
TDDD04:	White	box	testing

Lena	Buffoni	lena.buffoni@liu.se

White	box	testing	- outline

2

• Control flow coverage
– Statement, decision and condition coverage
– Condition/decision coverage
– Multiple condition coverage
– Modified condition/decision coverage
– Loop testing
– Basis path testing (a.k.a. structured testing)

• Program complexity
• Mutation testing

White	box	testing

3

• Analyze SUT
• Identify paths to execute
• Choose inputs to trigger those paths and determine

expected outputs
• Run tests
• Compare actual outputs to expected

• Can be applied at all levels: unit, integration and
system

Limitations	

4

• Testing all paths is complicated/impossible
• Not data sensitive

– eg: p=q/r;
• Non-existent paths cannot be discovered
• The tester must have programming skills

Control	flow	testing	

5

• Based on the flow of control in the program
• Logical decisions
• Loops
• Execution paths
• Coverage metrics
• Measure of how complete the test cases are
• Not the same as how good they are!

Control	flow	graphs	(CFGs)	

6

• Definition: a control flow graph is a graph
representation of a program in which the vertices
(nodes) represent basic blocks of the program, and
edges represent transfer of execution between basic
blocks.

• A basic block is a region in the program with a
single entry point and a single exit point. This means
that all jump targets start new basic blocks, and all
jumps terminate basic blocks.

CFG	Notation
7

Decision	pointProcess	block
Junction	point

Sequence

Until

While
If Case

Levels	of	code	coverage

8

• Statement/Line/Basic block/Segment Coverage
• Decision (Branch) Coverage
• Condition Coverage
• Multiple Condition Coverage
• Decision/Condition Coverage
• Loop Coverage
• Path Coverage

Statement	coverage

9

// Return smallest value int min(int y, int x) {
if (y < x)

y = x;
return y;
}

Test	case x y expected actual

Start

End

Y<X

Y=X

no

yes

Return	Y

Write	test	cases	to	execute	each	statement	at	
least	once	

Statement	coverage

10

// Return smallest value int min(int y, int x) {
if (y < x)

y = x;
return y;
}

Test	case x y expected actual

1 1 0 0 1

Start

End

Y<X

Y=X

no

yes

Return	Y

100%	statement	coverage

What	is	wrong	with	line	(statement)	
coverage?	
Steve	Cornett	(Bullseye	testing	technology)	

11

• Software developers and testers commonly use line coverage
because of its simplicity and availability in object code
instrumentation technology.

• Of all the structural coverage criteria, line coverage is the
weakest, indicating the fewest number of test cases.

• Bugs can easily occur in the cases that line coverage cannot see.
• The most significant shortcoming of line coverage is that it fails

to measure whether you test simple if statements with a false
decision outcome. Experts generally recommend to only use
line coverage if nothing else is available. Any other measure
is better.

Decision	coverage

12

// Return smallest value int min(int y, int x) {
if (y < x)

y = x;
return y;
}

Test	case x y expected actual

Start

End

Y<X

Y=X

no

yes

Return	Y

Write	test	cases	to	execute	each	edge	in	the	CFG	
at	least	once	

Decision	coverage

13

// Return smallest value int min(int y, int x) {
if (y < x)

y = x;
return y;
}

Test	case x y expected actual

1	(T) 1 1 1 1

2	(F) 0 1 0 1

Start

End

Y<X

Y=X

no

yes

Return	Y

Write	test	cases	to	execute	each	edge	in	the	CFG	
at	least	once	

100%	branch	coverage

Condition	coverage

14

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	retWrite	test	cases	so	that	each	condition	in	each	
decision	is	both	true	and	false	

ret=	false

Test	case x y size expected actual

Condition	coverage

15

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Test	case x y size expected actual

1(TF) 3 7 5 false false

2(FT) 7 3 5 false false

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	retWrite	test	cases	so	that	each	condition	in	each	
decision	is	both	true	and	false	

No	100%	branch	coverage

ret=	false

Multiple	condition	coverage	(MCC) 16

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	ret

Write	test	cases	so	that	all	combinations	of	
conditions	are	executed	in	each	decision	

ret=	false

Test	case x y size expected actual

1(TF)

2(FT)

3(TT)

4(FF)

Problems	with	MCC	

17

Consider the following simplified rule for insurance coverage
if ((age >= 17 and age + duration <= 80

and issued <= today – timedelta(year=1)
and country == ‘UK’ and accidents <= 5
and convictions <= 3 and
and (owner == applicant or owner == spouse or owner == partner)
and not modified
and (driver == applicant or driver == spouse or driver == partner)

and milage <= 50000 and value <= 50000
and not (job == entertainment or job == fashion

or job == sports or job == fs or job == diplomatic
or job == scrap or job == general_dealer or job == minicab)

and ((use == social or use == pleasure or use == commuting)
and (job == motor_trade or job == retired or job == house

or job == driver or job == none or job == student
or job == unemployed)):

• How many test cases? Are all test cases even possible?

Condition/decision	coverage 18

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	ret

Write	test	cases	so	that	achieve	both	condition	
and	decision	coverage

ret=	false

Test	case x y size expected actual

Condition/decision	coverage 19

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	ret

Write	test	cases	so	that	achieve	both	condition	
and	decision	coverage

ret=	false

Test	case x y size expected actual

1(TT)

2(FF)

Modified	condition/decision	coverage	
(MCDC)	

20

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	ret

Write	test	cases	so	that	achieve	both	condition	and	
decision	coverage	AND	each	condition	in	a	decision	has	
been	shown	to	independently	affect	that	decision’s	
outcome	

ret=	false

Test	case x y size expected actual

Modified	condition/decision	coverage	
(MCDC)	

21

//	Return	true	if	(x,y)	is	in	the	
//	lower	left	size	x	size	grid	sector.	
boolean is_ll(int x,	int y,	int size)	{	
boolean ret	if	(x	<	size	&&	y	<	size)	

ret	=	false;	
else	ret	=	false;	

return	ret;	
}

Start

End

x	<	size	
&&	y	<	
size

ret=	false

noyes

Return	ret

Write	test	cases	so	that	achieve	both	condition	and	
decision	coverage	AND	each	condition	in	a	decision	has	
been	shown	to	independently	affect	that	decision’s	
outcome	

ret=	false

Test	case x y size expected actual

1(TF)

2(FT)

3(TT)

Loop	coverage
22

Simple	loop

Concatenated	loops

Nested	loops

Knotted	loops

Loop	coverage	

23

• Minimum number
• Minimum number + 1
• Skip the loop entirely (unless covered above)
• One pass through the loop (unless covered above)
• Two passes through the loop (unless covered above)
• Maximum expected – 1
• Maximum expected
• One less than minimum (if possible)
• One more than maximum (if possible)

Path	testing	

24

• A path is a sequence of branches, or conditions
• A path corresponds to a test case, or a set of inputs
• Bugs are often sensitive to branches and conditions
• All-paths coverage: cover all possible paths through a

program
– Not possible in the general case (e.g. loops)
– Approximations must be used: statement, branch,

MCC, MCDC, loop...
• Basis path coverage: cover all independent paths

– Idea behind the structured testing method
– Independent paths are limited in number

Independent	paths	

25

Finding independent paths
• An independent path is any path through the program that

introduces at least one new set of processing statements
or a new condition. When stated in terms of a flow graph, an
independent path must move along at least one edge that has
not been traversed before the path is defined.

Basis path set
• A set of linearly independent paths through the program
• Any path through the program can be formed as a linear

combination of elements in the basis set
• Size equals the cyclomatic complexity of the control flow

graph

Cyclomatic complexity	

26

Cyclomatic Complexity is a software metric that provides a
quantitative measure of the logical complexity of a program.
When used in context of the basis path testing method, the
value computed for cyclomatic complexity defines the
number of independent paths in the basis set of a program
and provides us with an upper bound for the number of
tests that must be conducted to ensure that all statements
have been executed at least once.

Developed by John McCabe in 1976
as a software complexity metric

Computation	of	cyclomatic complexity	

27

• Cyclomatic complexity V(G) for a control flow graph
G, is defined as:

• V(G) = E – N + 2P
E: number of edges
N: number of nodes
P: number of disconnected partitions of the graph

• Simplifications
• No decisions: V(G) = 1
• Only b binary decisions: V(G) = b + 1

Calculate	cyclomatic complexity	
28

Calculate	cyclomatic complexity	
29

E=1 , N=2 , P=1
V =1 – 2 + 2*1= 1

E=4 , N=4 , P=1
V = 4 – 4 + 2 * 1= 2

E=2 , N=4 , P=2
V = 2 – 4 + 2*2 = 2

E=12 , N=7 , P=1
V = 12 – 7 + 2*1= 7

E=13, N=11 , P=3
V = 13 – 11 + 2*3 = 8

Basis	Path	Testing	

30

• Derive the control flow graph from the software
module

• Compute the cyclomatic complexity of the resultant
flow graph

• Determine a basis set of linearly independent
paths

• Create a test case for each basis path
• Execute these tests

Basis	path	testing:	cyclomatic complexity	
31

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

V(G) = E – N + 2P
E=
N=
P=
V(G) =

V(G) = b + 1
b=
V(G) =

Basis	path	testing:	cyclomatic complexity	
32

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

V(G) = E – N + 2P
E = 24
N = 19
P=1
V(G)	=	24	– 19	+	2*1	=	7	

V(G) = b + 1
b= 6
V(G) = 6 + 1 = 7

Determine	a	basis	set	of	linearly	independent	
paths	McCabe’s	baseline	method	

33

1. Pick a “baseline” path. This path should be a “normalcase”
program execution. McCabe advises: choose a path with as
many decisions as possible.

2. To choose the next path, change the outcome of the first
decision along the baseline path while keeping the maximum
number of other decisions the same as the baseline path.

3. To generate the third path, begin again with the base line but
vary the second decision rather than the first.

4. Repeat step 3 for other paths until all decisions along baseline
path have been flipped.

5. Now proceed to the second path(from step 2), flipping its
decisions, one by one until the basis path set is completed.

Create	the	basis	set:	paths	1-2 34

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

Create	the	basis	set:	paths	1-2 35

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

36

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D2

Baseline	+	second	decision	(path	3)

37

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D2

Baseline	+	second	decision	(path	3)

38

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D3

Baseline	+	third	decision	(path	4)

39

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D3

Baseline	+	third	decision	(path	4)

40

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D4

Baseline	+	fourth	decision	(path	5)

41

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D1

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D4

Baseline	+	fourth	decision	(path	5)

42

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

Third	path	+	fifth	decision	(path	6)
D1 A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D5

43

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

Third	path	+	fifth	decision	(path	6)
D1 A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D5

44

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

Third	path	+	sixth	decision	(path	7)
D1 A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D6

45

D2

D3

D4

D5

D6

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

Third	path	+	sixth	decision	(path	7)
D1 A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

D6

Set	of	basis	paths 46

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

1.	ABDEGKMQS	
2.	ACDEGKMQS	
3.	ABDFILORS	
4.	ABDEHKMQS	
5.	ABDEGKNQS	
6.	ACDFJLORS	
7.	ACDFILPRS	

Observation

47

• Basis path testing calls for the creation of a test
case for each of these

• paths.
• This set of test cases will guarantee both

statement and branch
• coverage.
• Using a path/edge indicence matrix, independent

paths becomes linearly independent vectors,
spanning the vector space of possible paths

Why	coverage?	

48

“We found that there is a low to moderate correlation
between coverage and effectiveness when the number
of test cases in the suite is controlled for. In addition, we
found that stronger forms of coverage do not provide
greater insight into the effectiveness of the suite. Our
results suggest that coverage, while useful for identifying
under-tested parts of a program, should not be used as a
quality target because it is not a good indicator of test
suite effectiveness.” [1]
[1] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 435–445, New York, NY, USA, 2014. ACM.

Why	is	Coverage	insufficient?	

49

Remember	this	example?

50

int scale(int j) {
j = j - 1; // should be j = j + 1
j = j / 30000;
return j;}

Would	coverage	testing	find	this	bug?

Example	with	branch	coverage:

51

public static String	foo(boolean b) {
if (b) {

performVitallyImportantBusinessFunction();
return "OK"; }

return "FAIL"; }

@Test public void shouldFailWhenGivenFalse() {
assertEquals("FAIL", foo(false)); }

@Test public void shouldBeOkWhenGivenTrue() {
assertEquals("OK", foo(true)); }

Mutation	testing
52

SUT
Mutate	
the	

program

Mutant	n
Mutant	2

Mutant	1

Execute	
Test	
Suite

Test	suite

Compare	
results

Mutant	1Mutant	1

Mutant	2

killed

survived

Mutation	testing

53

• Mutation operators
• Conditionals Boundary Mutator
• Negate Conditionals Mutator
• Remove Conditionals Mutator
• Math Mutator
• Increments Mutator
• Invert Negatives Mutator
• Inline Constant Mutator
• Return Values Mutator
• Void Method Calls Mutator
• Non Void Method Calls Mutator

Conditionals	Boundary	Mutator
54

Original	conditional Mutated	conditional

< <=
<= <
> >=
>= >

For example

if (a < b) { // do something } ‘

will be mutated to

if (a <= b) { // do something }

Equivalent	mutations

55

• The resulting mutant behaves the same as the
original

• The difference in behavior is outside the scope of
testing

Automating	white-box	testing 56

A

B C

D

E

G H

K

F

I J

L

O P

R

M N

Q

S

• Creating a representation –
abstract syntax tree (AST)

• Generating	a	symbolic
execution model

• Putting	the	right	constraints
on	the	inputs	

57

Automation of white-box testing: Java Pathfinder

Lab on symbolic execution

Next	lecture:

58

• Guest lecture from Ahmed Rezne on model checking

Questions?
Thank	you	for	your	attention

