
TDDD04:	Black	box	testing

Lena	Buffoni	lena.buffoni@liu.se

Black- box	testing

Input

Software	Under	
Test

Output

Oracle
failpass

Black	box	testing	can	be	applied	on	all	levels	of	
the	system:	Unit,	Integration,	System,	
Acceptance.

Based	on	requirements	or	specifications,	
valid	and	invalid	inputs	are	chosen

Actual	outputs	are	compared	to	expected	
outputs

Never	can	be	sure	how	much	of	
the	software	has	been	tested!

3

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

4

Example	program	to	determine	employability	

Age Employment	status

0-16 Don’t	hire

16-18 Can	hire	part-time

18-55 Can	hire	full-time

55-99 Don’t	hire

To	test	exhaustively	we	must	write	tests	for	all	values	:	0,	1	… 98,	99

Time	consuming	and	
expensive!

5

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

6

Equivalence	class	(EC)	testing
- If one case in the EC detects a defect all other test

cases in the EC are likely to detect this defect

Age Employment	status
0- 16	15 Don’t	hire

16-18 17 Can	hire	part-time

18-55	54 Can	hire	full-time

55-99 Don’t	hire

How	many	equivalence	classes?
Is	it	enough	to	test	one	example	per	class?

7

EC	testing
• Equivalence Class (EC) testing is a

technique used to reduce the
number of test cases to a
manageable level while still
maintaining reasonable test
coverage

• Each EC consists of a set of data
that is treated the same by the
module or that should produce the
same result. Any data value within
a class is equivalent, in terms of
testing, to any other value

• Choose one point within each EC to
test

8

Example:	NextDate
Problem statement: NextDate is a function of three
variables: month (M), day (D) and year (Y). It returns the
date of the day after the input date. The month, day and year
variables have integer values subject to these conditions:
• C1:1 <= month <=12;
• C2: 1<= day <= 31;
• C3: 1850 <= year <= 2050

What	about	combinations	of	M,D	&	Y?	

Valid	ECs

M1	=	{month:	1	<=	month	<=	12} M2	=	{month:	month	<	1}

D1={day:1<=day<=31} M2	=	{month:	month	>	12}	

Y1	=	{year:	1850	<=	year	<=	2050}	 D2={day:day<1}	

9

Guidelines	

• If an input condition specifies a range of values; identify one
valid EC and two invalid EC.

• If an input condition specifies the number (e.g., one through 6
owners can be listed for the automobile); identify one valid EC
and two invalid EC (no owners; more than 6 owners).

• If an input condition specifies a set of input values and there is
reason to believe that each is handled differently by the
program; identify a valid EC for each and one invalid EC.

• If an input condition specifies a “must be” situation (e.g., first
character of the identifier must be a letter); identify one valid
EC (it is a letter) and one invalid EC (it is not a letter)

• If there is any reason to believe that elements in an EC are not
handled in an identical manner by the program, split the
equivalence class into smaller equivalence classes.

10

Applicability	and	limitations	

• Most suited to systems in which much of the input
data takes on values within ranges or within
sets.

• It makes the assumption that data in the same EC
is, in fact, processed in the same way by the system.
The simplest way to validate this assumption is to ask
the programmer about their implementation.

• EC testing is equally applicable at the unit,
integration, system, and acceptance test
levels. All it requires are inputs or outputs that can
be partitioned based on the system’s requirements.

11

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

12

Boundary	value	testing	

Boundary value testing focuses on the boundaries between equivalence
classes, simply because that is where so many defects hide. The defects can
be in the requirements or in the code
Method
• Identify the equivalence classes.
• Identify the boundaries of each EC.
• Create test cases for each boundary value by choosing one point on the

boundary, one point just below the boundary, and one point just
above the boundary.

13

Example	– boundary	value	testing

Age Employment	status
0-15 Don’t	hire

16-17 Can	hire	part-time

18-54 Can	hire	full-time

55-99 Don’t	hire

-1		0		1 15		16		17 17		18	19 54		55		56 98		99		100

Other	test	cases?

14

NextDate – multiple	variables
Remember?
• C1:1 <= month <=12;
• C2: 1<= day <= 31;
• C3: 1850 <= year <= 2050
Can we define better equivalence classes?

What	about	combinations	of	M,D	&	Y?	

Valid	ECs
M1	=	{month	has	30	days}
M2	=	{month	has	31	days}
M3	={February}

D1={1<=day<=27},	D2={day=28}
D3= {day	=	29},	D4= {day	=	30},	D5 {day	=	31}

Y1	=	{year:	year	is	a	non-leap year}	
Y2	=	{year:	year	is	a	leap year}	

15

Case	ID Month Day Year Expected	
Output

C1 -1 15 1902 Value	of	
month	not	in	
range

C2

C3

C4

…

16

Applicability	and	limitations	

• Boundary value testing is equally applicable at the unit,
integration, system, and acceptance test levels. All
it requires are inputs that can be partitioned and
boundaries that can be identified based on the system’s
requirements.

• Most suited to systems in which much of the input data
takes on values within ranges or within sets.

• It makes the assumption that the program contains no
extra boundaries. These can be found through inspection
or white-box texting.

• Boundary value testing subsumes equivalence class testing

17

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

18

Decision	Table	Testing	
• An excellent tool to capture certain kinds of system

requirements and to document internal
system design. They are used to record complex
business rules that a system must implement.

• In addition, they can serve as a guide to creating
test cases.

19

General	form:
Rule	1 Rule	2	 … Rule	p

Conditions

Condition	1

Condition	2

…

Condition	n

Actions

Action	1

Action	2

…

Action	m

20

Example:	car	insurance	discount

Rule	1 Rule	2	 Rule 3 Rule	4 Rule	5 Rule	6 Rule	7 Rule	8

C

Married? Yes Yes Yes Yes No No No No

#	years	
employed

>=	3 >=	3 <3 <3 >=	3 >=	3 <3 <3

Good student? Yes No Yes No Yes No yes No

A Discount 70 70 50 20 60 60 40 0

21

Example	- simplified

Rule	
1-2

Rule 3 Rule	4 Rule	
5-6

Rule	7 Rule	8

C

Married? Yes Yes Yes No No No

#	years	
employed

>=	3 <3 <3 >=	3 <3 <3

Good student? - Yes No - Yes No

A Discount 70 50 20 60 40 0

22

Definitions
Rule	
1-2

Rule 3 Rule	4 Rule	
5-6

Rule	7 Rule	8

C

Married? Yes Yes Yes No No No

#	years	
employed

>=	3 <3 <3 >=	3 <3 <3

Good student? - Yes No - Yes No

A Discount 70 50 20 60 40 0

Decision tables are declarative – order between entries does not matter

Limited entry
table –
conditions are
binary only

Extended entry
table – conditions
may take on
multiple values

Don’t-care-entry – condition is irrelevant
or not applicable; any value is OK

23

Using	decision	tables	for	testing
• Rules become test cases
• Conditions become inputs
• Actions become expected results:

Test	Case	1 Test	Case	2	 … Test	Case	p

Inputs

Condition	1

Condition	2

…

Condition	n

Expected	
Results

Action	1

Action	2

…

Action	m

24

Triangle	program	

The program accepts three integers, a, b, and c as input.
The three values are interpreted as representing the
lengths of sides of a triangle. The integers a, b, and c
must satisfy the following conditions:
a, b, c forms a triangle, i.e.

• a<b+c
• b<a+c
• c<a+b

The program must determine whether the input is not a
triangle, an isosceles, a scalene or an equilateral tringle.

25

Decision	table	for	the	triangle	program

Rule	
1

Rule	
2	

Rule
3

Rule	
4

Rule	
5

Rule	
6

Rule		
7

Rule	
8

Rule	
9

C

a,b,c forms a	
triangle

a=b

a=c

b=c

A

NaT

Isosceles

Scalene

Equilateral

26

Decision	table	for	the	triangle	program

Rule	
1

Rule	
2	

Rule
3

Rule	
4

Rule	
5

Rule	
6

Rule		
7

Rule	
8

Rule	
9

C

a,b,c forms a	
triangle

N Y Y Y Y Y Y Y Y

a=b _ Y Y Y Y N N N N

a=c _ Y Y N N Y Y N N

b=c _ Y N Y N Y N Y N

A

NaT

Isosceles

Scalene

Equilateral

27

Decision	table	for	the	triangle	program

Rule	
1

Rule	
2	

Rule
3

Rule	
4

Rule	
5

Rule	
6

Rule		
7

Rule	
8

Rule	
9

C

a,b,c forms a	
triangle

N Y Y Y Y Y Y Y Y

a=b _ Y Y Y Y N N N N

a=c _ Y Y N N Y Y N N

b=c _ Y N Y N Y N Y N

A

NaT X

Im
possible

Im
possible

Im
possible

Isosceles X X X

Scalene X

Equilateral X

28

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c

b<c+a

c<b+a

a=b

a=c

b=c

A

NaT

Isosceles

Scalene

Equilateral

a b c Exp

29

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N

b<c+a -

a<b+a -

a=b -

a=c -

b=c -

A

NaT X

Isosceles

Scalene

Equilateral

a b c Exp

30

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N

b<c+a -

c<b+a -

a=b -

a=c -

b=c -

A

NaT X

Isosceles

Scalene

Equilateral

a b c Exp

4 2 1 NaT

31

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N Y Y T

b<c+a - N Y T

c<b+a - - N T

a=b - - - T

a=c - - - T

b=c - - - T

A

NaT X

Isosceles

Scalene

Equilateral

a b c Exp

4 2 1 NaT

32

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N Y Y T

b<c+a - N Y T

c<b+a - - N T

a=b - - - T

a=c - - - T

b=c - - - T

A

NaT X X X

Isosceles

Scalene

Equilateral X

a b c Exp

4 2 1 NaT

2 4 1 NaT

1 4 2 NaT

3 3 3 Eq

33

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N Y Y T T T

b<c+a - N Y T T T

c<b+a - - N T T T

a=b - - - T T T

a=c - - - T F T

b=c - - - T T F

A

NaT X X X

Isosceles

Scalene

Equilateral X

a b c Exp

4 2 1 NaT

2 4 1 NaT

1 4 2 NaT

3 3 3 Eq

34

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N Y Y T T T

b<c+a - N Y T T T

c<b+a - - N T T T

a=b - - - T T T

a=c - - - T F T

b=c - - - T T F

A

NaT X X X

Isosceles

Scalene

Equilateral X

a b c Exp

4 2 1 NaT

2 4 1 NaT

1 4 2 NaT

3 3 3 Eq

35

Testing	the	triangle	program
1 2	 3 4 5 6 7 8 9 10 11

C

a<b+c N Y Y Y Y Y Y Y Y Y Y

b<c+a - N Y Y Y Y Y Y Y Y Y

c<b+a - - N Y Y Y Y Y Y Y Y

a=b - - - Y Y Y Y N N N N

a=c - - - Y N Y N Y Y N N

b=c - - - Y Y N N Y N Y N

A

NaT X X X

Isosceles X X X

Scalene X

Equilateral X

a b c Exp

4 2 1 NaT

2 4 1 NaT

1 4 2 NaT

3 3 3 Eq

5 5 3 Iso

5 3 5 Iso

3 5 5 Iso

3 4 5 Sca

36

How	many	test	cases	
• If there are n conditions, there must be 2n rules
• Each don’t care makes that rule count double
• If there are m don’t care entries in a rule, that rule

counts as 2m rules
1 2	 3 4

C

a<b+c F T T T

b<c+a - F T T

c<b+a - - F T

a=b - - - T

a=c - - - T

b=c - - - T

Number of	rules ? ? 8 1

37

The	NextDate Function	

• Triangle program: relationships between inputs and
correct outputs.

• NextDate function: logical relationships among the
input variables.

Problem statement: NextDate is a function of three
variables: month, day and year. It returns the date of the day
after the input date. The month, day and year variables have
integer values subject to these conditions:
• C1: 1 <= month <=12
• C2: 1<= day <= 31
• C3: 1850 <= year <= 2050

38

NextDate – Reminder

What	about	combinations	of	M,D	&	Y?	

Valid	ECs
M1	=	{month	has	30	days}
M2	=	{month	has	31	days}
M3	={February}

D1={1<=day<=27},	D2= {day	=	28},	
D3= {day	=	29},	D4= {day	=	30},	D5 {day	=	31}

Y1	=	{year:	year	is	a	non-leap year}	
Y2	=	{year:	year	is	a	leap year}	

39

The	NextDate Function	
1 2	 3 4

C

month	in	M30	

month	in	M31	

February

December

1<=day<28

Day=28

Day=29

Day=30

Day=31

Leap year

A

Increment	Year

Increment	Month

Increment Day

Reset	year

Reset	month

Reset	day

40

The	NextDate Function	
1 2	 3 4

C

month	in	M30	 T - - -

month	in	M31	 - T - -

February - - T -

December - - - T

1<=day<28 T T - T

Day=28 - - T -

Day=29 - - - -

Day=30 - - - -

Day=31 - - - -

Leap year F F F F

A

Increment	Year

Increment	Month X

Increment Day X X X

Reset	year

Reset	month

Reset	day X

41

Mutually	exclusive	conditions	

There should be eight rules total
Rule count is 4 for each rule
Gives total of 12 rules! Why?

Which actions apply to T,F,T
• A1 or A3 or both?

1 2	 3

Conditions

C1 T - -

C2 - T -

C3 - - T

Actions

A1 X

A2 X

A3 X

Solution	:
• Be	explicit	to	avoid	overlaps	
• Include	“impossible”	pseudo-action	
• Use	extended	entries	if	possible	

42

The	NextDate Function	
1 2	 3 4

C

month

day

year

A

Increment	Year

Increment	Month

Increment Day

Reset	year

Reset	month

Reset	day

Error

M31	=	{	1,3,5,7,8,10	};	M30	=	{	4,6,9,11	};	M2	=	{	2	};	M12	=	{	12	};D27={1,2,...,27};
D28={28},D29={29	},D30={30},D31={31}	YN	=	not	a	leap	year;	YL	=	leap	year	

43

1 2	 3 4 5 6 7 8 9

C

month M30 M30 M30 M31 M31 M12 M12 M2 M2 M2 M2 M2 M2

day D27
D28
D29

D30 D31 D27
D28
D29
D30

D31 D27
D28
D29
D30

D31 D30
D31

D27 D28 D28 D29 D29

year - - - - - - - - - YL YN YL YN

A

Increment	
Year

X

Increment	
Month

X X X X

Increment
Day

X X X X X

Reset	year

Reset	
month

X X X

Reset	day X X X

Error X X X

44

Test	cases	for	The	NextDate Function	
Case	ID Month Day Year Expected	output

1-3 April 15 2001 April 16, 2001

4 April 30 2001 May 1, 2001

5 April 31 2001 Error

6-9 January 15 2001 January 16, 2001

10 January 31 2001 February 1, 2001

11-14 December 15 2001 December 16, 2001

15 December 31 2001 January 1, 2002

16 February 15 2001 February 16, 2001

17 February 28 2004 February 29, 2004

18 February 28 2001 March 1, 2001

19 February 29 2004 March 1, 2004

20 February 29 2001 Error

21, 22 February 30 2001 Error

45

Applicability	and	Limitations	

• Decision table testing can be used whenever the
system must implement complex business
rules when these rules can be represented as a
combination of conditions and when these conditions
have discrete actions associated with them.

46

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

47

Example	a	web	site
Must work with:
• 8 browsers
• 3 plugins
• 6 client operating systems
• 3 servers
• 3 server operating systems

=	1,296	
combinations!

→ Test	all	combinations?
→ Test	a	random	set	of	combinations?
→ Test	an	“intelligently	selected”	set	of	

combinations?

48

How	does	it	work?
Test pairs only, and ensure each pair of parameter
values exists at least once:

– Latin square
– Orthogonal array

• Web site example : 1296 test cases to exercise
all variable combinations, 64 tests for pair-wise
coverage - 95% reduction in test cases

– All-pairs algorithm
• 48 test cases for all pair coverage

49

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

50

State-transition	testing	

• When a system must remember something about
what has happened before or when valid and invalid
orders of operations exist.

• State-Transition diagrams direct testing efforts by
identifying the states, events, actions, and transitions
that should be tested.

51

Flight	booking	system

Booking	
Made

giveInfo/
startPayTimer

The	customer	provides	some	information	and	makes	a	booking.	He	then	
has	a	certain	amount	of	time	to	make	the	reservation.

Entry	point

Action Paid

payMoney

Transition

Event

State

52

Creating	test	cases	
• Create a set of test cases such that all states are visited at least

once. May miss important transitions.
• Create a set of test cases such that all events are triggered at

least once. May miss both states and transitions.
• Create a set of test cases such that all transitions are exercised at

least once. Subsumes (includes) all-states and all-events.
– Stronger: cover all possible pairs of transitions
– Even stronger: cover all possible triplets of transitions

• Create a set of test cases such that all paths are executed at least
once. Subsumes all others. Can be infeasible – consider loops.

53

Flight	booking	system	complete

Booking	
Made

giveInfo/
startPayTimer

Paid

payMoney

Ticketed

Used

checkIn

fly
Cancelled
/Unpaid

Cancelled/
Customer

time
Expires

cancel
cancel/refund

54

Authentication	system	- State	transition	testing

• Cover all states
• Cover all events
• Cover all transitions

Wait	
for	pin

Second

Third

Eat	
Card

Unlock

enterCorrectPin
enterWrongPin

enterWrongPin

enterWrongPin

enterCorrectPin

enterCorrectPin

Events	 Expected	states

… ….

55

Applicability	and	Limitations	

• Excellent to capture certain system
requirements.

• Not applicable when the system has no state
• Frequently inapplicable if the system does not need

to respond to outside events

56

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

57

Domain	analysis	testing	

• Testing of multiple variables simultaneously.
• It builds on and generalizes equivalence class

and boundary value testing.
• Is usually applied to one input variable or two simple

combinations of two variables, based on
specifications.

58

Test	cases	

• For each relationship (>=, >, <=, or <) choose one
on point and one off point.

• For each strict equality condition (=) choose one on
point and two off points, one slightly less than the
conditional value and one slightly greater than the
value.

59

Applicability	and	Limitations	

• Applicable when multiple variables should be
tested together either for efficiency or because of a
logical interaction.

• Best suited to numeric values.

60

Types	of	black	box	testing
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

61

62

A use-case is:
“… a particular form or pattern or exemplar of usage, a
scenario that begins with some user of the system
initiating some transaction of sequence of interrelated
events.”
Jacobson, m fl 1992: Object-oriented software
engineering. Addison-Wesley

Use-case	testing

63

Use-case	diagram	for	the	coffee-machine

CoffeDrinker

TeaDrinker

Service

Porter

Buy a cup of
coffe

Get coin in
return

Pour hot water

Clean the
Machine

Brew a can of
coffee

CoffeeMachine

Add ingredients

Collect coins

Subject
boundary

Subject Subject
name

Sufficient	information	to	write	
a	test-case?

Detailed template	for	describing	use	cases	
Use	case	component Description

Identifier

Goal	in	Context a	longer	statement	of	the	goal,	if	needed

Scope what	system	is	being	considered	black-box	under	design

Level Summary,	Primary	task,	Sub-function

Preconditions what	we	expect	is	already	the	state	of	the	world

Success	End	Condition the	state	of	the	world	upon	successful	completion

Failed	End	Condition the	state	of	the	world	if	goal	abandoned

Primary	Actor a	role	name	for	the	primary	actor,	or	description

Trigger the	action	upon	the	system	that	starts	the	use	case,	may	be	
time	event

MAIN	SUCCESS	
SCENARIO

step	# action	description
1
2
….

64

For	complete	template	see	chapter	9

Types	of	black	box	testing	- additional	reading
1. Exhaustive testing
2. Equivalence class testing (chapter 3)
3. Boundary value analysis (chapter 4)
4. Decision table testing (chapter 5)
5. Pairwise testing (chapter 6)
6. State transition testing (chapter 7)
7. Domain analysis testing (chapter 8)
8. Use case testing (chapter 9)

65

Thank	you!
Questions?

