
Building Security Requirements with CLASP
John Viega

Secure Software, Inc.
2010 Corporate Ridge, Suite 820

McClean, VA
+1 (703) 749-3871

viega@securesoftware.com

ABSTRACT
Traditionally, security requirements have been derived in an ad
hoc manner. Recently, commercial software development
organizations have been looking for ways to produce effective
security requirements.

In this paper, we show how to build security requirements in a
structured manner that is conducive to iterative refinement and,
if followed properly, metrics for evaluation. While
requirements specification cannot be a complete science, we
provide a framework that is an obvious improvement over
traditional methods that do not consider security at all.

We provide an example using a simple three-tiered
architecture. The methodology we document is a subset of
CLASP, a set of process pieces for application security that we
have recently published, in conjunction with IBM/Rational.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
methodologies.

General Terms
Management, Measurement, Documentation, Reliability,
Security.

Keywords
Security requirements, application security, security process.

1. INTRODUCTION
Work in requirements has primarily focused on eliciting

and representing concrete business requirements. Security is
rarely at the forefront of stakeholder concerns, except perhaps
to comply to basic standards, even if it is a set of de facto
technologies, such as SSL. Perhaps for this reason, there has
not previously been a cohesive methodology for deriving
security requirements. As a result, books and resources on
secure software engineering [1, 4] largely describe ad hoc

methodologies for software security engineering, particularly
when addressing security requirements.

In this paper, we describe how to take a resource-centric
approach to deriving security requirements. This approach
results in much better coverage of security requirements than
do ad hoc methods or technology-driven methods. For
instance, many businesses will quickly derive the business
requirement “Use SSL for security”, without truly
understanding what requirements it is addressing. For instance,
is SSL providing entity authentication, and if so, what is
getting authenticated, and with what level of confidence?
Many organizations overlook this, and use SSL in a default
mode that provides no concrete authentication.

Our approach to software requirements is a subset of our
work on CLASP (Comprehensive, Lightweight Application
Security Process), which is a set of process pieces for helping
development organizations improve the security of their
software. The process is publicly available from IBM’s web
site [2], and is already being used by several software
development organizations.

In Section 2, we present our methodology. In Section 3,
we walk through an example, based upon a traditional three-
tier architecture.

2. REQUIREMENTS METHODOLOGY
At a high level, the CLASP approach to formulating

security requirements consists of the following steps:

1. Identify system roles and resources.
2. Categorize resources into abstractions.
3. Identify resource interactions through the

lifetime of the system.
4. For each category, specify mechanisms for

addressing each core security services.

After one goes through the initial requirements
solicitation process, one will generally identify gaps that
require iteration. Similarly, iteration may be desirable after
elaborating on requirements during the design process. This
seems an unavoidable fact, that requirements will often need to
change as the understanding of a system changes. We will see
in our example below how requirements may evolve as one
works through this process.

The basic idea behind the way CLASP handles security
requirements is to perform a structured walkthrough of
resources, determining how they address each core security
service throughout the lifetime of that resource.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SESS’05, May 15-16, 2005, St. Louis, MO, USA.
Copyright 2004 ACM 1-59593-114-7/05/05…$5.00.

1

2.1 Identifying Roles and Resources
Roles are generally already defined in the course of

architecting and designing a software system, which we can
leverage. The main purpose of roles in so far as security goes is
to identify the owners and users of resources, as well as access
controls between resources. For this reason, it is good to
identify which roles are parameterized with respect to
permissions, and which ones are not.

For example, users constitute a generic role in the system,
but there generally is not one set of user permissions and
privileges. Instead, each user will have his or her own
permissions and privileges, separate from other users. In
contrast, even when multiple people share administrator duties,
administrative privileges are often shared among all
administrators, making the role non-parameterized.

Additionally, it is good to introduce attackers as a role in
the system, and attach a reasonable threat model to each of
those attackers. Generally, this would involve assuming that
the attacker has not only complete control over any network
resources but also assuming that he or she has insider access to
the development organization (e.g., may be an employee, a
friend of an employee or an ex-employee).

Resources are any piece of data or functionality that can
be used by a program. This includes not only application data
such as personal information of users, but also many kinds of
resources that are often implicit or overlooked in specifying a
software system:

� Databases and database tables
� Configuration files
� Cryptographic key stores
� ACLs
� Registry keys
� Web pages (static and dynamic)
� Audit logs
� Network sockets/ network media
� IPC, Services and RPC resources
� Any other files and directories
� Any other memory resource

CLASP recommends that, when the information is
known, break down each resource in as granular a way as
possible, such as by identifying individual database tables,
instead of simply the database. This is important, as
introducing more detail will generally reveal unrecognized
requirements. It is often useful to make resources hierarchical.

It is important to note that network media is a resource of
its own. Data resources will often be stored in memory, placed
onto a wire, received in memory on the other end, and then
stored on disk. In such a scenario, we often will not want to
address the security of the data in a vacuum, but instead in the
context of the resource the data inhabits. In the case of the
network media, we need to specify how to protect that data
when it traverses the media, which may be done in a generic
way, or in a way specific to the media.

2.2 Categorizing Resources
Functional security requirements should show how the

basic security services are addressed for each resource in the
system, and preferably on each capability on each resource.
This generally calls for abstraction to make the process
manageable. Security requirements should be, when possible,
abstracted into broad classes, and then those classes can be
applied to all appropriate resources/capabilities. Then, if there
are resources or capabilities that do not map to the abstractions,
they can be handled individually.

For example, end-user data that is generally considered
highly sensitive can often be lumped into a “User-
Confidential” class, whereas public data could be lumped into
a “User-Public” class. Requirements in the first class would
tend to focus on circumstances in which access to that data can
be granted to other entities.

Categorization should usually include an indication of
which role or roles can own or use a particular resource, as
well as the potential value of the resource.

Categories can be applied either to data resources, or to
individual capabilities by specifying a requirement that the
specific resource or capability should be handled in accordance
with the security policy of the particular protection class.
When applied to data resources, requirements should be
specified in the abstracted class for any possible capability,
even if some data elements will not have the capability.

While it is often the case that most data resources will
lump into a few reasonable abstractions, it is also often the
case that other system resources such as the network, local
memories and processors do not line up with user data
requirements.

Another advantage to categorization is that requirements
can be utilized as organizational control standards, and applied
across projects. This provides an enforcement mechanism to
establish a baseline security posture across and entire
organization by making these control standards “global”
requirements for all software products. It may additionally
save time, compared to addressing each resource individually.

2.3 Identifying Resource Interactions
Security requirements on data change through the lifetime

of the data. For instance, the security of user-confidential data
may be the responsibility of that user when it resides on that
user’s own machine, meaning that the client-side application
does nothing special to protect it, relying instead on whatever
protection mechanisms happen to be in place, such as firewalls.
When the client application sends that data over a network to
middleware, protection against network-based attacks is
usually desirable, as it is when going from the middleware to
the database. When in the middleware, there can be exposure
to new roles, including other accounts using the middleware
and people with account access or physical access to the
machine hosting the middleware, and this can require special
protective measures. Finally, when stored in the database, data
should probably be stored in as secure a manner as feasible,
since data may live there for a long period of time.

In this example, requirements on the user data change as
the data interacts with other resources in the system, including
the network, the database and so-on.

2

One easy way to specify interactions is to step through the
lifetime of a piece of data, at each point identifying what other
resources may have interactions with that resource. If resource
capabilities are being taken into account, the exercise should
be done once for each capability on a resource, instead of just
once on a resource.

Generally, it is fine to do this on a per-data category basis,
but a per-resource walkthrough is useful as a defense-in-depth
mechanism to determine whether the chosen categorization is
adequate.

Additionally, we should also look at how each role might
interact with data of a given category. For example, will there
be data that an administrator may need to modify (e.g., a
password, if the user forgets it)?

Note that, as we step through the system in this way, we
may iterate on earlier steps, as we challenge our own
assumptions about how data will be used.

2.4 Requirement Specification
For each category of resource, we specify how to address each
of the core security services, when interacting with other
resources.
The core security services as defined by CLASP are:

� Authorization: what privileges on data should be granted

to the various roles at various times in the life of the
resource, and what mechanisms should be in place to enforce
the policy. This is also known as access control, and is the
most fundamental security service. Many other traditional
security services (authentication, integrity and
confidentiality) support authorization in some way.
We will generally want to consider here resources outside
the system that are in the operating environment that need to
be protected, such as administrative privileges on a host
machine.
This is the service under which to specify both how one
grants and enforces access control policies, and what roles
have access to what capabilities (and under what
circumstances).

� Authentication and integrity: How is identity determined
for the sake of access to the resource, and must the resource
be bound to an identity in any strong way? For instance, on
communication channels, do individual messages need to
have their origin identified, or can data be anonymous?
Generally, requirements should specify necessary
authentication factors and methods for each endpoint on a
communication channel, and should denote any
dependencies, such as out-of-band authentication channels
(which should be treated as a separate system resource).
Integrity is usually handled as a subset of data origin
authentication. For instance, when new data arrives over a
communication channel, one wants to ensure that the data
arrived unaltered (whether accidental or malicious). If the
data changes on the wire (whether by accident or malice),
then the data origin has changed. Therefore, if we validate
the origin of the data, we will determine the integrity of the
data as well.

This illustrates that, if authentication is necessary in a
system, it must be an ongoing service. An initial
authentication is used to establish identity, but that identity
needs to be reaffirmed with each message.
Identity is the basis for access control decisions. A failure in
authentication can lead to establishing an improper identity,
which can lead to a violation of access control policy.

� Confidentiality (including privacy): Confidentiality
mechanisms such as encryption are generally used to enforce
authorization. When a resource is exposed to a user, what
exactly is exposed, the actual resource, or some trans-
formation? Requirements should address what
confidentiality mechanism is required, and should identify
how to establish confidentiality (usually requiring identity
establishment).
When this involves using encryption, requirements should
focus on the algorithm and its parameters for initialization.

� Availability: Requirements should focus on how available
a resource should be, for authorized users. This is probably
the most difficult security service to specify well, since most
reliability issues can be availability issues. Here, we
generally rely on our generic software engineering expertise.

� Accountability (including non-repudiation): What kind of
audit records need to be kept to support independent review
of access to resources / uses of capabilities? I.e., what
logging is necessary? Remember that log files are also a
data resource that need to be specified and protected.

For each of these security services, we should build
requirements that are specific enough to be useful. We
recommend using an extension of SMART requirements [3]
we call SMART+, illustrated in Table 1.

Table1: SMART+ Requirements

Specific

There should be as detailed as necessary so
that there are no ambiguities in the
requirement. This requires consistent
terminology between requirements.

Measurable
It should be possible to determine whether the
requirement has been met, through analysis,
testing or both.

Attaintable
One should validate that the requirement can
indeed be implemented, under some set of
circumstances.

Reasonable

While the mechanism or mechanisms for
implementing a requirement need not be
solidified, one should do some validation to
determine whether meeting the requirement is
possible given other likely project constraints.

Traceable
Requirements should also be isolated so that
they are easy to track and validate throughout
the development lifecycle.

+ Appropriate

Requirements should be validated, ensuring
that they not only derive from a real need or
demand, but also that different requirements
wouldn’t be more appropriate.

3

Since “attainable” and “reasonable” go hand-in-hand
(reasonable usually being a specialization of attainable), we
generally merge these two into “reasonable”, and let
“appropriate” act as the “a” in SMART.

3. EXAMPLE SECURITY
REQUIREMENTS

We illustrate the CLASP methodology for deriving
security requirements with a simple example of a three-tiered
application. In the interest of space, we do not walk through a
complete example, but only enough to give a flavor of how to
use the CLASP requirement methodology.

In this sample application, we imagine that clients will
connect to a service over the web, where the service simply
allows users to store information about their contacts, with the
intention that the users are the only people who can view their
own contacts.

This example is meant to be illustrative of a first iteration
on the system. By the end of this example, we will have
identified requirements that will strongly suggest iterating.

3.1 System Roles
We start by enumerating the roles. We may choose a

standard set of roles, as shown in Table 2.

Table 2: Sample System Roles

Role Generic Description
User Yes These are valid users of the

system who have already created
an account.

System No The application server is
represented by a role. This is
separate from the “Admin” role,
because there may be resources
that the system will need to access
that the admin should not have to
be able to see.

Admin No These are users who have
administrative access to the
system. In this application, their
role is restricted to account
management, log monitoring and
general availability.

Anonymous No This role represents people
without accounts who may
attempt to interact with the
system. In this sample application,
they have no capabilities, other
than being able to sign up for an
account.

Attacker No Anyone attempting unauthorized
access to resources.

3.2 Resources
We then determine a hierarchy of resources that is broken

down to an initial level of detail. Subsequent iterations will
generally occur as architecture and design evolve, resulting in
more concrete resource descriptions.

Table 3: Example Resource List

ID Description Owner
role(s)

User
capabilities

1. User data User Varies (see
below)

1.1 Name User User (cr)
System (r)
Admin (d)

1.2 Password User User (cw)
System (v)

1.3 Contacts User User (crwd)
System
(User proxy)

2. Compute
resources

Varies Varies

2.1 User CPU User User
2.2 User memory User User
2.3 User disk

space
User User

2.4 User machine
admin info
…

User User

2.5 - Similar
information
for
middleware
and DB
servers

Admin System
(User proxy)

3. Network
resources

3.1 Network
between
client and app
server

Attacker User, System
(rw)

3.2 Network
between app
server and
database
(Direct cable
connection)

Admin System (rw,
User proxy)

4 Web content
(dynamic and
static)

 User (r)
System (cw)
Admin (r,w)

4.1 Static web
content

Admin User,
Anonymous
(r)
Admin (r,w)

4.2 Dynamic web
content

System User (r),
System (cw)

4.3 Cookies
holding
authentication
information

System System (crw)

5 Back-end
executable
content

Admin User (rx)
Admin (rw)

6 Database Admin
6.1 Table “user

data”
Admin System

(crwd, User

4

proxy, user’s
data only)
Admin
(crwd)

6.2 Table
“account
info”

Admin System
(crwd, User
proxy, user’s
data only)
Admin
(crwd)

6.3 Admin
password to
database

Admin Admin (crw)

Note that the above table does include denotation of basic

capabilities on resources, with “r” standing for read, “w” for
write, “c” for create and “d” for delete. In 1.2, we use “v” for
validate, meaning that the system should be able to validate a
password, but hopefully not able to read it.

We should note that there may be assumptions made in
the resource chart. For instance, in this example chart we make
it clear that there is a requirement for password-based
authentication. In this case, it was a known business
requirement to use passwords, for the sake of end-user
usability. If not, we may have instead have mentioned an
“authentication token or tokens”, refining this into something
more concrete in subsequent iterations.

3.3 Resource Categories
We might find that this set of resources is well suited to a

few resource categories:

Table 4: Example Resource Categorization

Category Description Resources
User-
Highly-
Confidential
(UHC)

Resources that belong to the
user, and should not be
accessible to others, even to the
system.

1.2, 2.1, 2.4

User-
Confidential
(UC)

Resources that belong to the
user, but the system may access
for the benefit of the user.

1.3,
2.2: web
content only
2.3: cookie
storage only

User-Low-
Confidential
(ULC)

Resources that belong to the
user and should not be available
to the general public, but may
be available to administrators.

1.1

System-
Private (SP)

Resources that should not be
accessible, except to the
system.

3.2, 2.5-…,
4.3, 5, 6.1,
6.2, 6.3

System-
Consumable
(SC)

Resources owned by the system
that are for the benefit of the
user (e.g., communicating of
data to the user)

4.1, 4.2

Public
(PUB)

Public or otherwise untrusted
resources.

3.1

3.4 Resource Interactions
We now look at resource interactions at the level of our

categorizations, giving only a partial example, in the interest of
space:

Table 5: Sample Resource Interactions

Res. #1 Res. #2
or role

Cases Notes

UHC The user password is the
only data considered highly
confidential to the user.

 UC n/a No data that is highly
confidential to the user
interacts with any other user
data that is confidential.

 ULC 1.2
with
1.1

The user password is
associated with the user
name. They must be used in
conjunction in order for a
connection to be established.
Beyond being data that is
conceptually tied together,
they have no other
interactions.

 SP 1.2
with 5,
6.2,
3.2, 4.3
and 2.5
- …

It is clear that the system
must store and process either
the password itself, or some
function of the password.
This may be a place where
we will have to compromise
in our ideals in order to
balance non-security goals
with security goals.

 SC 1.2
with
4.1 and
4.2

The web is the user’s
interface for setting and
resetting passwords, and for
logging in.

 PUB 1.2
with
3.1

In order to authenticate
successfully, the password
will need to traverse over an
insecure medium.

 User The user should have access
to change his own password,
but shouldn’t have any
ability to learn about the
passwords of other users.

 System Ultimately, the system uses
the password to authenticate
a user, and should have no
need for it beyond that,
except as a proxy for the
wishes of the user, who
might want to change a
password. Also, note that the
user might have forgotten a
password, and so the system
may want to be able to deal
with this situation.

 Admin The administrator may need
to intervene when there is a

5

forgotten password. We note
that this leads to social
engineering attacks, so we
will look for ways to avoid
it.

 Anon /
Attacker

 This is information that can,
in conjunction with the user
name, lead to additional
capabilities for an attacker,
so we must do our best to
make sure it is not disclosed
to people with this role,
under any circumstances.

Note that this information is also useful as the foundation

for a subsequent security analysis of a system. We can, for
example, note that, without finer granularity, the “Admin” role
should probably be assumed to have access to any resources
labeled as belonging to “System”, which may not have been
the original intent, and thus a security gaffe.

This may call for finer definition of roles (for example, by
separating out the sysadmin from the DB admin from the
technical support staff), or it may call for a more coarse
definition of roles, lumping Admin and System together. We
identify further places where iteration should be considered in
Section 3.6, below.

3.5 Requirements

We will focus on deriving requirements for User-Highly
Confidential resources. This is structured by looking at each
resource category or role that the UHC resource might interact
with. Even though, as specified, the only UHC data is a
password, we start by assuming that UHC data may be
arbitrary data, such as a social security number. In the interest
of space, we omit requirement numbers, which are generally
useful, especially for ease of tracability.

Table 6: Sample CLASP Security Requirements

Resource
Category
or role

Service Requirement

User
(owner)

Access control The owning user cannot grant
access to UHC data to any other
entity in the system, unless so
specified by another
requirement.

Default Access control For UHC data that does not
have validation as an operation,
there must be no practical way
for the data to be operated upon
by any entity other than the
owning entity.

System Access control For data that does have
validation as an operation (i.e.,
passwords), there must be a
transformation of the password
that can be granted to System,
and may be used to implement
this operation, but there must be
no way to perform other

User
(owner)

Authentication /
Integrity

UHC resources must not rely on
any auth services provided by
other resources.

User
(owner)

Authentication /
Integrity

UHC resources must have their
integrity preserved if they are
going to be stored by any role or
resource other than the user
himself. The mechanism for
preserving integrity must be
HMAC-SHA1, which must be
performed on the ciphertext
image of the data, and must be
keyed with a randomly selected
128-bit value that must reside
only on the user’s computer.

System Authentication /
Integrity

If the core UHC datum is a
password, then it must be
possible for the system to
validate that the password
belongs to the user associated
with the data.

Default Confidentiality UHC data must be
confidentiality protected using
AES-CTR, keyed with a
randomly selected 128-bit value
that must reside on the user’s
computer.

Default Confidentiality The confidentiality protection
must be updated every time the
data changes, using a new
Initialization Vector managed by
the client. The IV must be set to
a random 128-bit value every
time the key is chosen, and must
be incremented by 1 every time
the password is changed.

Default Confidentiality The IV must always be included
with the encrypted data when
communicated to other parties.

 The IV must always be checked,
to ensure it is greater than the
previous value seen, any time
capture-replay attacks may be an
issue. If the IV does not
increment in such a scenario, the
message must be rejected.

Default Availability There are no special
requirements for UHC resources.
There will be for System-
Consumable resources, which
need to be accessible to the
outside world. To get concrete,
we will probably want to specify
defensive practices about
catching and handling
exceptions.

System Accountability If the UHC data is a password,
any time the validation operation

6

is performed, this fact must be
logged to the system log, along
with the date, user name and an
indication of whether the
attempt was successful.

Note that this set of requirements is relatively simple,

because the data is not meant to be transferred among roles. If
we were to tackle a different class of data, we would have to
specify how to protect the data when in transit over a Public
resource. Simply specifying “use SSL” wouldn’t be enough,
even if a version number were attached. Instead, we would
need to identify what specific mechanisms we are using to
provide each of the security services.

3.6 Iteration
In the course of building these requirements, we can apply the
SMART+ test, and determine that we have some deficiencies
that we can overcome by further iteration. Particularly, we
reference resources that we had not initially identified, that we
do not have specific enough information about, such as
“random numbers”, cryptographic keys for HMAC and for
AES-CTR, an “initialization vector” and the “system log”.
The requirements would also read better if we took a
capabilities-level view of the system. For example, we could
have a cleaner set of requirements by specifying encryption of
UHC data separately from decryption of UHC data.

4. CONCLUSIONS AND FUTURE WORK
CLASP provides the first structured methodology for deriving
security requirements of software systems. While it is
obviously far more effective than an ad hoc treatment of
security requirements, this methodology is still new. As a
result, we do not yet have enough data to identify areas that

can be improved, though we are working with several
commercial development organizations that are using CLASP,
in order to do so.
We anticipate refinements to CLASP’s methodology for
requirements, based on industry feedback. We also have begun
building a large set of sample requirements that may be used as
a template for projects, or for organizational control standards.
We hope that a comprehensive template will help minimize
iteration.

5. ACKNOWLEDGMENTS
Thanks to Jane Tudor from Secure Software for her initial
implementation work on requirements with CLASP, and for
reviewing this paper. Also, thanks to Neil Hixon and Paul
DeGraff from Depository Trust and Clearing Corporation for
suggestions leading to refinement of the methodology in this
paper.

6. REFERENCES
[1] Howard, M. and LeBlanc, D. Writing Secure Code, 2nd

Edition. Microsoft Press, Redmond, WA, 2003.
[2] IBM. RUP Plug-In for secure application development

v1.0 www-
128.ibm.com/developerworks/rational/library/04/r-3315/

[3] Mannion, M. and Keepence, B. SMART Requirements.
ACM SIGSOFT, SE Notes 20, 2 (Apr. 1995).

[4] Viega, J. and McGraw, G. Building Secure Software.
Addison-Wesley, Reading, MA, 2001.

7

