
specialize in exploratory testing. As

I write this I am, with my brother

James, leading an exploratory test

team for a demanding client. Our

mission is to test whatever is need-

ed, on short notice, without the ben-

efit or burden of pre-defined test

procedures. There are other test

teams working on various parts of
the product. Our particular team was commissioned be-
cause the product is so large and complex, and the stakes
are so high. We provide extra testing support to follow up
on rumors, reproduce difficult problems, or cover areas
that lie between the responsibilities of the other testers.

Unlike traditional scripted testing, exploratory test-
ing is an ad hoc process. Everything we do is optimized to
find bugs fast, so we continually adjust our plans to refo-
cus on the most promising risk areas; we follow hunches;
we minimize the time spent on documentation. That
leaves us with some problems. For one thing, keeping
track of each tester’s progress can be like herding snakes
into a burlap bag. Every day I need to know what we test-
ed, what we found, and what our priorities are for further
testing. To get that information, I need each tester on the
team to be a disciplined, efficient communicator. Then, I
need some way to summarize that information to Manage-
ment and other internal clients.

One way to collect status is to have frequent meet-
ings. I could say: “Okay people, what did you do today?”
Some testers would give me detailed notes, some would
retell exciting stories about cool bugs, some would reply
with the equivalent of “I tested stuff” and fall silent with-
out more specific prompting. And I’d be like a detective at
a crime scene trying to make sense of everyone’s story.

For this project, James and I wanted to do better than

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing November/December 2000
32

QUICK LOOK

■ Organizing ad hoc testing efforts

■ How to use session metrics to
communicate test progress

A strategy for structuring exploratory

testing by Jonathan Bach

TestingTesting

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Session-Based
Test Management

http://www.stqemagazine.com/

that. What if we could find a way for the testers to make
orderly reports and organize their work without obstruct-
ing the flexibility and serendipity that makes exploratory
testing useful? That was our motivation for developing the
tool-supported approach we call session-based test man-
agement.

Testing in Sessions
The first thing we realized in our effort to reinvent ex-
ploratory test management was that testers do a lot of
things during the day that aren’t “testing.” If we wanted to
track testing, we needed a way to distinguish testing from
everything else. Thus, “sessions” were born.

In our practice of exploratory testing, a session, not a
test case or bug report, is the basic testing work unit. What
we call a session is an uninterrupted block of reviewable,
chartered test effort. By “chartered,” we mean that each
session is associated with a mission—what we are testing,
or what problems we are looking for. By “uninterrupted,”
we mean no significant interruptions—no email, meetings,
chatting, or telephone calls. By “reviewable,” we mean a
report (called a session sheet) that pro-
vides information about what hap-
pened, in a format that can be exam-
ined by a third party (such as the test
manager).

In my team, sessions last ninety
minutes, give or take. We don’t time
them very strictly because we don’t
want to be more obsessed with time
than with good testing. If a session lasts
closer to forty-five minutes, we call it a
short session. If it lasts closer to two
hours, we call it a long session. Be-
cause of meetings, email, and other im-
portant non-testing activities, we ex-
pect each tester to complete about
three sessions on a typical day.

What specifically happens in each
session depends on the tester and the
charter of that session. For example,
the tester may be directed to analyze a
function, or look for a particular prob-
lem, or verify a set of bug fixes.

We hold a debriefing on each session—a short discus-
sion to assure that the tester and the test manager are clear
about what happened. For new testers, the debriefing oc-
curs as soon as possible after the session. As testers gain
experience and credibility in the process, these meetings
take less time, and we might cover several sessions at once.
As test lead, my primary objective in the debriefing is to un-
derstand and accept the session report. Another objective is
to provide feedback and coaching to the tester. We find that
the brief, focused nature of sessions makes the debriefing
process more tractable than it was in the old days, when we
were trying to cover several days of work at once.

By developing a visceral understanding—through the
debriefings—of how much can be done in a test session,
and by tracking how many sessions are actually done over a
period of time, we gain the ability to estimate the amount of

work involved in a test cycle and predict how long testing
will take…even though we have not planned the work in
detail.

If there’s a magic ingredient in our approach to ses-
sion-based test management, it’s the session sheet format:
each report is provided in a tagged text format and stored
in a repository with all the other reports. We then scan
them with a tool we wrote that breaks them down into their
basic elements, normalizes them, and summarizes them
into tables and metrics. Using those metrics, we can track
the progress of testing closely, and make instant reports to
Management, without having to call a team meeting. In
fact, by putting these session sheets, tables, and metrics
online, our clients in the project have instant access to the
information they crave. For instance, the chart in Figure 1
shows that the testers are spending only about a third of
their time actually testing. That corresponds to two ses-
sions per day, on average, rather than three sessions. Since
the chart represents two months of work, it suggests that
there is some sort of ongoing obstacle that is preventing
the testers from working at full capacity. Figure 2 allows us
to get a rough sense of how many more sessions we can ex-

November/December 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
33

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

300

250

200

150

100

50

5/26 6/9 6/23 7/7 7/21 8/4 8/18

Number of Test Sessions

FIGURE 1 Test sessions

Non-Session

Testing

Bug
Investigation

Setup

Opportunity
Testing 1%

61%

28%

4%6%

FIGURE 2 Work breakdown A
N

N
IE

 B
IS

S
E

T
T

http://www.stqemagazine.com/

pect to do during the remainder of the project. The most re-
cent week of data suggests that the rate of testing is accel-
erating.

Anatomy of a Test Session
From a distance, exploratory testing can look like one big
amorphous task. But it’s actually an aggregate of sub-tasks
that appear and disappear like bubbles in a Jacuzzi. We’d
like to know what tasks happen during a test session, but we
don’t want the reporting to be too much of a burden. Col-
lecting data about testing takes energy away from doing
testing.

Our compromise is to ask testers to report tasks very
generally. We separate test sessions into three kinds of
tasks: test design and execution, bug investigation and re-
porting, and session setup. We then ask the testers to esti-
mate the relative proportion of time they spent on each
kind of task. We call these the “TBS” metrics. Test design
and execution means scanning the product and looking
for problems. Bug investigation and reporting is what
happens once the tester stumbles into behavior that looks
like it might be a problem. Session setup is anything else
testers do that makes the first two tasks possible, including
tasks such as configuring equipment, locating materials,
reading manuals, or writing a session report.

We also ask testers to report the portion of their time
spent “on charter” versus “on opportunity.” Opportunity
testing is any testing that doesn’t fit the charter of the ses-
sion. Since we’re doing exploratory testing, we remind and
encourage testers that it’s okay to divert from their charter
if they stumble into an off-charter problem that looks im-
portant.

Aside from the task breakdown metrics, there are
three other major parts of the session sheet (see example
on opposite page): bugs, issues, and notes. Bugs are con-
cerns about the quality of the product. Issues are ques-
tions or problems that relate to the test process or the
project at large. Notes are a free-form record of anything
else—test case ideas, function lists, risk lists, or any oth-
er elements related to the testing that occurs during the
session.

The entire session report consists of these sections:

■ Session charter (includes a mission statement and areas to be tested)

■ Tester name(s)

■ Date and time started

■ Task breakdown (the TBS metrics)

■ Data files

■ Test notes

■ Issues

■ Bugs

Tool Support
The session sheets are scanned by a tool we wrote in Perl.
The tool performs about eighty syntax and consistency
checks on each sheet. For instance, if a data file is refer-
enced on a session sheet, the tool assures that the file has
been placed in the appropriate data file directory. The char-
ter section of the session sheet allows the inclusion of spe-
cific test area keywords so that each session can be associ-
ated with elements of a test matrix. In order to reduce
errors, the legal values of these area keywords are stored in
a separate file.

The output of the scanner is a set of text tables that
helps us tell the story of the test project. Each text table is
in a delimited format suitable for importing to Excel for for-
matting and analysis. The scanner produces these tables:

■ Test Notes Test notes sections, by session ID

■ Bugs Bug records, by bug ID and session ID

■ Issues Issue records, by issue ID and session ID

■ Charters Charter statements and area keywords, by session ID

■ Data Files Data file names, by session ID

■ Session Breakdowns Session metrics, by session ID

■ Coverage Breakdowns Session metrics, by area keyword

■ Tester Breakdowns Session metrics, by tester name

■ Day Breakdowns Session metrics, by day

■ ToDo Sessions Incomplete session sheets

Let me explain a bit more about the ToDo session table.
One way to dispatch exploratory testers is to create ToDo
session sheets—sheets that include a charter but with all
other sections blank. When testers finish a test session,
they look through the sheet folder, pick a ToDo sheet, and
perform a session with that charter. The ToDo table pro-
duced by the scan tool is the list of the ToDo sheets cur-
rently in the session sheet folder. We call that list the
“hopper.” This arrangement provides a convenient way to
charter an entire regression test pass at one time. And us-
ing another tool we wrote, called ToDomaker, we can au-
tomatically generate ToDo sheets from an Excel test ma-
trix.

The hopper also helps us deal with requests for spe-
cial testing by our clients. All we have to do is point at the
hopper and ask the client what priority we should give to
their request, compared to the other sessions already in
the hopper.

We also use a search utility that allows us to quickly
locate, display, and print any session sheet that contains a
specified string. This tool is important because our client
may ask, at any moment, to see the raw data behind our
metrics and summary reports. In about five seconds, we
can bring up every session sheet related to, say, the Map-

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing November/December 2000
34

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

November/December 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
35

Maker Navigator dialog. Give us thirty or forty more sec-
onds, and we can print all of those sheets for you.

Metrics
The breakdowns tables, listed above, contain the task
breakdown numbers for each session sheet. These are
normalized so the data from all session sheets can be
combined. The metrics tell us what portion of on-charter
work was spent on each of the TBS tasks, what portion of
sessions was spent following up on opportunities, and
how much time (in session units) was spent on non-ses-
sion work. The latter measurement we get by assuming
that a normal workday would include 5.333 normal ses-
sions if testers did nothing but sessions. By keeping track
of who was “on duty” on the test team, and on what days,
we can know the theoretical maximum number of ses-
sions that could have been executed in a given period of
calendar time. We subtract the number of sessions that
actually occurred, and that gives us the total amount of
non-session work. This calculation is not super precise,
but so far we’ve found it precise enough for our purpose:
to get a reasonably clear idea of how much actual testing
is going on during the day.

These metrics help us make better estimates and pre-
dictions than ever before about such things as the learn-
ing curve of testers, the effects of adding a new tester to
an established team, and the impact on productivity of
testing a less testable versus a more testable product.
For example, let’s say that our team is cooking along at
three sessions per tester day, on average, and we add a
new tester. Since the testers will be interrupted by the
need to provide coaching, they’ll do fewer (or shorter)
sessions than they otherwise would, or else they will
spend more time in opportunity testing (since assisting a
tester on another session is a form of off-charter test
work). Meanwhile, debriefing the new tester will take
more time at first. These effects will show up in the met-
rics.

Another simple thing we do with the metrics is to
plot our total test sessions over time relative to the ship
date. With such a graph, it’s a simple matter to say: At
this rate, we have the bandwidth to do about 200
more test sessions over the next four weeks. If there
are twenty-five major areas of the product, and there
are two builds per week, the deepest regression test
we could do would provide only one session per prod-
uct area per build. If we want some areas to be cov-
ered better than that, we need to do some triage—or
squeeze in more sessions.

Although these metrics can provide better visibility
and insight about what we’re doing in our test process,
it’s important to realize that the session-based testing
process and associated metrics could easily be distorted
by a confused or biased test manager. A silver-tongued
tester could bias the sheets and manipulate the debrief-
ing in such a way as to fool the test manager about the
work being done. Even if everyone is completely sober
and honest, the numbers may be distorted by confusion
over the reporting protocol, or the fact that some testers
may be far more productive than other testers. Effective

use of the session sheets and metrics requires continual
awareness about the potential for these problems.

Notes From the Field
To give you a better feel for the problems with the session
approach, and how we’re dealing with them, here are
some notes about the finer points of session-based test
management:

What if a tester performs testing work outside of a session?
Testers always get credit for testing. We call this the Golden
Rule. If a tester does work that he later realizes should have
been in a session, we have him create a session sheet to de-
scribe it, or add the work onto an existing session sheet. We
do whatever is necessary to make the session sheets accu-
rately reflect the testing that was done.

What if two testers work on one session?
The scanning tool counts a session with two testers as two
sessions. So, there’s no incentive for testers not to cooper-
ate with each other. During the debriefing, we just make
sure that they really did work together.

What if a tester spends all day on one long session?
This happens more often than we first anticipated. Some
kinds of testing, such as “review the user manual,” can drag
on for hours without interruption. Instead of forcing testers
to create multiple session sheets to report on what was re-
ally one session, we adjusted the syntax of the Duration
keyword to allow multipliers. Hence a tester would report a
four-hour session as “long * 2” in the Duration field.

What if a tester can’t avoid an interruption?
We don’t want test sessions to be interrupted, but some-
times it’s necessary: a surprise meeting may be called, or a
developer may need help reproducing a bug. In those cases,
we allow a session to be suspended and resumed later.

What if a tester can’t fulfill the charter?
If the tester can’t get anywhere, the standing order is to
abort the session and do a different one. If the tester makes
a lot of progress, but the charter is much larger than can be
completed, then the test manager should reduce the scope
of the charter (in the debriefing) or create more sessions
with the same charter.

What if the tester spends almost the whole session on
“opportunity”?
The test manager changes the charter to fit whatever it was
that the tester did. As long as the charter substantially re-
flects what work was done, we’re cool. The original charter
can be reused on a new session. In fact, it may require sev-
eral sessions to fulfill any given charter. Naturally, if a tester
chronically does not fulfill the charter, that’s a coaching is-
sue that is handled in the debriefings.

What’s expected of a tester who’s given an area that’s already
been tested?
We expect the tester to review the test notes from earlier
sessions and, where applicable, refine the earlier notes in

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing November/December 2000
36

CHARTER

Analyze MapMaker’s View menu functionality and
report on areas of potential risk.

#AREAS
OS | Windows 2000
Menu | View
Strategy | Function Testing
Strategy | Functional Analysis

START

5/30/00 03:20 pm

TESTER

Jonathan Bach

TASK BREAKDOWN

#DURATION
short

#TEST DESIGN AND EXECUTION
65

#BUG INVESTIGATION AND REPORTING
25

#SESSION SETUP
20

#CHARTER VS. OPPORTUNITY
100/0

DATA FILES

#N/A

TEST NOTES

I touched each of the menu items below, but focused
mostly on zooming behavior with various combinations
of map elements displayed.

View: Welcome Screen
Navigator
Locator Map
Legend
Map Elements

Highway Levels
Street Levels

Airport Diagrams
Zoom In
Zoom Out
Zoom Level

(Levels 1-14)
Previous View

Risks:
– Incorrect display of a map element.
– Incorrect display due to interrupted repaint.
– CD may be unreadable.
– Old version of CD might accidentally be used.
– Some function of the product may not work at a

certain zoom level.

BUGS

#BUG 1321
Zooming in makes you put in the CD 2 when you get to
a certain level of granularity (the street names level)
— even if CD 2 is already in the drive.

#BUG 1331
Zooming in quickly results in street names not being
rendered.

#BUG <not_entered>
Instability with slow CD speed or low video RAM. Still
investigating.

ISSUES

#ISSUE 1
How do I know what details should show up at what
zoom levels?

#ISSUE 2
I’m not sure how the locator map is supposed to work.
How is the user supposed to interact with it?

Example
Session
Sheet

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

November/December 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
37

the course of the present session. In this way, assuming that
we’ve trained the testers in the art of test outlining, we ex-
pect that functional outlines and risk lists will get progres-
sively better over time.

When testing bug fixes, how is that recorded?
We use an area keyword titled “strategy | bug regression” and
write a charter that instructs the tester to check each fix.
We expect the tester to test in the general areas of the fixes
to help assure that something else wasn’t broken during the
fix process.

How does the tester account for time writing up a session sheet?
How about debriefing time?
Session sheet completion is counted as session setup time,
within the session. Debriefing is counted as non-session
work.

How does a tester account for TBS tasks that occur
simultaneously?
What we really want to know is what things interrupt test-
ing. So, if the tester figures out a way to test and do session
setup simultaneously, we don’t count the setup time. If a
test is running while the tester is investigating a bug, we
don’t count the bug time. Using this protocol, we can say,
for the most part, that a report of 50% testing and 50% bug
investigation means that the tester could have done twice
as much testing had the bugginess of the product not inter-
rupted the test process.

How does the test manager conduct the debriefing?
In addition to walking through the session sheet, we use an
agenda summarized by the acronym “PROOF”:

Past What happened during the session?

Results What was achieved during the session?

Obstacles What got in the way of good testing?

Outlook What still needs to be done?

Feelings How does the tester feel about all this?

What if the test manager is too overloaded to do debriefings?
The debrief is the testers’ chance to reveal their experi-
ences, and the manager’s chance to redirect or validate fur-
ther effort. To the extent that the debriefings don’t happen,
the test manager is out of touch with the test process. The
testers then begin drifting with the current of project
events and their own preferences about what’s fun to test,

while the session sheets degrade into something more like
rambling ransom notes or vaguely technical haiku. One way
to help the situation could be to deputize senior testers to
debrief the work of junior testers. As long as someway,
somehow, the meetings happen.

Too Much Bureaucracy?
One colleague of mine, upon hearing me talk about this
approach, expressed the concern that senior testers
would balk at all the paperwork associated with the ses-
sion sheets. All that structure, she felt, would just get in
the way of what senior testers already know how to do.

Although my first instinct was to argue with her, on
second thought I realized she was giving me an important
reality check. This approach does impose a structure that
is not strictly necessary to the mission of good testing.
Segmenting complex and interwoven test tasks into dis-
tinct little sessions is not always easy or natural. Session-
based test management is simply one way to bring more
accountability to exploratory testing, for those situations
in which accountability is especially important.

This method is still relatively new to James and me,
and we still have a lot to learn about the process and how
it compares with traditional methods of managing testing.
What have our experiences shown so far? Probably the
single most important thing we’ve found is that this kind
of test management weighs especially heavily on the test
manager. We experimented with dropping the session de-
briefings, but that led to poor session sheets and mean-
ingless metrics. We want good metrics, of course, but our
approach produces a lot of them. Every day there are
more, and sometimes we feel like we’re swimming in
spreadsheet tables. That also is a burden on the test man-
ager, who must interpret and summarize the data. Session-
based test management may be difficult for new test man-
agers.

What the session stuff adds is a framework that helps
clarify and track almost every element of the testing, from
test planning to assigning work to coaching testers. It’s
that framework that intrigues us the most. If we’re going
to maintain the respect and support of Management and
developers, we must help our clients understand what it is
that testers do, each and every working day. STQE

Jonathan Bach (jonbach@satisfice.com) is a writer who
became a tester five years ago at the urging of his
brother James. For four years, Jonathan was a tester
and test lead at Microsoft, and he is now a trainer and
lab manager at Satisfice, Inc. (www.satisfice.com), a Vir-
ginia-based test consulting and training lab.

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

