
TDDD04: Integration and
System level testing

Lena Buffoni lena.buffoni@liu.se

mailto:lena.buffoni@liu.se

Lecture plan
• Integration testing
• System testing
– Test automation
– Model-based testing

Remember?
Testing in the waterfall model

Requirement
Analysis

Preliminary
Design

System
Testing

Integration
Testing

Unit
Testing

Coding

Detailed
Design

Verification

4

Why integration testing?

5

Individually correct units --> correct software?
– The Mars Polar Lander & Mars Climate Orbiter

Possible sources of problems:
– Incomplete or misinterpreted interface

specifications
– Deadlocks, livelocks…
– Cumulated imprecisions

Integration testing

6

• Decomposition-based integration
• Call Graph-based integration
• Path-based integration

NextDate : functional decomposition
7

Main

isLeap lastDayOf
Month getDate increment

Date printDate

validDate

NextDate : call graph
8

Main

isLeap
lastDayOf

Month

getDate increment
Date printDate

validDate

Decomposition-based integration

9

– Big bang
– Top down
– Bottom up
– Sandwich

NextDate : integration testing
10

Main

isLeap lastDayOf
Month getDate increment

Date printDate

validDate Bang

Three level functional decomposition tree

A

CB D

E F HG

Level 1

Level 2

Level 3

Big-Bang testing

Unit
test A

Unit
test B

Unit
test H

…

System-wide
test

Test sessions:
S1: A, B, C, D, E, F, G, H

Driver

A pretend module that requires a sub-system
and passes a test case to it

Black-box view

setup driver
SUT(x)
verification

SUT

driver

SUT

System
Under
Test

Bottom-up testing

E, F, B

D, G, H

A, B, E, F, C, D, G, H

Bottom-up testing

Test sessions:
S1: E, driver(B)
S2: F, driver(B)
S3: E, F, driver(B)
S4: G, driver(D)
S5: H, driver(D)

S6: G, H, driver(D)
S7: E, F, B, driver(A)
S8: C, driver(A)
S9: G, H, D, driver(A)
S10: E, F, B, C, G, H, D, driver(A)

General formula:
Number of drivers: (nodes-leaves)
Number of sessions: (nodes-leaves)+edges

Number of drivers: 3
Number of sessions: 10

Is bottom-up smart?
• If the basic functions are complicated, error-prone or has

development risks
• If bottom-up development strategy is used
• If there are strict performance or real-time requirements
Problems:
• Lower level functions are often off-the shelf or trivial
• Complicated User Interface testing is postponed
• End-user feed-back postponed
• Effort to write drivers.

Stub
• A program or a method that simulates the input-

output functionality of a missing sub-system by
answering to the decomposition sequence of the
calling sub-system and returning back simulated or
”canned” data.

SUT
Service(x)

Check x Stub
Return y;
end

SUT

Stub

Top-down testing

A, B, C, D
A, B, E, F, C, D, G, H

Top-down testing

Test sessions:
S1: A, stub(B), stub(C), stub(D)
S2: A, B, stub(C), stub(D)
S3: A, stub(B), C, stub(D)
S4: A, stub(B), stub(C), D
S5: A, B, stub(C), stub(D), stub(E), stub(F)

S6: A, B, stub(C), stub(D), E, stub(F)
S7: A, B, stub(C), stub(D), stub(E), F
S8: A, stub(B), stub(C), D, stub(G), stub(H)
S9: A, stub(B), stub(C), D, G, stub(H)
S10: A, stub(B), stub(C), D, stub(G), H

General formula:
Number of stubs: (nodes – 1)
Number of sessions: (nodes-leaves)+edges

Number of stubs: 7
Number of sessions: 10

Is top-down smart?
• Test cases are defined for functional requirements of the

system
• Defects in general design can be found early
• Works well with many incremental development methods
• No need for drivers
Problems:
• Technical details postponed, potential show-stoppers
• Many stubs are required
• Stubs with many conditions are hard to write

Sandwich testing

Target level

A, B, C, D

E, F, B

G, H, D

A, B, E, F, C, D, G, H

Sandwich testing

Test sessions:
S1: A, stub(B), stub(C), stub(D)
S2: A, B, stub(C), stub(D)
S3: A, stub(B), C, stub(D)
S4: A, stub(B), stub(C), D

S5: E, driver(B)
S6: F, driver(B)
S7: E, F, driver(B)
S8: G, driver(D)
S9: H, driver(D)
S10: G, H, driver(D)

Number of stubs: 3
Number of drivers: 2
Number of sessions: 10

23

Is sandwich testing smart?
• Top and Bottom Layer Tests can be done in

parallel
• Problems:
• Higher cost, different skillsets needed
• Stubs and drivers need to be written

Limitations

24

• Serves needs of project managers rather than
developers

• Presumes correct unit behavior AND correct
interfaces

Call Graph-based integration

25

• Use the call-graph instead of the decomposition tree
• The call graph is directed
• Two types of tests:
– Pair-wise integration testing
– Neighborhood integration testing

• Matches well with development and builds
• Tests behavior

NextDate : pairwise integration
26

Main

isLeap
lastDayOf

Month

getDate increment
Date printDate

validDate

7 test sessions

NextDate : neighborhood integration
27

Main

isLeaplastDayOf
Month

getDate increment
Date printDate

validDate

Immediate predecessors and immediate successors of a node

Number of sessions: nodes – sinknodes
(a sink node has no outgoing calls) 5 test sessions

Limitations

28

• Fault isolation problem for large neighborhoods
• Fault propagation across several neighborhoods
• Any node change means retesting
• Presumption of correct units

Path-based integration

29

• Testing on system level threads
• Behavior not structure based
• Compatible with system testing

Definitions

30

• A source node in a program is a statement
fragment at which program execution begins or
resumes.

• A sink node in a program is a statement fragment at
which program execution halts or terminates.

• A module execution path (MEP) is a sequence of
statements that begins with a source node and ends
with a sink node, with no intervening sink nodes.

• A message is a programming language
mechanism by which one unit transfers control
to another unit.

MM-paths

31

• A MM-Path is an interleaved sequence of module
execution paths (MEP) and messages.

• Given a set of units, their MM-Path graph is the
directed graph in which nodes are module
execution paths and edges correspond to
messages and returns from one unit to another.

Example: A calls B, B calls C

32

2

3 4

5

6

1

2

3

4

1

2 3

4

A B C

1

Identify sink and source nodes

33

2

3 4

5

6

1

2

3

4

1

2 3

4

A B C

1

Identify sink and source nodes

34

2

3 4

5

6

1

2

3

4

1

2 3

4

A B C

1source

sink

Calculate module execution paths(MEP)

35

• MEP(A,I)=<1,2,3,6>
• MEP(A,II)=<1,2,4>
• MEP(A,III)=<5,6>
• MEP(B,I)=<1,2>
• MEP(B,II)=<3,4>
• MEP(C,I)=<1,2,4,>
• MEP(C,II)=<1,3,4>

MEP path graph
36

MEP(A,2)

MEP(B,1)

MEP(C,1)

MEP(B,2)

MEP(A,3)

MEP(A,1)

MEP(C,2)

messages

return
messages

Why use MM-Paths?

37

• MM-Paths are a hybrid of functional and structural testing:
�

– functional in the sense that they represent actions with
inputs and outputs

– structural side comes from how they are identified,
particularly the MM-Path graph.

• Path-based integration works equally well for software
developed in the traditional waterfall process or with one of
the composition-based alternative life cycle models.

• The most important advantage of path-based integration
testing is that it is closely coupled with the actual system
behavior, instead of the structural motivations of
decomposition and call graph-based integration.

Complexity

38

How many MM-Paths are sufficient?
• The set of MM-Paths should cover all source-to-sink

paths in the set of units.

• Limitation: : more effort is needed to identify the
MM-Paths.

System level testing

39

40

Function
test

Performance
test

Acceptance
test

Installation
test

In
te

gr
at

ed
 m

od
ul

es

Fu
nc

tio
ni

ng
 sy

st
em

s

Ve
rif

ie
d

va
lid

at
ed

so
ftw

ar
e

System functional requirements Other software requirements

Ac
ce

pt
ed

sy
st

em System
In
Use!

Customer requirements spec. User environment

Test automation

41

Why automate tests?

Requirements

Test Cases

Test Plan

SUT

Test
results

Test
design

Test
execution

42

1. Identify

Intellectual activities
(performed once)

Clerical activities
(repeated many times)

2. Design

3. Build

4. Execute

5. Compare

Good to automate

Governs the quality of tests

Test outcome verification

43

• Predicting outcomes – not always efficient/possible
• Reference testing – running tests against a manually

verified initial run
• How much do you need to compare?
• Wrong expected outcome -> wrong conclusion from

test results

Sensitive vs robust tests

44

• Sensitive tests compare as much information as
possible – are affected easily by changes in software

• Robust tests – less affected by changes to software,
can miss more defects

Limitations of automated SW testing

45

• Does not replace manual testing
• Not all tests should be automated
• Does not improve effectiveness
• May limit software development

Can we automate test case design?

46

Automated test case generation

47

• Generation of test input data from a
domain model

• Generation of test cases based on an
environmental model

• Generation of test cases with oracles
from a behaviors model

• Generation of test scripts from abstract
test

Impossible
to predict
output
values

Model-based testing

48

Model-based testing

49

Generation of complete test cases from models of the SUT
• Usually considered a kind of black box testing
• Appropriate for functional testing (occasionally

robustness testing)
Models must precise and should be concise

– Precise enough to describe the aspects to be tested
– Concise so they are easy to develop and validate
– Models may be developed specifically for testing

Generates abstract test cases which must be transformed
into executable test cases

What is a model?
50

mapping

attributes

system

model

Mapping
- There is an original object that is

mapped to a model
Reduction
- Not all properties of the original

are mapped, but some are
Pragmatism
- The model can replace the

original for some purpose

Example model: UML activity diagram

51

• Original object is a
software system
(mapping)

• Model does not show
implementation
(reduction)

• Model is useful for
testing, requirements
(pragmatism)

How to model your system?

52

• Focus on the SUT
• Model only subsystems associated with the SUT and

needed in the test data
• Include only the operations to be tested
• Include only data fields useful for the operations to

be tested
• Replace complex data fields by simple enumeration

Model based testing 53

Requirements Test Plan

SUT

Test
results

1. design

Test execution tool

Test Scripts

Adaptor

Model

Test Case
Generator

Test Cases Test Script
Generator

Requirements
traceability

matrix
Model

Coverage

2. generate

3. concretize
4. execute

5. analyze

Model-based testing steps

54

1. Model the SUT and/or its environment
2. Use an existing model or create one for testing
3. Generate abstract tests from the model

– Choose some test selection criteria
– The main output is a set of abstract tests
– Output may include traceability matrix (test to model

links)
4. Concretize the abstract tests to make them executable
5. Execute the tests on the SUT and assign verdicts
6. Analyze the test results.

Notations

55

Pre/post notations: system is modeled by its internal state
– UML Object Constraint Language (OCL), B, Spec#, JML,

VDM, Z
Transition-based: system is modeled as transitions between states

– UML State Machine, STATEMATE, Simulink Stateflow
History-based: system described as allowable traces over time

– Message sequence charts, UML sequence diagrams
Functional – system is described as mathematical functions
Operational – system described as executable processes

– Petri nets, process algebras
Statistical – probabilistic model of inputs and outputs

Pre/post example (JML)

56

/*@ requires amount >= 0;
ensures balance == \old(balance-amount)
&& \result == balance;

@*/
public int debit(int amount) {
…
}

Robustness testing

57

• Selecting unauthorized input sequences for testing
– Format testing
– Context testing

• Using defensive style models

Transition-based example (UML+OCL)

58

Transition-based example (UML+OCL)

18

Waiting
keyPress(c) [c=unlock and status=locked] / display=SwipeCard

keyPress(c) [c=lock and status=locked] /display=AlreadyLocked
keyPress(c) [c=unlock and status=unlocked] / display=AlreadyUnlocked
keyPress(c) [c=lock and status=unlocked] / status=locked

Swiped

keyPress(c) [c=unlock] / 
 status=unlocked

keyPress(c) [c=lock] / 
 status=lockedcardSwiped /

 timer.start() timer.Expired()

Generate abstract test cases

59

• Transition-based models
Search for sequences that result in e.g. transition
coverage Example (strategy – all transition
pairs)
Precondition: status=locked, state = Waiting

Generate abstract test cases
Transition-based models
• Search for sequences that result in e.g. transition coverage
Example (strategy – all transition pairs)
Precondition: status=locked, state = Waiting

19

Event Exp.	state Exp.	variables

cardSwiped Swiped status=locked

keyPress(lock) Waiting status=locked

cardSwiped Swiped status=locked

keyPress(unlock) Waiting status=unlocked

Concretize test cases

60

SUT

Test execution tool

Test Scripts

Adaptor

Test Cases

Test Script
Generator

Analyze the results

61

• Same as in any other testing method
• Must determine if the fault is in the SUT or the model

(or adaptation)
• May need to develop an oracle manually

62

Lab 5 : GraphWalker

63

Demo …

Benefits of model-based testing

64

• Effective fault detection
– Equal to or better than manually designed test cases
– Exposes defects in requirements as well as faults in code

• Reduced Testing cost and time
– Less time to develop model and generate tests than manual methods
– Since both data and oracles are developed tests are very cheap

• Improved test quality
– Can measure model/requirements coverage
– Can generate very large test suites

• Traceability
– Identify untested requirements/transitions
– Find all test cases related to a specific requirement/transition

• Straightforward to link requirements to test cases
• Detection of requirement defects

Limitations

65

• Fundamental limitation of testing: won’t find all faults
• Requires different skills than manual test case design
• Mostly limited to functional testing
• Requires a certain level of test maturity to adopt
• Possible “pain points”

– Outdated requirements – model will be incorrect!
– Modeling things that are hard to model
– Analyzing failed tests can be more difficult than with

manual tests
– Testing metrics (e.g. number of test cases) may become

useless

66

Thread-based testing

Examples of threads at the system level

67

• A scenario of normal usage
• A stimulus/response pair
• Behavior that results from a sequence of system-level

inputs
• An interleaved sequence of port input and output

events
• A sequence of MM-paths
• A sequence of atomic system functions (ASF)

Atomic System Function (ASF)

68

• An Atomic System Function(ASF) is an action that is
observable at the system level in terms of port input
and output events.

• A system thread is a path from a source ASF to a
sink ASF

Examples

69

Stimulus/response pairs: entry of a personal identification number
• A screen requesting PIN digits
• An interleaved sequence of digit keystrokes and screen responses
• The possibility of cancellation by the customer before the full PIN is

entered
• Final system disposition (user can select transaction or card is retained)
Sequence of atomic system functions
• A simple transaction: ATM Card Entry, PIN entry, select transaction type

(deposits, withdraw), present account details (checking or savings,
amount), conduct the operation, and report the results
(involves the interaction of several ASFs)

• An ATM session (a sequence of threads) containing two or more simple
transactions (interaction among threads)

Thread-based testing strategies

70

• Event-based
Coverage metrics on input ports:
– Each port input event occurs
– Common sequences of port input events occur
– Each port event occurs in every relevant data context
– For a given context all inappropriate port events occur
– For a given context all possible input events occur

• Port-based
• Data-based

– Entity-Relationship (ER) based

71

Non functional testing

72

Performance Testing
nonfunctional requirements

• Stress tests
• Timing tests
• Volume tests
• Configuration tests
• Compatibility tests
• Regression tests
• Security tests

• (physical) Environment tests
• Quality tests
• Recovery tests
• Maintenance tests
• Documentation tests
• Human factors tests / usability

tests

Non functional testing is mostly domain specific

73

Smoke test

• Important selected tests on
module, or system

• Possible to run fast
• Build as large parts as

possible as often as possible
• Run smoke tests to make

sure you are on the right
way

74

Acceptance Testing

Benchmark test: a set of special test cases

Pilot test: everyday working
Alpha test: at the developer’s site, controlled
environment
Beta test: at one or more customer site.

Parallel test: new system in parallel with
previous one

Test-driven development
75

• Guided by a sequence of user stories from the
customer/user

• Needs test framework support (eg: Junit)

Write
Test

Pass
TestRefactor

NextDate: 76

User Stories

Program NextDate
End NextDate

1: the program
compiles

TEST

2: a day can be
input and
displayed

2: a month can
be input and
displayed

Input Expected
Output

Source Code OK

15 Day = 15

15, 11 Day = 15
Month = 11

Code

Program NextDate
input int thisDay;
print (“day =“ + thisDay);

End NextDate

Program NextDate
input int thisDay;
input int thisMonth;
print (“day =“ + thisDay);
print (“month =“ + thisMonth) ;

End NextDate

Pros and cons

77

+ working code
+ regression testing
+ easy fault isolation
+ test documented code

- code needs to be refactored
- can fail to detect deeper faults

Evaluating a test suite

78

• Number of tests?
• Number of passed tests?
• Cost/effort spent?
• Number of defects found?

Defect Detection Percentage = defects found by testing / total known defects

When to stop testing : coverage criteria

79

• Structural coverage criteria
• Data coverage criteria
• Fault-mode criteria
• Requirements based criteria
• Explicit test case specification
• Statistical test generation methods

When to stop testing?

80

No single criterion for stopping, but…
– previously defined coverage goals are met
– defect discovery rate has dropped below a

previously defined threshold
– cost of finding “next” defect is higher than

estimated cost of defect
– project team decides to stop testing
– management decides to stop testing
– money/time runs out

Thank you!
Questions?

