
Test Automation
Daniel Ståhl
daniel.stahl@ericsson.com
http://danielstahl.co/





Who am I?

DANIEL STÅHL

Development
Architecture
Continuous practices

ERICSSON

Software production
Software delivery
Strategic studies
Group strategy

RESEARCH

PhD
Writing
Software Center
LiU





What Is
Test Automation?

Things to Cover

How Do You Test?
Why Automate?

Poll #1

Poll #2

Poll #3

Result #1

Result #2

Result #3

The end!

What Do
Tests Tell Us?

Non-Deterministic
Testing

Choosing the
Item Under Test

Isolating the
Item Under Test

Choosing When
to Execute

Thinking in
Pipelines

Choosing What
to Execute

Making Test
Results Actionable

What Makes a
Bad Test Case?

Test Driven
Development

Testable Code

GUI Test
Automation



What is Test Automation?

AUTOMATIC EXECUTION 
OF TEST SOFTWARE

Testing is interacting to 
provide feedback – not 
just finding bugs! 
Automated testing is 
automated interaction.

Or...
Execution of software 
separate from the 
system being tested 
(Item Under Test, IUT), 
for the purposes of 
evaluating that Item 
Under Test.

SPECIFIC TOOLS, 
FRAMEWORKS AND 
ENVIRONMENT

Apart from the 
automated test cases, 
you need tools for...

... scheduling

... deployment

... execution

... simulation

... data collection

... data analysis

... presentation

...

OUTCOME 
COMPARISON

Typically the outcome is 
compared to some 
expected result.

Either the test case 
succeeds in matching 
this result, or it fails.

KPIs may also be 
measured. Particularly 
relevant for non-
functional requirements.



How Do You Test?

METHODOLOGY VARIES

The type of Item Under 
Test (IUT) matters!

... Is it a GUI?

... Is it an API?

... Is an embedded 
system?
... Is it a physical 
interface?
…

AT WHAT LEVEL AND 
MATURITY ARE YOU 
TESTING?

Are you testing the 
whole system, or a small 
piece of it?

Is the IUT an early 
prototype or a mature 
in-service system?

WHY ARE YOU TESTING?

What are you trying to 
achieve by testing the 
IUT?



Why Automate? 1 (3)

(HUMAN) TESTERS ARE 
EXPENSIVE

In software engineering, 
the main cost driver is 
(usually) the engineers’ 
time.

(HUMAN) TESTERS ARE 
INCONSISTENT

Even with rules and 
checklists, humans are 
notoriously inconsistent.

We get bored.

We like to improvise.

We need some creative 
freedom.

Whether that’s good or 
bad depends on context!

(HUMAN) TESTERS ARE 
SLOW

Executing algorithms is 
not what we do best.



Why Automate? 2 (3)

(HUMAN) TESTERS HAVE 
NEEDS

Training, vacation, lunch 
breaks, sense of 
purpose... All kinds of 
annoying stuff.

(HUMAN) TESTERS HAVE 
BETTER THINGS TO DO

Humans still excel at 
certain types of testing. 
Let humans do what 
humans do best.

CONFIDENCE

Having a wall of green 
lights tell you everything 
works after you push a 
change is really nice...

...but is it a false sense of 
security?

”It ain’t what you don’t 
know that gets you into 
trouble. It’s what you 
know for sure that just 
ain’t so.”
- Mark Twain



Why Automate? 3 (3)

RAPID FEEDBACK

Automated tests can 
provide immediate 
developer feedback.

In unfamiliar code, they 
serve as guardrails.

Automated tests can 
catch integration errors 
early.

In larger systems with 
interdependencies, you 
can author tests to 
protect ”your” parts.

CONTRACT 
SATISFACTION

Automated acceptance 
tests can help clarify and 
safeguard contractual 
agreements.

Automated acceptance 
tests allow customers 
and/or stakeholders to 
track progress in real 
time.

BECAUSE IT MAKES YOU 
LOOK GOOD

Automated tests 
produce lots of data.

Data can be turned into 
fancy graphs and tables.

Fancy graphs and tables 
help you look like you 
know what you’re doing.



What Do Tests Tell Us?

WHAT DOES A TEST 
CASE RESULT MEAN?

Does success mean the 
IUT is working?

Does failure mean it’s 
not working?

Automated test case 
execution is a great way 
of protecting against 
predictable failure 
modes.

NON-TEST CASE BASED 
APPROACHES

Automated fault 
injection.

Monitoring system 
parameters to detect 
anomalies or measuring 
quality characteristics.

Applying machine 
learning to predict 
failure modes, then 
monitoring the leading 
indicators.

...

TEST RESULTS AS 
DECISION BASIS

Test results (if useful) are 
always input to some 
decision (made by 
machine or human).

Be aware of what that 
decision is.

Consider whether the 
test results answer the 
questions you think they 
do.



Non-Deterministic Testing

DELIBERATE 
RANDOMNESS IN TESTS

Increases test coverage 
over time, but makes 
tests inconsistent.

Partial protection against 
sunshine thinking.

RANDOM FAULT 
INJECTION

A type of fault-tolerance 
testing.

Randomly destroy parts 
of the environment (e.g. 
terminating virtual 
machines).

Drives an anti-fragile 
mindset.

Can be done in the 
production environment, 
or not.

NON-RANDOM FAULT 
INJECTION

E.g. Lineage Driven Fault 
Injection.

Combine fault injection 
with automated 
reasoning to achieve 
greater test coverage.

Active research field.



Choosing the Item Under Test

WHERE DO YOU TEST 
THE SYSTEM?

Testing requires 
resources. Where we 
choose to execute 
influences the cost.

HIGH LEVELS OF SYSTEM 
COMPLETENESS

Testing the complete 
system is ”easy”...

... but slow...

... and expensive.

End
-to-
end

API

Subsystem

Unit
Component

LOW LEVELS OF SYSTEM 
COMPLETENESS

Testing at low levels of 
system completeness is 
fast and cheap...

... but requires you to 
think hard about what 
the result actually 
means...

... and what kind of 
feedback you’ll get out 
of it depends on the 
architecture.



Isolating the Item Under Test

IUT

Collaborator

Collaborator

Collaborator

Collaborator

TEST DOUBLES

Various techniques for 
replacing actual 
collaborators exist.

Nomenclature somewhat 
confused: fakes, stubs, 
spies, mocks...

Very helpful for slicing 
the system into testable 
parts, but...

... incurs overhead and 
maintenance costs.

LESS DUMB TEST 
DOUBLES

Opinions on what the 
difference is vary, if there 
is a difference, but...

Some test double 
techniques are more 
dynamic.

Some types of test 
doubles can inform on 
the IUT.

WHY ISOLATE IT?

Speed and efficiency!

To reduce uncertainties.

Isolating the IUT from its 
collaborators lets you 
study precisely how the 
IUT behaves...

... at the cost of not 
knowing how it behaves 
together with those 
collaborators.



Choosing When to Execute

WHEN DO WE NEED THE 
RESULT?

Sooner is always better!

Is the result critical to an 
informed release 
decision?

Is the result feedback for 
further product 
improvement?

WHO’S “WE”?

Test results are not only 
for developers. Everyone 
should be interested...

... project managers

... product owner

... QA responsibles

... release managers

... developers
… testers
… <insert role here>

WHAT ARE THE CRITICAL 
RESOURCES?

Lead time

Computing resources

Attention



Thinking in Pipelines



Choosing What to Execute

SELECTION CRITERIA

Selection may be done 
based on a number of 
criteria:

... Previous results

... Test outcome 
correlations
... What changes
... Why it changed
... Who changed it
... What hasn’t been 
executed in a long time
...

CHALLENGES

You need three things:

... Pipeline traceability

... Test case meta-data

... A configurable 
selection engine

None of these you’ll get 
for free!

FIXED VERSUS DYNAMIC 
TEST CASE SELECTION

Straight-forward 
approach: let the 
pipeline execute the 
same test scope again, 
and again, and again.

Less straight-forward 
approach: automatically 
(and hopefully 
intelligently) select the 
test cases that give you 
the best value-to-cost 
ratio right now.



What Makes a Bad Test Case?

TOO SLOW/EXPENSIVE 
TO RUN

Long-running tests may 
give you great feedback, 
but that’s no use if you 
receive it too late.

Testing always comes 
down to cost vs. benefit. 
If the test is too 
expensive it doesn’t 
matter how good it is.

FLAKINESS

Flakiness is when tests 
randomly fail or pass for 
the same configuration.

This leads to:
... poor confidence
... broken windows effect
... uncertainty

How do you react to 
flaky tests? Re-run 
them?

What if it’s not the test 
that’s flaky?

OTHER FACTORS

Does the test reveal 
anything truly relevant? 
(Or does it just improve 
your coverage metrics?)

Is the test repeatable? 
Non-repeatable tests 
have their place, though.

Can the test be executed 
independently? Watch 
out for hidden 
dependencies to other 
tests.



Making Test Results Actionable

AVOID INFORMATION 
OVERLOAD

If you have too many test 
results, you need to filter 
or boil them down into 
key metrics.

Which tests and test 
results are truly critical? 
Which need action now, 
and what is merely nice-
to-have feedback?

Be explicit about the 
value and purpose of 
your tests.

TRUST IS EVERYTHING

An organization will only 
act on results it trusts.

Flakiness is death.

FIND THE CORRECT 
AUDIENCE

Who need to see which 
test results?

The needs of developers 
in different parts of the 
system will differ...

... and their needs will 
differ from the project 
manager’s.



Testable Code

… WRITING TESTABLE 
CODE IS HARD!

Writing testable code 
requires you to keep 
complexity low and 
create seams where 
tests can be inserted.

WRITING TEST CASES IS 
EASY…

...at least if the IUT 
makes it easy!

(Although non-trivial test 
cases and test 
frameworks require 
thorough architecture 
and diligence, just like 
production code.)

TESTABLE CODE IS NOT 
JUST TESTABLE

Testable code is loosely 
coupled code.

Testable code is also 
reusable code. (That’s 
what testing is, reusing!)



GUI Test Automation

GUI TESTING 
PARADIGMS

User behavior capture 
and playback.

Event capture.

Image/text recognition.

WHAT ABOUT WHEN 
THE IUT ISN’T 
(EXPOSED) CODE?

Prominent example is 
GUI, but analogous to all 
human-machine 
interfaces and physical 
interfaces.

End
-to-
end

API

Subsystem

Unit
Component



Test Driven Development

TEST DRIVEN 
DEVELOPMENT IS NOT A 
TESTING PRACTICE

It’s a development 
practice.

It also happens to 
produce a lot of test 
cases, which you might 
want to use.

LET’S WRITE THE TESTS 
FIRST!

Force yourself to write 
testable code.

Requires practice and 
discipline.

CAN BE DONE AT 
DIFFERENT LEVELS

Recall the test pyramid. 
Test Driven Development 
can be applied at any 
level, but is most 
common at the lowest 
level.



Live Demo!

23Daniel Ståhl



The End!
24

FURTHER READING

!?



www.liu.se

Daniel Ståhl



What is your background?

m.voto.se/tddd04-ta-1



What is your background?

m.voto.se/poll/tddd04-ta-1



What to do about flakiness?

m.voto.se/tddd04-ta-2



What to do about flakiness?

m.voto.se/poll/tddd04-ta-2



Have you tried TDD?

m.voto.se/tddd04-ta-3



Have you tried TDD?

m.voto.se/poll/tddd04-ta-3


