Static Analysis: Symbolic Execution and Inductive Verification Methods
TDDC90: Software Security

Ahmed Rezine
IDA, Linköpings Universitet

Hösttermin 2022
Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning
Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning
We want to answer whether the program is **safe** or not (i.e., has some erroneous reachable configurations or not):
The idea is then to come up with efficient approximations and algorithms to give correct answers in as many cases as possible.
A sound analysis cannot give **false negatives**

A complete analysis cannot give **false positives**
Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce different types of analysis:

- **Previous lecture:**
 - syntactic analysis: scalable but neither sound nor complete
 - abstract interpretation sound but not complete

- **This lecture:**
 - symbolic executions: complete but not sound
 - inductive methods: may require heavy human interaction in proving the program correct

These two lectures are only appetizers: More concepts and ideas are discussed in TDDE34 under VT2
Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce different types of analysis:

- Previous lecture:
 - syntactic analysis: scalable but neither sound nor complete
 - abstract interpretation sound but not complete

- This lecture:
 - symbolic executions: complete but not sound
 - inductive methods: may require heavy human interaction in proving the program correct

- These two lectures are only appetizers:
 - More concepts and ideas are discussed in TDDE34 under VT2
First, What are SMT Solvers?

- Stands for *Satisfiability Modulo Theory*
- Intuitively, these are constraint solvers that extend *SAT solvers* to richer theories
- Many solvers exist (Yices, CVC, STP, OpenSMT, Princess, Z3, etc),
- You will be using Z3 https://github.com/Z3Prover/z3 in the lab z3
- SAT solvers find a satisfying assignment to a formula where all variables are booleans or establishes its unsatisfiability
- SMT solvers find satisfying assignments to first order formulas where some variables may range over other values than just booleans
Introduction

Originates from automating proof-search for first order logic.

- **Variables:** $x, y, z, ...$
- **Constants:** $a, b, c, ...$
- **N-ary functions:** $f, g, h, ...$
- **N-ary predicates:** $p, q, r, ...$
- **Atoms:** $\bot, \top, p(t_1, \ldots, t_n)$
- **Literals:** atoms or their negation
- **A FOL formula is a literal, boolean combinations of formulas, or quantified (\exists, \forall) formulas.**

Evaluation of formula φ, with respect to interpretation I over non-empty (possibly infinite) domains for variables and constants gives true or false (resp. $I \models \varphi$ or $I \not\models \varphi$)
A formula φ is:

- satisfiable if $I \models \varphi$ for some interpretation I
- valid if $I \models \varphi$ for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or domain-specific fragments.
Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

\[\varphi \triangleq g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

- EUF: Equality over Uninterpreted functions
- Satisfiable?
Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

\[\varphi \triangleq (x_1 \geq 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1)) \]
Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

\[\varphi \triangleq (x_1 \geq 0) \land (x_1 < 1) \]
\[\land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1)) \]

▶ Linear Integer Arithmetic (LIA)
Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

\[\varphi \equiv (x_1 \geq 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1) \]

- Linear Integer Arithmetic (LIA)
- Equality over Uninterpreted functions (EUF)
- Arrays (A)
Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

\[\varphi \triangleq (x_1 \geq 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1) \]

- **LIA:** \(x_1 = 0 \)
- **EUF:** \(f(x_1) = f(0) \)
- **A:** \(rd(wr(P, x_2, x_3), x_2) = x_3 \)
- **Bool:** \(rd(wr(P, x_2, x_3), x_2) = x_3 + 1 \)
- **LIA:** \(\perp \)
Introduction

- Sometimes more natural to express in logics other than propositional logic
- SMT decide satisfiability of ground FO formulas wrt. background theories
- Many applications: Model checking, predicate abstraction, symbolic execution, scheduling, test generation, ...
Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning
Testing

- Most common form of software validation
- Explores only one possible execution at a time
- For each new value, run a new test.
- On a 32 bit machine, if(i==2021) bug() would require 2^{32} different values to make sure there is no bug.
- The idea in symbolic testing is to associate **symbolic values** to the variables
Symbolic Testing

- Use symbolic values instead of concrete ones
- Along the path, maintain a Path Constraint \((PC)\) and a symbolic state \((\sigma)\)
- \((PC)\) collects constraints on variables’ values along a path,
- \((\sigma)\) associates variables to symbolic expressions,
- We get concrete values if \((PC)\) is satisfiable
- The program can be run on these values
- Negate a condition in the path constraint to get another path
Symbolic Execution: a simple example

- Can we get to the ERROR? explore using SSA forms.
- Useful to check array out of bounds, assertion violations, etc.

```c
foo(int x, y, z){
    x = y - z;
    if(x==z){
        z = z - 3;
        if(4*z < x + y){
            if(25 > x + y) {
                ...}
            else{
                ERROR;
                }
        }
    }
    }
}
```

- $PC_1 = true$
- $PC_2 = PC_1$
- $PC_3 = PC_2 \land x_1 = y_0 - z_0$
- $PC_4 = PC_3 \land x_1 = z_0$
- $PC_5 = PC_4 \land z_1 = z_0 - 3$
- $PC_6 = PC_5 \land 4 \times z_1 < x_1 + y_0$
- $PC_{10} = PC_6 \land \neg(25 > x_1 + y_0)$

$PC = (x_1 = y_0 - z_0 \land x_1 = z_0 \land z_1 = z_0 - 3 \land 4 \times z_1 < x_1 + y_0 \land \neg(25 > x_1 + y_0))$

Check satisfiability with a solver (e.g., Alt-Ergo, Boolector, CVC4, MathSAT5, OpenSMT2, STP, Yices2, Z3)
Symbolic execution today

- Leverages on the impressive advancements of SMT solvers
- Modern symbolic execution frameworks are not purely symbolic, and not necessarily purely static:
 - They can follow a concrete execution while collecting constraints along the way, or
 - They can treat some of the variables concretely, and some other symbolically
- This allows them to scale, to handle closed code or complex queries
Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning
Function Specifications and Correctness

- **Contract between the caller and the implementation.** Total Correctness requires that:
 1. if the pre-condition \((-100 \leq x \&\& x \leq 100)\) holds
 2. then the implementation terminates,
 3. after termination, the following post-condition holds
 \((x\geq 0 \&\& \text{result} == x \mid\mid x<0 \&\& \text{result} == -x)\)

- **Partial Correctness** does not require termination

```c
/*@ requires -100 <= x && x <= 100;
@ ensures x>=0 && \result == x || x<0 && \result == -x;
*/
int abs(int x){
    if(x < 0)
        return -x;
    return x;
}
```
Hoare Triples and Partial Correctness

- a Hoare triple \(\{ P \} \ stmt \ { R \} \) consists in:
 - a predicate pre-condition \(P \)
 - an instruction \(stmt \),
 - a predicate post-condition \(R \)
- intuitively, \(\{ P \} \ stmt \ { R \} \) holds if whenever \(P \) holds and \(stmt \) is executed and terminates (partial correctness), then \(R \) holds after \(stmt \) terminates.
- For example:
 - \(\{ true \} \ x := y \ \{(x = y)\} \)
 - \(\{(x = 1) \land (y = 2)\} \ x := y \ \{(x = 2)\} \)
 - \(\{(x \geq 1)\} \ y := 2 \ \{(x = 0) \lor (y \leq 10)\} \)
 - \(\{(x \geq 1)\} \ (if(y == 2) then x := 0) \ \{(x \geq 0)\} \)
 - \(\{false\} \ x := 1 \ \{(x = 2)\} \)
Weakest Precondition

- If \(\{ P \} \) stmt \(\{ R \} \) and \(P' \Rightarrow P \) for any \(P' \) s.t. \(\{ P' \} \) stmt \(\{ R \} \), then \(P \) is the **weakest precondition** of \(R \) wrt. stmt, written \(wp(stmt, R) \)

- \(wp(x := x + 1, x \geq 1) = (x \geq 0) \).

 \((x \geq 5), (x = 6), (x \geq 0 \land y = 8) \) are all valid preconditions, but they are not weaker than \(x \geq 0 \).

- Intuitively \(wp(stmt, R) \) is the weakest predicate \(P \) for which \(\{ P \} \) stmt \(\{ R \} \) holds
Weakest Precondition of assignments

- $wp(x = E, R) = R[x/E]$, i.e., replace each occurrence of x in R by E.

For instance:

- $wp(x := 3, x == 5) = (x == 5)[x/3] = (3 == 5) = false$
- $wp(x := 3, x >= 0) = (x >= 0)[x/3] = (3 >= 0) = true$
- $wp(x := y + 5, x >= 0) = (x >= 0)[x/y + 5] = (y + 5 >= 0)$
- $wp(x := 5 * y + 2 * z, x + y >= 0) = (x + y >= 0)[x/5 * y + 2 * z] = (6 * y + 2 * z >= 0)$
Assume a sequence of two instructions $stmt; stmt'$, for example $x := 2 * y; y := x + 3 * y$.

the the weakest precondition is given by:

$$wp(stmt; stmt', R) = wp(stmt, wp(stmt', R)),$$

$$\begin{align*}
wp(x := 2 \cdot y; y := x + 3 \cdot y, y > 10) \\
= & \quad wp(x := 2 \cdot y, wp(y := x + 3 \cdot y, y > 10)) \\
= & \quad wp(x := 2 \cdot y, (y > 10)[y/x + 3 \cdot y]) \\
= & \quad wp(x := 2 \cdot y, x + 3 \cdot y > 10) \\
= & \quad (x + 3 \cdot y > 10)[x/2 \cdot y] \\
= & \quad (2 \cdot y + 3 \cdot y > 10) \\
= & \quad y > 2
\end{align*}$$
Assume a conditional \((\text{if}(B) \text{ then } stmt \text{ else } stmt')\), for example \((\text{if}(x > y) \text{ then } z := x \text{ else } z := y)\)

The weakest precondition is given by:

\[
(\wp((\text{if}(B) \text{ then } stmt \text{ else } stmt'), R)) = (B \Rightarrow \wp(stmt, R)) \land (\neg B \Rightarrow \wp(stmt', R))
\]

For example, \(\wp((\text{if}(x > y) \text{ then } z := x \text{ else } z := y), z <= 10)\)

\[
= (x > y \Rightarrow \wp(z := x, z <= 10)) \land (x <= y \Rightarrow \wp(z := y, z <= 10))
\]

\[
= (x > y \Rightarrow x <= 10) \land (x <= y \Rightarrow y <= 10)
\]
In order to establish \(\{ P \} \ (\textbf{while}(B)\textbf{do}\{stmt\}) \ \{ R \} \), you will need to find an invariant \(Inv \) such that:

- \(P \Rightarrow Inv \)
- \(\{Inv\&\&B\} \ stmt \ \{Inv\} \)
- \((Inv\&\&!B) \Rightarrow R \)

For example \(\{i == j == 0\} \ (\textbf{while}(i < 10)\textbf{do}\{i := i + 1; j := j + 1\}) \ \{j == 10\} \), we need to find \(Inv \) such that:

- \((i == j == 0) \Rightarrow Inv \)
- \(\{Inv\&\&(i < 10)\} \ i = i + 1; j = j + 1 \ \{Inv\} \)
- \((Inv\&\&i >= 10) \Rightarrow j == 10 \)
Hoare Triples for Loops, Total Correctness

- \(\{P\} \ (\text{while}(B)\text{do}\{\text{stmt}\}) \ \{R\} \)
- Partial correctness: if we start from \(P \) and \((\text{while}(B)\text{do}\{\text{stmt}\}) \) terminates, then \(R \) terminates.
 - \(P \Rightarrow Inv \)
 - \(\{Inv\&\&B\} \text{ stmt } \{Inv\} \)
 - \((Inv\&\&!B) \Rightarrow R \)
- Total correctness: the loop does terminate: find a **variant function** \(v \) such that:
 - \((Inv\&\&B) \Rightarrow (v > 0) \)
 - \(\{Inv\&\&B\&\&v = v_0\} \text{ stmt } \{v < v_0\} \)
- For example, \((\text{while}(i < 10)\text{do}\{i := i + 1; j := j + 1\}) \) can be shown to terminate with \(v = (10 - i) \) and \(Inv = (i \leq 10) \)