
Johan Åtting (Sectra)
Johan Jonasson (House of Test)

Martin Gladh (Frontit)

Lecture at LiU 2017-10-03

Agenda
1. What is agile testing
2. What is testing really about
3. Agile testing at Sectra

Twitter: @johanatting @johanjonasson @MartinGladh

1) Agile Testing

Short Iterations (sprints)

(Fast feedback is key)

Constraints

No time to write long detailed
test plans or test specifications

Test Driven Development & Test
Automation can replace manual

(sapient) testing

Common missunderstadning

2) What is testing really about

Video
Open Lecture by James Bach on Software Testing
The video is 1h 40min but let’s look at this part 46:50 –> 53:42
https://www.youtube.com/watch?v=ILkT_HV9DVU

Any lessons learned?

Context

Professional scepticism

Ask questions

• What is the context?
• What is happening here?
• What problem is this ”thing” trying to

solve?
• I honour what you say (write) but I

don’t trust you...
• Professional scepticism
• Ask questions, why, why, why

One of many definitions:

Try it to learn sufficiently everything that
matters about how the program can work
and about how it might not work.

”Try the product”?
What should we try?
Can we try everything?
How do we know that it works?
When are we done?

The impossibility of complete testing

• Complete testing is impossible for several
reasons:
– We can’t test all the inputs to the program.

– We can’t test all the combinations of inputs to the program.

– We can’t test all the paths through the program.

– We can’t test for all of the other potential failures, such as those
caused by user interface design errors or incomplete requirements
analyses.

The impossibility of complete testing

Example: If a product has 100 configuration
parameters, which each have two possible values,
and it takes only 1 second to perform a complete
test of the whole product under a certain
configuration, it will take a total of 4*1022 years to
test the product under all configurations.

If you doubt me, read e.g. http://kaner.com/pdfs/impossible.pdf

The impossibility of complete testing

• The core problem
underlying testing is
that we can run only
a tiny sample of the
set of possible tests

• Test planning is really
the development of a
sampling strategy

• Our sampling strategy is governed by heuristics

The Software Potato

From: The Little Black Book on Test Design by Rikard Edgren

Coverage levels
Level Label Description Quote

0 Not tested Testing has not begun or is still very limited.
"We have no good info in

this area"

1 Sanity Check
Major functions, simple data (often no regression tests or

negative testing).
"At least it's not completely

broken"

2
Common &

Critical
Common and critical functions/elements exercised, also with

some negative testing. Tested for major risks.
"We're gaining some

confidence in this"

3
Reasonable

cases

All parts exercised, including relevant negative testing. Different
configurations used. Regression testing on adjacent areas. Also

some focus on the most important non-functional quality
characteristics.

"This feels pretty good"

4 Complex cases
More focus on evaluating different non-functional quality

criteria's, such as e.g. performance, reliability, usability etc.
Strong data.

"If there was a bad bug in
this area, we would probably

know about it"

5
Thoroughly

tested
All relevant quality characteristics have been explored.

"We’re confident there is no
tests that could reveal

anything important"

Based on the coverage levels in James Bach's low-tech testing dashboard (www.satisfice.com)

Quality
according to ISO8402:1986

The totality of features and characteristics
of a product or service that bear on its
ability to satisfy stated and implied needs.

Quality Characteristics
one of many Heuristics that can be used

• Safety
• Security
• Usability
• Performance
• Reliability

• Supportability
• Deploymentability
• Maintainability
• Documentation

Suggested reading
Heuristic Test Strategy Model (Bach) http://www.satisfice.com/tools/satisfice-tsm-4p.pdf
Lightweight Characteristics Testing (Edgren) http://www.thetesteye.com/papers/LightweightCharacteristicsTesting.pdf

Quality Characteristics

Some examples
• Capability (Usefullness)

Can the product help me with all my problem
• Usability

How easy the product is to use, e.g. Learnability,
Memorability, Consistency, Error handling,
Documentation etc.

Quality Characteristics

• Charisma (Desierability)
How compelling the product is. First impression,
Look & feel, Wow, Fun to use etc.

• Performance
Responsiveness, Capacity, Endurance, Scalability etc.

• Rubustness (Reliability)
How well the product handles difficult situations,
e.g. Stress, load, bad data, recovery etc.

Quality Characteristics

• Deploymentability
How easy it is to Install, Un-install, Upgrade, Roll-
back etc.

• Supportability
How easy it is to support, e.g. remote login, log-files,
traces, debugging, monitoring etc.

Quality Characteristics

• Maintainability
How easy it is to maintain & to continue to develop
(code structure, future-proof design, architecture,
automatic code level unit checks, testability etc.).

• Safety
(patients & users)

• Security
(Confidentiality, Availability, Integrity)

• The Test Eye
http://thetesteye.com/posters/TheTestEye_SoftwareQualityCharacteristics.pdf
http://thetesteye.com/posters/TheTestEye_KvalitetsegenskaperForProgramvara.pdf

• Heuristic Test Strategy Model (Bach)
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf

• Lightweight Characteristics Testing (Edgren)
http://www.thetesteye.com/papers/LightweightCharacteristicsTesting.pdf

• ISO 2191-1 replaced by ISO 25010
http://en.wikipedia.org/wiki/ISO/IEC_9126

Other examples

Testing is more than
checking requirements

It’s also about learning &
exploring the product.

Checking is something that we do with the motivation of
confirming existing beliefs. Checking is a process of confirmation
and verification.

Exploring is something that we do with the motivation of finding
new information. Exploration is a process of discovery,
investigation and learning.

Checking vs Exploration

• When we already believe something to be true, we verify our
belief by checking.

• We check when we’ve made a change to the code and we want
to make sure that everything that worked before still works.

• Excellent programmers do a lot of checking as they write and
modify their code, creating automated routines that they run
frequently to check to make sure that the code hasn’t broken.

• Checking is focused on making sure that the program doesn’t
fail.

Checking

• We’re exploring when we’re trying to find out about the extents
and limitations of the product and its design, and when we’re
largely driven by questions that haven’t been answered or even
asked before.

• Exploration is focused on “learning sufficiently everything that
matters about how the program works and about how it might not
work.”

Exploration

• If we could express our question such that a machine
could ask and answer it via an assertion, it’s almost
certainly checking.

• If it requires a human, it’s a sapient process, and is far
more likely to be exploration.

=> Checks can be automated, exploration can not.

Checking vs Exploration

Exploratory testing

Test...
Adjust Observe

use feedback from the previous
test to inform the next

Great example on exploratory approach

Exploration

Wandering

There is always a testing mission

Explore: The jungles of Peru

Using: Map, local guides, whip ...

To: Find lost treasures

Explore: export function

To: see how file size effects performance

Using: The image data db, ...

Explore: export function

To: collect info about design consistency

Using: the import function as Oracle

Basketball players
https://www.youtube.com/watch?v=IGQmdoK_ZfY

Video

Follow the same path every time?

Scripted

Do not fall asleep on the testing bus!

Scripted

Look out of the window

Scripted (+ some exploration)

Get off the bus and look around…

Scripted (+ some more exploration)

Or take a different route each time?

Introduction to testing at
Sectra

Exploratory

Degrees of exploration

script

Freestyle
explorationSpecified

explorationVague
script

Fragmented
scripts

Role based
-exploration

Detailed scripts and freestyle exploration are
the extreems of a broad spectrum of ”degrees

of exploratory approach” to testing.

Detailed

Exploratory testing (+)

• It’s agile, flexible and responsive
• Focus & time is spent on testing and not

on writing test scripts
• The tester is in charge
• Finding more bugs
• Finding unexpected bugs

Exploratory testing (-)

• Require experienced testers
• Weak on:

• Repeatability
• Deterministic outcome (pass/fail)
• Traceability
• Documentation

Test automation

Test automation

• Can be very useful in some contexts
• Very good at checking & confirming existing beliefs
• Can be very good for regression testing
• Often good at code (or unit) level checking
• But it’s not a sliver bullet that can do all types of testing
• Normally weak on usability testing, GUI testing, and other

types of testing where we need to explore
• Good automation almost everytime needs good exploration

beforhand
Suggested reading is this short paper (Test automation snake oil):
http://www.satisfice.com/articles/test_automation_snake_oil.pdf

Summary

Testing is really about...
Investigation and evaluation of a product in order to
reveal information about how it might satisfy the
customer, and why it might not satisfy the customer.

(It’s more than just checking stated requirements.)

Agile Testing
@

Sectra

Development in
1. Linköping [HQ]
2. Örebro
3. Stockholm
4. Ipswich (UK)
5. Mansfield (UK)

Secure Communication Systems

13%

87%
Radiology IT - RIS/PACS

Orthopedic Imaging

Rheumathology

Our mission is to increase effectiveness of healthcare, while
maintaining or increasing quality in patient care.

Medical Systems

15 Agile development teams
1-2 Testers + 3-4 Programmers per team

Release TestDevelopment & Test
...

...

...
..
.

Testing
- During Sprints
- Between Sprints (Cross Team Testing)
- During Release Test

Testing in a sprint

• TDD, Unit testing & Code reviews to check the
code (performed by developers)

• Exploratory testing to challenge the desing &
to find bugs (perfomred by testers)

• Focus is more on exploration than checking
• Outputs:

– Updated (or new) regression tests (manual or automated)
– Test cases for the Release Test phase
– Bug reports (only unfixed bugs).

Explore: Find
out what & how
to test

Check

A sprint from a testing view

Cross Team Testing
Gather all testers to test each others test

objects during every sprint.

We need to get fresh, unbiased, independent
eyes on what is being developed.

Release Testing
• Co-ordinated by a test project manager
• Mix of:

– Re-test of new features,
– workflow based tests,
– regression tests

• Focus is more on checking than exploration
• Test environment is freezed & bigger

Release TestDevelopment & Test
...

...

...
..
.

Exploration

Checking

Final testing
Collect evidence
Document

Orchestra analogy

...

Exploration

Checking

Recording

Rehearsal Consert

Benefits
of having testers in the development teams

Early involvement

Better Quality

Bug prevention

No walls between testers &
programmers

More Testing
(Less admin)

Challenges
of having testers in the development teams

Walls between the teams
(i.e. between the testers)

Biased
(testing your own baby) A lone tester

(Beeing the only
tester in a team)

Summary
Testing is more than checking the

stated requirements

(remember the software potato)

Video

Open Lecture by James Bach on Software Testing:

https://www.youtube.com/watch?v=ILkT_HV9DVU

This is a great lecture (1h 40min) by the most famous tester in the world (James

Bach) about software testing. It’s fun, educational and a must for anyone working

with software development & testing.

Blogs & Articles
Testing Without a Map (Bolton) http://www.developsense.com/articles/2005-01-TestingWithoutAMap.pdf

Heuristic Test Strategy Model (Bach) http://www.satisfice.com/tools/satisfice-tsm-4p.pdf

Test Framing (Bolton, Bach) http://www.developsense.com/resources/TestFraming.pdf

Framing Test Framing (Bolton) http://www.developsense.com/blog/2011/05/framing-test-framing/

Better Software Magazine http://www.stickyminds.com/BetterSoftware/magazine.asp

RST Appendices (collection of articles, bibliografi, list of tools) (Bach) http://www.satisfice.com/rst-appendices.pdf

You Are Not Done Yet (Hunter) http://www.developsense.com/blog/2011/05/framing-test-framing/

The Value of Checklists (Kaner) http://www.kaner.com/pdfs/ValueOfChecklists.pdf

Touring Heuristic (Kelly) http://www.michaeldkelly.com/archives/50

When Do we Stop A Test? (Bolton) http://www.developsense.com/blog/2009/09/when-do-we-stop-test/

Checking vs. Testing (Bolton) http://www.developsense.com/blog/2009/08/testing-vs-checking/

Emotions And Oracles (Bolton) http://www.developsense.com/presentations/2007-10-STARWest-EmotionsAndTestOracles.pdf

Why Is Testing Taking So Long? (Bolton)

– http://www.developsense.com/blog/2009/11/why-is-testing-taking-so-long-part-1/

– http://www.developsense.com/blog/2009/11/what-does-testing-take-so-long-part-2/

The Case Against Test Cases (Bach) http://www.satisfice.com/presentations/againsttestcases.pdf

Test Heuristics Cheat Sheet (Data Type Attacks & Web Tests) (Hendrickson, Lyndsay, Emery) http://testobsessed.com/wp-
content/uploads/2011/04/testheuristicscheatsheetv1.pdf

The Little Black Book on Test Design (Edgren) http://www.thetesteye.com/papers/TheLittleBlackBookOnTestDesign.pdf

Lightweight Characteristics Testing (Edgren) http://www.thetesteye.com/papers/LightweightCharacteristicsTesting.pdf

Books

johan.atting@sectra.se
johan.jonasson@houseoftest.se
martin.gladh@frontit.se

X

