c))) = d ^ h(b; g(f (b); f (c))) 6= d ^ a = b
I EUF used to abstracted non-supported theories such as

non-linear multiplication or ALUs in circuits.



Arithmetic

Several restricted fragments, whether real or integer variables:
I Bounds x � k with �2 f<;�;=;�; >g

I Difference logic x � y � k with �2 f<;�;=;�; >g

I UTVPI �x � y � k with �2 f<;�;=;�; >g

I Linear Arithmetic x + 2y � 3z � 2
I Non-linear arithmetic xy � 4xy2 + 2z � 2



Arrays

I Special functions read and write
I Axioms:

I 8a8i8v(read(write(a; i ; v); i) = v)
I 8a8i8j8v(i 6= j ) read(write(a; i ; v); j)) = read(a; j))

I Used for software (arrays) and hardware (memories)
verification



Bit vectors

I Operations on vectors of bits
I String like: concatenation, extraction, ...
I Logical: bit-wise or, not, and...
I Arithmetic: add, substract, multiply, ...

I a[0 : 1] 6= b[0 : 1] ^ (ajb) = c ^ c[0] = 0 ^ a[1] + b[1] = 0



Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.

1 foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else {

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1 x 7! x0; y 7! y0; z 7! z0
PC3 = PC2 ^ x1 = y0 � z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC4 = PC3 ^ x1 = z0 x 7! (y0 � z0); y 7! y0; z 7! z0
PC5 = PC4 ^ z1 = z0 � 3 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)
PC6 = PC5 ^ 4 � z1 < x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC10 = PC6 ^ 25 � x1 + y0 x 7! (y0 � z0); y 7! y0; z 7! (z0 � 3)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ 25 � x1 + y0)

Check satisfiability with a solver (e.g., z3, cvc, yices,
boolector,stp,...)

https://github.com/Z3Prover/z3
https://cvc5.github.io/
https://yices.csl.sri.com/
https://github.com/Boolector/boolector
https://github.com/stp/stp


Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic and are often dynamic: Sage, Klee (open source),
Pex:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries

https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf
https://klee.github.io/
https://www.microsoft.com/en-us/research/publication/pex-white-box-test-generation-for-net/


Symbolic execution today

I C (actullay llvm) http://klee.github.io/
I Java (more than a symbolic executer)

http://babelfish.arc.nasa.gov/trac/jpf
I C# (actually .net)

http://research.microsoft.com/en-us/projects/pex/
I ...

http://klee.github.io/
http://babelfish.arc.nasa.gov/trac/jpf
http://research.microsoft.com/en-us/projects/pex/

	Overview
	Model checking
	Symbolic execution
	Theories and SMTLIB

