
Basic Training
Michael Howard, mikehow@microsoft.com
James A. Whittaker, jw@se.fit.edu

To better understand a product’s
threat environment and defend
against potential attacks, Microsoft
uses threat modeling, which should
be treated like any other part of the
design and specification process. In
fact, singling it out as a special ac-
tivity performed outside the nor-
mal design process actually detracts
from its importance to the overall
development life cycle. We must
consider security needs through-
out the design process, just as we do
with performance, usability, local-
izability, serviceability, or any other
facet.

Starting this process early in the
development life cycle is important
because it can reveal architectural
weaknesses that might require sig-
nificant changes to the product.
Making design changes early in the
product life cycle is much cheaper
than trying to make them at the end.

Scoping the process
Threat modeling an entire product
is typically too complex, whereas
doing so for individual features is
too simplistic. Instead, we focus on
logical groups of functionality
termed components. There are two
basic approaches to determining
the individual components to
threat model in a product or system.
You can start with the entire prod-

uct, enumerate all its dependencies
and entry points (as outlined
below), and determine whether
you have a manageable number of
these (a dozen or fewer). If not, you
can split the component into several
smaller (logical) pieces and try
again. The second approach is to
perform the same high-level analy-
sis on each individual feature and
combine logically related features
until you arrive at the same man-
ageable degree of complexity.
These are just rules of thumb, and
experience will show the best ap-
proach for your products.

Gathering background
information
Threat modeling begins with gath-
ering various types of information
from the component’s specifications
and compiling it into a threat-model
document. You will use this living
document both to describe the
component’s security-relevant de-
sign points and record the findings of
the threat-modeling process.

Use scenarios
Use scenarios are high-level descrip-
tions of how a component will be
deployed and used. Avoid descrip-
tions intended to justify the feature
or market it to users; you simply
need to list how the product will be

installed and used. Consider the fol-
lowing example:

• This is a client application installed
on Windows XP Service Pack 2
(and later).

• The application is designed for use
by corporations inside firewalls
(not across the Internet).

• It exposes a COM automation
interface.

• It can call Web Service APIs
using Windows Integrated
Authentication.

• It can be run by low-privileged
users, but some features require
administrator privileges.

You might also choose to list “anti-
scenarios”—configurations or usage
patterns that are explicitly unsup-
ported or known to be insecure.

Dependencies
Dependencies are other features or
technologies on which your com-
ponent relies to perform its func-
tions. It’s important to document
these because you will be making as-
sumptions about them, which you’ll
need to verify later. An example set
of dependencies might include

• the Microsoft XML Parser Library
v3.0,

• any HTTP 1.1-compliant Web
server, and

• an authentication subsystem deliv-
ered by Bob’s team.

You can typically exclude generic
operating-system dependencies such
as file-system or memory-manage-
ment APIs, although you should
note richer subsystems, such as
HTML renderers or email servers.

PETER TORR

Microsoft

I
n today’s hostile online environment, software must be

designed to withstand malicious attacks of all kinds. Un-

fortunately, even security-conscious products can fall prey

when designers fail to understand the threats their soft-

ware faces or the ways in which adversaries might try to attack it.

Demystifying the
Threat-Modeling Process

66 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Basic Training

Implementation
assumptions
It’s important to enumerate the
assumptions you make about the
component during design and devel-
opment because you must verify
them later. They can also help scope
the threat-modeling process. Exam-
ple assumptions might include

• the component will be called only
on a single thread;

• all requests have been authenti-
cated by the Web server before
reaching our component; and

• users won’t attempt to download
files that are larger than 5 Gbytes.

Note that the assumptions you make
might be invalid or unreasonable,
which is why you must enumerate
and validate them.

Internal security notes
Internal security notes provide ad-
ditional information to those read-
ing the threat model who might
not be intimately familiar with the
technologies or acronyms used
therein. For example, does AES
stand for “Advanced Encryption
Standard” or “Attachment Execu-
tion Services”? This is also a good
place to provide information, such
as deployment configurations or
descriptions of specific flows,
about the data-flow diagrams (de-
scribed later).

External security notes
A threat model should also contain a
section for external security notes,
but you can typically fill this in to-
ward the end of the process. I list it
here for completeness.

Describing
the component
In addition to the background
information, the threat-model
document should include a
security-focused description of the
component’s design. Details about
how features are implemented or
internal code structure are irrele-

vant; we’re interested only in how
the component behaves with re-
spect to its inputs and outputs.

Entry points
Entry points represent interfaces
with other software, hardware, and
users. Any part of your component
that sends or receives data to or from
a file or external entity is an entry
point. For example, these might in-
clude open network connections lis-
tening on ports, data files opened
from the user’s home directory, or an
interactive user.

If your component exposes an
API, you should break the API into a
set of logically related operations to
model as entry points rather than
modeling individual methods or pa-
rameters. If your API supports a
partial-trust environment (such as
the Microsoft Common Language
Runtime), you can also segment it
according to the permissions needed
to access it.

Trust levels
Once you’ve established your com-
ponent’s entry points, tag each with
a trust level that represents the de-
gree to which the entry point can be
trusted to send or receive data. In
many cases, there are only three
trust levels:

• administrator—local administrators
who have complete control over
the system;

• user—interactive users and their
settings (assumed not to have ad-

ministrative rights); and
• untrusted—external data files, net-

work connections, or other po-
tentially malicious input.

More complicated systems might
have additional trust levels, al-
though they might not have a de-
fined hierarchy like the three main
trust levels do.

Protected assets
Protected assets are the resources
with which your component inter-
acts and which must be kept safe
from harm—the things an attacker
will be looking to steal, modify, or
disrupt. Common examples of pro-
tected assets include the system’s
computing resources (such as CPU,
memory, or storage), core parts of
the system (encryption keys, for ex-
ample), and users’ or customers’ per-
sonal information, documents,
emails, and so on. You should make
a list of the trust levels required to
gain access to each asset.

Data-flow diagrams
The threat-model document’s heart,
and the most useful tool for generat-
ing threats against the component, is
the data-flow diagram. A DFD is a
graphical representation of the com-
ponent, showing all the inputs and
outputs as well as all logical internal
processes.

Building good DFDs is both an
art and a science, and guidance on
doing so could fill an article on its
own. In the interest of brevity, let’s
just look at an example DFD and
point out its most salient properties.

Figure 1 shows a sample DFD for
safely opening email attachments.
The numbered arrows describe the

data flow through the system, and
should be self-explanatory. Addi-
tionally, you’ll note the use of differ-
ent colors and shapes for the objects

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 67

If your component exposes an API, break

the API into a set of logically related

operations rather than modeling individual

methods or parameters.

Basic Training

on the diagram, which helps in-
crease the diagram’s information
density. The three colors map di-
rectly to trust levels—green items
represent trusted objects; red items
are untrusted; and orange items are
“somewhat” trusted. You don’t usu-
ally need to separate the administra-
tor and user trust levels at this level of
granularity (they can both be green),
but you can add more colors if you
require additional trust levels.

The different shapes used in the
diagram also convey information:
circles represent logical processes with-
in the modeled component; rectan-
gles represent external entities that you
have limited (or no) control over;
and double horizontal lines repre-
sent passive data stores.

Processes represent the logical
steps the component takes to per-
form its task; each should be easily
described in a single (short) sen-
tence. They don’t necessarily map
directly to objects or methods in
your code, and you shouldn’t draw
an inheritance or call graph as your
DFD. Processes are always trusted
(they are your code), and they must
both send and receive data. You can
break complex processes down into
more detailed subdiagrams to avoid
“spaghetti” diagrams.

External entities represent entry
points or dependences over which
you don’t have direct control. This
includes libraries, other programs, re-
mote machines, devices, and people.
Every external entity must match up
to one or more entry points or de-
pendencies, as enumerated earlier.
They can have any trust level and can
send or receive data (or both).

Data stores represent data at rest
and typically include items such as
files, registry keys, or in-memory
structures. Like external entities,
data stores must match up to one or
more entry points, can be of any
trust level, and can send or receive
data (or both).

Data flows represent how infor-
mation moves from one object to
another. They are always unidirec-
tional; if similar data flows back and
forth between two objects on the di-
agram, you need two separate flows.
Data flows can be trusted or un-
trusted, and they’re always labeled
with logical sequence numbers and a
concise description of the informa-
tion being sent. Avoid labeling flows
“read” or “write”; instead, they
must contain the data being read or
written. If numerous discreet data
items are represented by a single flow
(for example, username, password,

server name, and authentication
scheme), you might want to consol-
idate them into a single label (such as
“log-on information”) and use the
internal security notes to enumerate
what constitutes that information.

What if I
find a problem?
The simple act of diagramming your
component will sometimes make
certain security or logic flaws appar-
ent. This is a great side-effect of
methodically performing the threat-
modeling process, but you must
avoid the temptation to fix the de-
sign on-the-fly and build a diagram
that represents the “correct” imple-
mentation. This stage of the process
is about documenting how the sys-
tem currently works; if you docu-
ment how you think the system
should work, you’ll end up missing
threats later on in the process.

Nevertheless, it’s important to
record weaknesses as you identify
them. However, including them in
the threat-model document at this
point makes it harder to focus your
team in the next phase. Instead, I
recommend recording the threats
separately and bringing them up in
the brainstorming meeting later on.
You should use some form of re-
minder such as an Outlook task or a
“work item” bug assigned to your-
self in case you forget to bring the
threat up at the meeting.

Obtaining threats
Once you’ve gathered all the neces-
sary documentation about the com-
ponent, you’re ready to schedule a
brainstorming meeting to enumer-
ate all potential threats. This meeting
should include all the product-team
members responsible for the com-
ponent (design, development, and
test) and any subject-matter experts
(SMEs) for the dependencies your
component consumes. If possible,
you should also include a security
expert or a seasoned threat modeler
from another team to help drive the
process. I suggest distributing the

68 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2005

Figure 1. Sample data-flow diagram (DFD) for opening email attachments. Green
items represent trusted objects; red items are untrusted; and orange items are
“somewhat” trusted. Circles represent logical processes within the component being
modeled; rectangles represent entities that you have limited (or no) control over;
double horizontal lines represent passive data stores; and arrows represent data flows.

Helper application

Dangerous
file check

Decode
attachment

Launch
helper

application

1. Request
to launch

2. File
extension

5. Attachment
data 8. Helper application

9. File name

10. Attachment
contents

6. Decoded
file data

3. Dangerous
file list

User Attachment MIME database

Registry Temporary file

Basic Training

threat-model document at least two
days in advance so that participants
are familiar with the background in-
formation and design points before
the meeting starts.

To ensure that everyone is fo-
cused on the task at hand, the meet-
ing must have a clear purpose. It isn’t
a “threat model review,” which
would imply that you were examin-
ing a completed document. Rather,
this is where everyone provides cre-
ative input into the process. Set aside
a small amount of time at the begin-
ning for an overview of the threat-
model document and to cover any
high-level concerns. Then, dedicate
the majority of the meeting to ana-
lyzing the DFD to obtain threats.

To help everyone remember the
types of threats to which your com-
ponent might be exposed, consider
writing the acronym STRIDE on
the whiteboard:

• Spoofing—attackers pretend to be
someone (or something) else.

• Tampering—attackers change
data in transit or at rest.

• Repudiation—attackers perform
actions that can’t be traced back to
them.

• Information disclosure—attackers
steal data in transit or at rest.

• Denial of service—attackers inter-
rupt a system’s legitimate operation.

• Elevation of privilege—attackers
perform actions they aren’t autho-
rized to perform.

The technique for brainstorming
threats is actually fairly straightfor-
ward. Starting with the first object
on the DFD (the object from which
data flow 1 originates), consider
each of the STRIDE categories and
how they might apply to the object
and accompanying data flow (a de-
tailed description of STRIDE is out
of scope for this article). When
thinking about threats, try to express
them in terms of “entity X performs
action Y, resulting in negative out-
come Z.” Although not always pos-
sible, phrasing your threats in this

way makes it much easier to investi-
gate and mitigate them later on.
Remember that threats always
exist—bad guys are always trying to
do bad things—so it doesn’t matter if
the system already protects against a
given threat; write it down anyway.

For the example DFD in Figure
1, we would first look at the first data
flow, labeledrequestto launch,
and the entity from which it comes
(user). We might come up with the
following (incomplete set of) threats:

• An attacker programmatically
sends the request to launch
message, resulting in an unwanted
attachment execution (spoofing).

• An attacker instruments the attach-
ment with a “Web beacon” such
that merely opening it sends the
user’s email address and various
other information back to the at-
tacker (information disclosure).

• An attacker maliciously crafts the
attachment metadata in the email
message to exploit coding errors in
the parsing logic, leading to arbi-
trary code execution (elevation of
privilege).

At this stage of the process, don’t get
bogged down in implementation de-
tails or argue about threats. Don’t
allow excuses such as “that’s a silly
threat,” “we already check for that in
the code,” “nobody will ever try
that,” or “it’s too hard to do that.”
The threat-generation stage is where
threats are documented, not argued
about. Deciding whether the threats
are (or should be) mitigated comes
later. Nobody should hold back their
ideas for fear of getting shot down by
another participant. Write down
every threat that’s identified, and in-
clude enough detail in the descrip-
tion to allow developers or testers to
look at it a week later and understand
what they need to do to implement
or test a mitigation to the threat.

Being systematic and investigat-
ing every data flow through the
system is important in the brain-
storming process, but you also need

to let your creativity flow. Are there
entry points in the component that
aren’t represented in the diagram?
Can an attacker force new data flows
or bypass existing ones by calling a
different API or taking actions in an
unexpected order? For example,
how does the component choose
the name and location of the tempo-
rary file it writes to disk in flow 6 in
Figure 1? Is this file name under the
attackers’ control, and if so, could
they maliciously form and use it to
harm the user? Another potential
loophole to investigate is whether
the attachment filename could be
crafted such that the extension ap-
pears to be safe (such as .jpg) in data
flow 2, but ends up being written as
a “dangerous” file type (such as a
.exe) as the file is decoded and saved
to disk.

Resolving threats
Once you’ve exhausted all the data
flows in the DFD and can think of
no other creative ways to attack the
system, revisit each threat and decide
what action to take to resolve it.
Typically, this happens at a follow-up
meeting at which the key stakehold-
ers agree on the resolutions and as-
sign owners for follow-up work.
Each threat will fall into one of the
following broad classes:

• already mitigated by the
component;

• already mitigated by a dependency
or other component;

• not mitigated and requires
mitigation;

• not mitigated, but a dependency
or other component is responsible
for it; or

• not mitigated, but doesn’t require
mitigation.

Each class of threat has a different
process for resolution, but you must
track them all down and follow
through to closure, including updat-
ing the threat-model document
with the chosen resolution.

If you believe the threat is miti-

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 69

Basic Training

70 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2005

gated, a tester generates a set of at-
tack scenarios to verify that it’s in
place and working as expected.
These tests must become part of
your standard test suite; they’re very
important for checking regressions.
Additionally, if developers are at all
uncertain about the mitigation’s
quality or scope, they should also
schedule a security-focused code re-
view of the area to ensure that it’s be-
having as expected.

If you believe a threat is mitigated
by a dependency or some other sys-
tem component, you must add this
assumption to your threat model and
then verify it either by directly com-
municating with the owners, reading
the component’s security documen-
tation, or manually verifying.

If the threat isn’t currently miti-
gated but is serious enough to war-
rant it, an architect or developer
must design and implement a suit-
able solution. Any nontrivial mitiga-
tion should go through its own
design review and threat-model re-
view. Once you’ve implemented the
mitigation, you must test it by fol-
lowing the process detailed earlier.

If you believe the threat isn’t mit-
igated but is out of scope for your
component, document it and com-
municate it to the dependency or
other entity that you believe is best
equipped to deal with the threat.
This might include documenting
the threats for your system’s clients,
especially if you’re building a generic
platform and exposing an API.

Finally, you might have identified
a threat that you don’t believe is
serious enough to warrant mitiga-
tion—as when the threat requires
unrealistic preconditions or results in
no material gain for the attacker.
Nevertheless, capturing the threat in
the threat-model document is im-
portant for alerting future team
members that it exists. Today’s “un-
realistic preconditions” might be to-
morrow’s common practice.

Following up
Just two tasks remain in the threat-
modeling process after you’ve gen-
erated the threats and determined
their resolutions.

The first is to be vigilant about
tracking down your dependencies,
verifying your assumptions, and
communicating your security re-
quirements to others. This effort can
take some time to complete, but it’s
vital to the security of the larger
product or system. Ensuring that
every component inside a product is
secure is a great start, but it’s insuffi-
cient for building secure systems if
the interfaces between those com-
ponents (and the assumptions they
make about each other) are insecure.

The second task is to be vigilant
about tracking any changes that are
made to your design (and those of

your dependencies) through the rest
of the product development cycle
and to ensure that the changes don’t
invalidate your assumptions or inad-
vertently introduce holes in your
security mitigations. All nontrivial
code changes require quick reviews
of the threat model to ensure that no
existing assumptions or mitigations
are being invalidated. At the end of
each major milestone (or before
shipping) you should also undertake
a complete review of the threat
model to ensure that it still accurately
reflects the component’s design.

W hen performed as a structured
process, threat modeling is an

efficient and effective means of iden-
tifying and mitigating risks to your
software components. Being well-
prepared for the threat brainstorm-
ing meeting is a relatively simple
undertaking, yet it’s crucial to
holding a successful session. The
brainstorming session itself should
follow a methodical approach to
identifying threats, while still letting
participants think about the problem
creatively. Finally, following up with
external dependencies and verifying
assumptions is vital, and revisiting
the threat model is necessary any
time design changes are made to the
component after the fact.

Acknowledgments
The threat-modeling process has evolved over
the years at Microsoft with the input of many
fine people. Having participated in numerous
threat-model reviews over the past few years,
I’ve learned a lot of real-life lessons for improv-
ing its efficiency and effectiveness (which I have
attempted to share with you in this article),
but I couldn’t have done it without the prior
work of many others.

Peter Torr is a security program manager
at Microsoft. He studied computer science
and philosophy at the University of Mel-
bourne and now specializes in Internet
client security and refining the art of
threat modeling as part of the Secure
Windows Initiative team. Contact him via
his blog at http://blogs.msdn.com/ptorr/.

Any products your peers should know
about? Write a review for IEEE Pervasive
Computing, and tell us why you were
impressed. Our New Products department
features reviews of the latest components,
devices, tools, and other ubiquitous com-
puting gadgets on the market.

Send your reviews and recommendations
to pvcproducts@computer.org

today!

Tried any
new gadgets lately?

