
TDDD04: Test plans and
software defect taxonomies

Lena Buffoni lena.buffoni@liu.se

mailto:lena.buffoni@liu.se

Lecture plan

3

• Test planning (ISO/IEC/IEEE 29119)
• Scripted vs Exploratory testing
• Defect and risk taxonomies (ISO/IEC/IEEE 1044)
• Test Driven Development

Scripted testing

4

Testing performed based on a documented test script
created from requirements, design and code
• Allow division of labor
• Tests can be easily understood and repeated
• Easier to automate tests
• Coverage can be easily defined and measured

Overall/level test plan

5

• Overall test plan: Global goals for the project

• Level test plan: goals at a specific testing level (unit,
module, …)

6

Organizational Test
Process

Test Planning
Process

Test monitoring
and Control

Process

Test Completion
Process

Test Design &
Implementation

Process

Test
Environment

Set-up &
Maintenance

Process

Test Execution
Process

Test Incident
Reporting

Process

Test Management Processes

Dynamic Test Processes

ISO/IEC/IEEE, “ISO/IEC/IEEE international standard for software and systems
engineering – software testing part 2: Test processes,” ISO/IEC/IEEE 29119-2:2013(E),
pp. 1–68, Sept 2013.

Understand
Context

Organize Test
Plan

Development
Identify &

Analyze Risks
Identify Risk
Mitigation

Approaches
Design Test

Strategy
Determine
Staffing &
Scheduling

Record Test
Plan

Gain
Consensus
on Test Plan

Communicate
Test Plan And
Make Available

Scope

Test Plan Development
Schedule

Analysed Risks

Mitigation
Approaches

Test
Strategy

Schedule,
Staffing
Profile Draft Test

Plan

Approved
Test Plan

Test Planning Process

8

Organizational Test
Process

Test Planning
Process

Test monitoring
and Control

Process

Test Completion
Process

Test Design &
Implementation

Process

Test
Environment

Set-up &
Maintenance

Process

Test Execution
Process

Test Incident
Reporting

Process

Test Management Processes

Dynamic Test Processes

ISO/IEC/IEEE, “ISO/IEC/IEEE international standard for software and systems
engineering – software testing part 2: Test processes,” ISO/IEC/IEEE 29119-2:2013(E),
pp. 1–68, Sept 2013.

Identify
feature sets

Derive Test
Conditions

Derive Test
Coverage

Items

Derive Test
Cases

Assemble
Test Sets

Derive Test
Procedures

Test Design
Specification

Test Case
Specification

Test
Procedure

Specification

Test Design & Implementation Process

Feature Sets

Test Conditions

Test Coverage Items

Test Cases

Test Sets Test
Procedure
s & Test
Scripts

1

2

3

4

5

6

Example

10

“The system shall accept insurance applicants over the
age of 18 and under the age of 80 years on the day of
application based on their input age in whole years; all
others shall be rejected.
Accepted applicants of 70 and over shall receive a
warning that in the event of a claim they shall pay an
excess of $1000.”

Derive test conditions

11

• Completion criterion?
– “The Test Completion Criterion is that 100 %

normal case coverage is achieved and all test cases
must result in a "pass" status on execution.”

• Valid input?
Invalid input?

What if we note the following: 40 <= Age <= 55
results in a discount message (unspecified in
the description). How do we handle that?

Derive test coverage items

12

• Use-cases to cover

Derive test cases

13

• Select representatives from each class to achieve
100% use-case coverage

Assemble test sets

14

• What can be automated?
What must be manually tested?

Derive test procedures

15

• Ordering of test cases based on
exposure/dependencies

• Traceability

Limitations

16

• Very dependent on the quality of system
requirements

• Inflexible, if some unusual behavior is detected, it
will not be pursued

• Focus can shift to documentation

Exploratory testing

17

IEEE definition : “a type of unscripted experience-
based testing in which the tester spontaneously designs
and executes tests based on the tester's existing
relevant knowledge, prior exploration of the test item
(including the results of previous tests), and heuristic
"rules of thumb" regarding common software
behaviors and types of failure”

Example

18

- Create a mental model
- Define one or more tests to disprove the model
- Execute the tests and observe the outcome
- Evaluate the outcome against the model
- Repeat

Definitions

19

Schedule: an uninterrupted block of time devoted to
testing (1-2 hours)

Charter: a guide defined before the testing session
covering

- what to test
- available documentation
- test tactics
- risks involved

Useful when

20

- the next test case cannot be determined in advance
and needs to be chosen based on previous experience

- it is necessary to provide rapid feedback on a
products quality

- a defect is detected, to explore the scope and
variations of the defect

Exploratory testing =/= random testing!

Limitations

21

- Does not prevent defects
- Incompatible with agile development
- Does not detect omission errors
- Can focus excessively on a particular area
- Hard to know when to stop testing

Fault classification

Software defect taxonomies: what kind is it?
• Useful to guide test planning (e.g. have we covered all kinds of

faults)
• Beizer (1984): Four-level classification
• Kaner et al. (1999): 400 different classifications
Severity classification: how bad is it?
• Important to define what each level means
• Severity does not equal priority
• Beizer (1984): mild, moderate, annoying, disturbing, serious,

very serious, extreme, intolerable, catastrophic, infectious.
• ITIL (one possibility): severity 1, severity 2

22

Failure classification: Reminder

Error
(Mistake)

Fault
(defect,

bug)
Failure

Incident
(symptom)

Test

Test
case

exercises

may induce

may be
observed as

may lead to

may cause

23

Defect classification

Fault vs defect in ISO/IEC/IEEE 1044

24

• A fault is an executed defect
• A defect can be found before it is executed

(eg: by inspection)

Multiple failures can be caused by the same defect!

Taxonomies

25

A taxonomy is a classification of things into ordered
groups or categories that indicate natural hierarchical
relationships.
- Guide the test case design
- Understand the defects better
- Help determine coverage that test-cases are

providing
- Can be created at different levels

26

Software level taxonomy: IEEE Standard
Classification for Software Anomalies

27Defect attributes
Attribute Definition

Defect ID Unique identifier for the defect.

Description Description of what is missing, wrong, or unnecessary.

Status Current state within defect report life cycle.

Asset The software asset (product, component, module, etc.) containing the defect.

Artifact The specific software work product containing the defect.

Version detected Identification of the software version in which the defect was detected.

Version corrected Identification of the software version in which the defect was corrected.

Priority Ranking for processing assigned by the organization responsible for the evaluation, resolution,
and closure of the defect relative to other reported defects.

Severity The highest failure impact that the defect could (or did) cause, as determined by (from the
perspective of) the organization responsible for software engineering.

Probability Probability of recurring failure caused by this defect.

Effect The class of requirement that is impacted by a failure caused by a defect.

28Defect attributes - continued
Attribute Definition

Type A categorization based on the class of code within which the defect is found or the work product
within which the defect is found.

Mode A categorization based on whether the defect is due to incorrect implementation or
representation, the addition of something that is not needed, or an omission.

Insertion activity The activity during which the defect was injected/inserted (i.e., during which the artifact
containing the defect originated).

Detection activity The activity during which the defect was detected (i.e., inspection or testing).

Failure reference(s) Identifier of the failure(s) caused by the defect.

Change reference Identifier of the corrective change request initiated to correct the defect.

Disposition Final disposition of defect report upon closure.

Effect: Examples 29

Effect Functionality Actual or potential cause of failure to correctly perform a required function (or
implementation of a function that is not required), including any defect affecting data
integrity.

Effect Usability Actual or potential cause of failure to meet usability (ease of use) requirements.

Effect Security Actual or potential cause of failure to meet security requirements, such as those for
authentication, authorization, privacy/confidentiality, accountability (e.g., audit trail or
event logging), and so on.

Effect Performance Actual or potential cause of failure to meet performance requirements (e.g., capacity,
computational accuracy, response time, throughput, or availability).

Effect Serviceability Actual or potential cause of failure to meet requirements for reliability, maintainability,
or supportability (e.g., complex design, undocumented code, ambiguous or incomplete
error logging, etc.).

Effect Other Would/does not cause any of the above effects.

Type: Examples 30

Type Data Defect in data definition, initialization, mapping, access, or use, as found in a model,
specification, or implementation.
Examples: Variable not assigned initial value or flag not set Incorrect data type or column
size Incorrect variable name used Valid range undefined Incorrect relationship cardinality
in data model Missing or incorrect value in pick list

Type Interface Definition Defect in specification or implementation of an interface (e.g., between user
and machine, between two internal software modules, between software module and
database, between internal and external software components, between software and
hardware, etc.).
Examples: Incorrect module interface design or implementation Incorrect report layout
(design or implementation) Incorrect or insufficient parameters passed Cryptic or
unfamiliar label or message in user interface Incomplete or incorrect message sent or
displayed Missing required field on data entry screen

Type Logic Defect in decision logic, branching, sequencing, or computational algorithm, as found in
natural language specifications or in implementation language.
Examples: Missing else clause Incorrect sequencing of operations Incorrect operator or
operand in expression Missing logic to test for or respond to an error condition (e.g.,
return code, end of file, null value, etc.) Input value not compared with valid range
Missing system response in sequence diagram

31Failure classification

Failure ID Unique identifier for the failure.

Status Current state within failure report life cycle.

Title Brief description of the failure for summary reporting purposes.

Description Full description of the anomalous behavior and the conditions under which it occurred,
including the sequence of events and/or user actions that preceded the failure.

Environment Identification of the operating environment in which the failure was observed.

Configuration Configuration details including relevant product and version identifiers.

Severity As determined by (from the perspective of) the organization responsible for software
engineering.

Analysis Final results of causal analysis on conclusion of failure investigation.

Disposition Final disposition of the failure report.

32Failure classification - continued

Observed by Person who observed the failure (and from whom additional detail can be obtained).

Opened by Person who opened (submitted) the failure report.

Assigned to Person or organization assigned to investigate the cause of the failure.

Closed by Person who closed the failure report.

Date observed Date/time the failure was observed.

Date opened Date/time the failure report is opened (submitted).

Date closed Date/time the failure report is closed and the final disposition is assigned.

Test reference Identification of the specific test being conducted (if any) when the failure occurred.

Incident
reference

Identification of the associated incident if the failure report was precipitated by a service
desk or help desk call/contact.

Defect reference Identification of the defect asserted to be the cause of the failure.

Failure reference Identification of a related failure report.

Problem 1

33

Sue calls service desk and reports she cannot log in to
timesheet system because the password field is missing
from the login screen.
In this example, Sue has a problem in that she cannot
log in, caused by a failure wherein the password field
did not appear on the login screen, which was in turn
caused by a defect inserted during coding of the
Login.asp artifact.

34
Entity Attribute Problem 1
Failure Failure ID F080001

Failure Status Open
Failure Title Failure: missing password field
Failure Description The password field is missing from the login screen
Failure Environment Chicago-websrvr23
Failure Configuration TimeSheet v6.4
Failure Severity Critical
Failure Analysis Code error
Failure Disposition
Failure Observed by Sue
Failure Opened by Williams
Failure Assigned to
Failure Closed by
Failure Date observed April 1, 2008
Failure Date opened April 1, 2008
Failure Date closed
Failure Test reference N/A
Failure Incident reference S080002
Failure Defect reference D080234
Defect Defect ID D080234
Defect Description Password field not correctly implemented in code

35

Entity Attribute Problem 1
Defect Status Open
Defect Asset TS-srvr
Defect Artifact Login.asp
Defect Version detected V6.4
Defect Version corrected
Defect Priority
Defect Severity Critical
Defect Probability High
Defect Effect Functionality
Defect Type Interface
Defect Mode Missing
Defect Insertion activity Coding
Defect Detection activity Production
Defect Failure reference F080001
Defect Change reference C080049
Defect Disposition

Problem 2

36

Joe calls service desk and reports he cannot log in to
timesheet system because the password field is missing
from the login screen.
This example is similar to Problem 1 and serves to
illustrate that two distinct failures (events) can be
caused by a single defect (condition).

37

Entity Attribute

ID

Title

Desctiption

Severity

Defect ID

Defect description

Probability

Effect

Type

Mode

Problem 3

39

During customer qualification testing, Sam observed
that the color of the font does not match the
requirements document section 4.2.1.3.
This example illustrates the difference between the
failure (appearance of incorrect color on screen) and
the defect that caused it (incorrect data value assigned
to a constant in the code).

41

Entity Attribute

ID

Title

Desctiption

Severity

Defect ID

Defect description

Probability

Effect

Type

Mode

Problem 4

42

During a peer review for software requirements for a
new financial management system, Alice discovers that
values are in the requirements as thousands of dollars
instead of as millions of dollars.
This example illustrates classification of a defect
detected directly, prior to any failure occurring.

43

Entity Attribute

ID

Title

Desctiption

Severity

Defect ID

Defect description

Probability

Effect

Type

Mode

Problem 5

45

Company A's battery ran out of power because there
was no low-power warning. The design of a security
system monitoring system did not include a warning for
low battery power, despite the fact that this feature was
specified in the requirements.
In this example, the defect was not detected until a
failure occurred in a production environment.

46

Entity Attribute

ID

Title

Desctiption

Severity

Defect ID

Defect description

Probability

Effect

Type

Mode

49

Project level taxonomy: SEI Risk Identification
Taxonomy

SEI Risk Identification Taxonomy

50

• Developed as a checklist to ensure all potential risks
are covered

3 Main categories:
– Product engineering
– Development environment
– Program constraints

51

Class Element Attribute

Product
Engineering

Requirements

Stability

Completeness

Clarity

Validity

Feasibility

Precedent

Scale

Design
Functionality

Difficulty

Test-driven development
52

• Guided by a sequence of user stories from the
customer/user

• Needs test framework support (eg: Junit)

Write
Test

Pass
TestRefactor

NextDate: 53

User Stories

Program NextDate
End NextDate

1: the program
compiles

TEST

2: a day can be
input and
displayed

2: a month can
be input and
displayed

Input Expected
Output

Source Code OK

15 Day = 15

15, 11 Day = 15
Month = 11

Code

Program NextDate
input int thisDay;
print (“day =“ + thisDay);

End NextDate

Program NextDate
input int thisDay;
input int thisMonth;
print (“day =“ + thisDay);
print (“month =“ + thisMonth) ;

End NextDate

Pros and cons

54

+ working code
+ regression testing
+ easy fault isolation
+ test documented code

- code needs to be refactored
- can fail to detect deeper faults

Evaluating a test suite

55

• Number of tests?
• Number of passed tests?
• Cost/effort spent?
• Number of defects found?

Defect Detection Percentage = defects found by testing / total known defects

Thank you!
Questions?

