Software Engineering Reviews

TDDC90
autumn 2020

Kristian Sandahl
Department of Computer and Information Science
Linköping University, Sweden
kristian.sandahl@ida.liu.se
Agenda - Theory

Part I
Inspections

Part II
Other reviews

Part II
Variants and research
Part 1 Inspections
Systematic inspections

The best way of finding many defects in code and other documents

- Experimentally grounded in replicated studies

Goals:

- Find defects (anomalies)
- Training
- Communications
- Hostage taking
Development over the years

• Fagan publishes results from code and design inspections 1976 in IBM systems journal
• Basili and Selby show the advantage of inspections compared to testing in a tech-report 1985.
• Graham and Gilb publish the book Software inspections 1993. This describes the standard process of today.
• Presentation of the Porter-Votta experiment in Sorrento 1994 starts a boom for replications.
• Sauer et al compare experimental data with behavioural research in a tech-report 1996
• IEEE std 1028 updated 2008
Roles

- Author
- Moderator (aka Inspection leader)
- Reader (if not handled by the Moderator)
- Inspector
- Scribe (aka Recorder)
Process

• Initial:
 • Check criteria
 • Plan
 • Overview

• Individual:
 • Preparation, or
 • Detection

• Group:
 • Detection, or
 • Collection
 • Inspection record
 • Data collection

• Exit:
 • Change
 • Follow-up
 • Document & data handling
Inspection record

- Identification
- Location
- Description

Decision for entire document:
 - Pass with changes
 - Reinspect
Data collection

• Number of defects
• Classes of defects
• Severity
• Number of inspectors
• Number of hours individually and in meeting
• Defects per inspector
• Defect detection ratio:
 • Time
 • Total defects
Our inspection record

<table>
<thead>
<tr>
<th>Id</th>
<th>Loc.</th>
<th>Description</th>
<th>Class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practical investigation

- 214 code inspections from 4 projects at Ericsson
- Median number of defects = 8
- 90 percentile = 30
- Majority values:
 - up to 3.5 h preparation per document
 - up to 3 h inspection time
 - up to 4000 lines of code
 - 2 to 6 people involved

Inspection rate (IEEE Std 1028-2008)

- Requirements or Architecture (2-3 pages per hour)
- Source code (100-200 lines per hour)
Regression wrt defect detection ratio

• Preparation time per code line typically 0.005 hours per line (12 minutes per page)
• Size of document have negative effect on DFR, max recommendation 5000 lines
• A certain project is better than two of the others
• 4 inspectors seems best (not significant)
• Analysis performed by Henrik Berg, LiTH-MAT-Ex-1999-08
Part II
Other reviews
Other reviews

- Management review – check progress
- Walk-through – improve product, training
- Technical review – evaluate conformance
- Audit – 3rd party, independent evaluation
- (Peer) Review
- Buddy-check
- Desk check
Technical reviews

• Determine the technical status of the product
• Evaluate conformance to specifications and standards
• Evaluate if the software is complete and suitable for intended use
• Performed by technical leadership and peers for a decision maker
• Higher volume of material than inspections
• Output: corrective actions (date and responsible), status, recommendations
Audits

- **External 3rd party (independent) evaluation of conformance to specification and standards**
- **An initiator (manager, customer, user representative) decides on the need for an audit**
- **Evidence collection, investigative actions**
- **The audit team gets information form liaison within the audited organization**
- **Output: Findings (major, minor)**
Root-cause analysis

- Performed regularly for severe defects, frequent defects, or random defects
- Popular mind map: The Ishikawa diagram
- Parameters:
 - Defect category
 - Visible consequences
 - Did-detect
 - Introduced
 - Should-detect
 - Reason
Sometimes the term “inspection” is used for this review.

Source: https://review.openstack.org/Documentation/intro-quick.html
Part II
Variants and research
Reading techniques - checklist

- Checklist
- Industry standard
- Shall be updated
Reading techniques - scenario

- Scenario, e.g.
 - Algorithm
 - Data types
 - Missing functions
 - Vulnerability
- A checklist splitted to different responsibilities
- 30% higher DFR?
Reading techniques – perspective-based

• Different inspectors represent different roles, e.g.
 • Programmer
 • Tester
 • Architect
• Real or played roles
• 30% higher DFR?
Cost of quality

- Person-hours
- Calender time
- Good reading techniques
- Good data recording
"Optimal" method

Inspectors

Repository

Two experts

Defect list

False positives
Summary - What have we learned today?

- Inspections rule!
- Inspections are expensive
That’s all, folks!