
TDDD04: Software Testing
Course outline and
Introduction

Lena Buffoni lena.buffoni@liu.se

mailto:lena.buffoni@liu.se

Teaching Team

Course leader :
Lena Buffoni

Course assistants (3 lab groups):
John Tinnerholm (Group 1)
Kamran Hosseini (Group 2)
Mohsen Asgari (Group 3)

3

Course contents
• Introduction to testing and the testing process
• Test planning
• Mutation testing
• Black-box/white box testing
• Unit testing
• Integration testing
• System testing, model-based testing
• Symbolic execution
• Agile testing

4

Course history

– Taken over in 2017 from Ola Leifler
– Guest participations from Liu, Spotify, Ericsson,

Saab
– Labs revised to focus more on practical skills and

recent technologies in 2016, 2018 and 2022*
– No exam, grade set based on labs since 2019
– This year labs split in mandatory/optional parts*

5

*Based on feedback from previous years

2023 – tools and workflow

6

• No written examination – continuous grade setting
• 4 guest lectures this year (from LiU, Spotify, Ericsson)
• 1 guest lecture via Zoom (link will be on lisam), rest in

person
• Teams channel for questions, troubleshooting and

finding lab partners
• Gitlab repositories for code
• Lisam for report submissions

6 lab topics

7

• Exploratory testing
• Black box testing
• Mutation testing
• Symbolic Execution
• Model Based testing
• Test planning

Labs - practical
• Done in pairs - register in WebReg
• Code should be uploaded to Gitlab
• Reports should be uploaded to Lisam
• Last lab session will be used for demonstrations

Be prepared to demonstrate all labs
• Installing tools and reading up on them is part of the

labwork
• Use your lab groups and Teams as support but work and

grades are in pairs
• You will receive feedback on whether labs need

completion withing 3 weeks of submission

8

https://www.ida.liu.se/webreg-beta/TDDD04-2023-1/Labs
https://liuonline.sharepoint.com/sites/Lisam_TDDD04_2023HT_N4/SitePages/Home.aspx

Grading

9

• Each lab has 2 parts:
– Mandatory needs to be completed for grade 3
– An option part can be completed for grade 4 or 5

• Hand in labs on time – late labs get grade 3 max
• All labs need to get at least 3 to pass the course

https://www.ida.liu.se/~TDDD04/timetable/index.en.shtml

Recommended Literature
A Practitioner’s Guide to Software Test Design
Lee Copeland
Main course literature
Focus on software test design
Available online as an electronic book via the university
library
• Complementary:
Software Testing, A Craftsman’s Approach
Paul C. Jorgensen (available online)
The Art of Software testing by Glenford J. Myers
Introduction to Software Testing by Paul Amman and
Jeff Offutt (available online)
• Additional research papers (see course web)

11

How to achieve the best results?

• Participate in the lectures
• Read the recommended literature
• Read the instructions carefully
• Come prepared to the labs
• Put in the work
• Agree on a target grade
• Hand in assignments on time
• Don’t hesitate to ask for help

12

Introduction
Why do we test software?

What is the most important skill
of a software tester?

communication

14

Discussion time:

What is software testing?

15

What is software testing?

IEEE defines software testing as
• A process of analyzing a software item to detect the
differences between existing and required conditions (that is
defects/errors/bugs) and to evaluate the features of the
software item.
Note that...
...one needs to know the required conditions
...one needs to be able to observe the existing conditions

Testing focuses on behavioral (what the program does) and
structural (how the program is) aspects

16

Program behavior

S O

Specification
(expected
behavior)

Program
(observed
behavior)

Correct portion

Faults of
omission

Faults of
comission

17

Program behavior and testing

V

S O

Specification
(expected
behavior)

Program
(observed
behavior)

Test Cased
(verified)

18

Functional vs structural testing

V
S O V

S O

Functional test cases Structural test cases

19

Discussion time:

Why do we test software?
What do we want to accomplish?

20

What is the goal when testing?
Some common answers:
• Do we want to isolate and fix bugs in the program?
• Do we want to demonstrate that the program works?
• Do we want to demonstrate that the program

doesn’t work?
• Do we want to reduce the risk involved in using the

program?
• Do we want to have a methodology for producing

better quality software?

These goals correspond to 5 levels of “test process
maturity” as defined by Beizer

21

Testers language

Error
(Mistake)

Fault
(defect,

bug)
Failure

Incident
(symptom)

Test

Test
case

exercises

may induce

may be
observed as

may lead to

may cause

23

Definitions (IEEE)

• Error: people make errors. A good synonym is mistake. When
people make mistakes while coding, we call these mistakes bugs.
Errors tend to propagate; a requirements error may be magnified
during design and amplified still more during coding.

• Fault: a fault is the result of an error. It is more precise to say that
a fault is the representation of an error, where representation is the
mode of expression, such as narrative text, data flow diagrams,
hierarchy charts, source code, and so on. Faults can be elusive.
When a designer makes an error of omission, the resulting fault is
that something is missing that should be present in the
representation. We might speak of faults of commission and faults
of omission. A fault of commission occurs when we enter
something into a representation that is incorrect. Faults of
omission occur when we fail to enter correct information. Of these
two types, faults of omission are more difficult to detect and
resolve.

24

Fault classification

Software defect taxonomies: what kind is it?
• Useful to guide test planning (e.g. have we covered all kinds of

faults)
• Beizer (1984): Four-level classification
• Kaner et al. (1999): 400 different classifications
Severity classification: how bad is it?
• Important to define what each level means
• Severity does not equal priority
• Beizer (1984): mild, moderate, annoying, disturbing, serious,

very serious, extreme, intolerable, catastrophic, infectious.
• ITIL (one possibility): severity 1, severity 2

25

Definitions (IEEE)

• Failure: a failure occurs when a fault executes. Two
subtleties arise here: one is that failures only occur in an
executable representation, which is usually taken to be
source code, or more precisely, loaded object; the second
subtlety is that this definition relates failures only to faults
of commission. How can we deal with failures that
correspond to faults of omission?

• Incident: when a failure occurs, it may or may not be
readily apparent to the user (or customer or tester). An
incident is the symptom associated with a failure that
alerts the user to the occurrence of a failure.

26

Definitions (IEEE)

• Test: testing is obviously concerned with errors,
faults, failures, and incidents. A test is the act of
exercising software with test cases. A test has two
distinct goals: to find failures or to demonstrate
correct execution.

• Test Case: test case has an identity and is associated
with a program behavior. A test case also has a set of
inputs and a list of expected outputs.

27

Cost of testing late

�� �$������!�(�$%�&+��$�%%

�	���������������-��!&$"�'�&�"!�&"��"�&)�$����%&�!�
��'��� �!!�����������'&&�

*��$#&
�"$���!�"$ �&�"!

)))��� �$�����"$�,��!�&��%�)���%�$(������ �$������!�(�$%�&+��$�%%

12 Foundations

Figure 1.1. Cost of late testing.

To put Beizer’s level 4 test maturity level in simple terms, the goal of testing is
to eliminate faults as early as possible. We can never be perfect, but every time we
eliminate a fault during unit testing (or sooner!), we save money. The rest of this
book will teach you how to do that.

EXERCISES
Chapter 1.

1. What are some factors that would help a development organization move
from Beizer’s testing level 2 (testing is to show errors) to testing level 4
(a mental discipline that increases quality)?

2. What is the difference between software fault and software failure?
3. What do we mean by “level 3 thinking is that the purpose of testing is to reduce

risk?” What risk? Can we reduce the risk to zero?
4. The following exercise is intended to encourage you to think of testing in a

more rigorous way than you may be used to. The exercise also hints at the
strong relationship between specification clarity, faults, and test cases1.

(a) Write a Java method with the signature
public static Vector union (Vector a, Vector b)
The method should return a Vector of objects that are in either of the two
argument Vectors.

(b) Upon reflection, you may discover a variety of defects and ambiguities
in the given assignment. In other words, ample opportunities for faults
exist. Describe as many possible faults as you can. (Note: Vector is a Java
Collection class. If you are using another language, interpret Vector as a list.)

(c) Create a set of test cases that you think would have a reasonable chance of
revealing the faults you identified above. Document a rationale for each
test in your test set. If possible, characterize all of your rationales in some
concise summary. Run your tests against your implementation.

1 Liskov’s Program Development in Java, especially chapters 9 and 10, is a great source for students who
wish to learn more about this.

50 times more
expensive to fix a
fault at this stage!

28

Ariane 5 – a spectacular failure
• 10 years and $7 billion to produce
• < 1 min to explode
• the error came from a piece of the software

that was not needed during the crash
• programmers thought that this particular

value would never become large enough to
cause trouble

• removed the test present in Ariane 4
software

• 1 bug = 1 crash

29

Software testing life-cycle

Requirement
Specification

Design

Coding

Testing

Fault
classification

Fault
isolation

Fault
resolution

Error

Error

Error

Incident

Fault

Fault

Fault

Error

Fault fixing can
introduce more errors!

30

Testing in the waterfall model

Requirement
Analysis

Preliminary
Design

System
Testing

Integration
Testing

Unit
Testing

Coding

Detailed
Design

Verification

31

How would you test a ballpoint pen?

• Does the pen write?
• Does it work upside down?
• Does it write in the correct color?
• Do the lines have the correct thickness?
• Does the click-mechanism work? Does it work after 100,000 clicks?
• Is it safe to chew on the pen?
• Is the logo on the pen according to company standards?
• Does the pen write in -40 degree temperature?
• Does the pen write underwater?
• Does the pen write after being run over by a car?
• Which are relevant? Which are not relevant? Why (not)?

32

To ponder...

• Discuss: Who should write tests? Developers? The
person who wrote the code? An independent tester?
The customer? The user? Someone else?

• Discuss: When should tests be written? Before the
code? After the code? Why?

• We will return to these issues!

33

Discussion time:

What should a test case contain?

34

Test case structure

• Identifier – persistent unique identifier of the test case
• Setup/environment/preconditions
• How to perform the test – including input data
• Expected output data – including how to evaluate it
• Purpose – what this test case is supposed to show
• Link to requirements/user story/use case/design/model
• Related test cases
• Author, date, revision history ...

35

Limitations of testing

int scale(int j) {
j = j - 1; // should be j = j + 1
j = j / 30000;
return j;}

An example proposed by Robert Binder
to show limitations of testing

Input (j) Expected Result Actual Result

1 0 0

42 0 0

40000 1 1

-64000 -2 -2

36

Limitations of testing

int scale(int j) {
j = j - 1; // should be j = j + 1
j = j / 30000;
return j;}

An example proposed by Robert Binder
to show limitations of testing

For a 16 bit encoding of integers, out of 65,530 testable values
only 6 will detect the bug:

-30001, -30000, -1, 0, 29999, and 30000.

37

Limitations of testing
• Testing cannot prove correctness
• Testing can demonstrate the presence of failures
• Testing cannot prove the absence of failures
• Discuss: What does it mean when testing does not detect

any failures? Discuss: Is correctness important? Why?
Why not? What is most important? Discuss: Would it be
possible to prove correctness? Any limitations?

• Testing doesn’t make software better
• Testing must be combined with fault resolution to

improve software Discuss: Why test at all then?

38

Next lecture
• Look through the IEEE document on test planning
• Start reading Lab 1 instructions and looking at the

exploratory testing charter

39

Thank you!
Questions?

