
SECURITY

1

SAGE: Whitebox Fuzzing
for Security Testing

SAGE has had a remarkable impact at Microsoft.

Patrice Godefroid, Michael Y. Levin, David Molnar, Microsoft

Most ACM Queue readers might think of “program verification research” as mostly theoretical with
little impact on the world at large. Think again. If you are reading these lines on a PC running some
form of Windows (like 93-plus percent of PC users—that is, more than a billion people), then you
have been affected by this line of work—without knowing it, which is precisely the way we want it
to be.

THE HIGH COST OF SECURITY BUGS
Every second Tuesday of every month, also known as “Patch Tuesday,” Microsoft releases a list of se-
curity bulletins and associated security patches to be deployed on hundreds of millions of machines
world wide. Each security bulletin costs Microsoft and its users millions of dollars. If a monthly
security update costs you $0.001 (one tenth of one cent) in just electric ity or loss of productivity,
then this number multiplied by a billion people is $1 million. Of course, if mal ware were spreading
on your machine, possibly leaking some of your private data, then that might cost you much more
than $0.001. This is why we strongly encourage you to apply those pesky security updates.

Many security vulnerabilities are a result of program ming errors in code for parsing files and
packets that are transmitted over the Internet. For example, Microsoft Windows includes parsers for
hundreds of file formats.

If you are reading this article on a computer, then the picture shown in figure 1 is dis played on
your screen after a jpg parser (typically part of your operating system) has read the image data,
decoded it, created new data structures with the de coded data, and passed those to the graphics

card in your computer. If the code
implementing that jpg parser
contains a bug such as a buffer
overflow that can be triggered by
a corrupted jpg image, then the
execution of this jpg parser on
your computer could potentially
be hijacked to execute some other
code, possibly mali cious and hidden
in the jpg data itself.

This is just one example of a
possible security vul nerability and
attack scenario. The security bugs
discussed throughout the rest of this
article are mostly buffer over flows.

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

A Sample JPG Image

So
u

rc
e:

 N
A

SA

SECURITY

2

HUNTING FOR “MILLION-DOLLAR” BUGS
Today, hackers find security vulnerabilities in software products using two primary methods. The
first is code inspection of binaries (with a good disas sembler, binary code is like source code).

The second is blackbox fuzzing, a form of blackbox random test ing, which randomly mutates well-
formed program in puts and then tests the program with those modified in puts,3 hoping to trigger a
bug such as a buffer overflow. In some cases, grammars are used to gener ate the well-formed inputs.
This also allows encod ing application-specific knowledge and test-generation heuristics.

Blackbox fuzzing is a simple yet effective technique for finding security vulnerabilities in
software. Thousands of security bugs have been found this way. At Microsoft, fuzzing is mandatory
for every untrusted interface of every product, as prescribed in the Security Development Lifecycle,7
which documents recom mendations on how to develop secure software.

Although blackbox fuzzing can be remarkably effec tive, its limitations are well known. For
example, the then branch of the conditional statement in

int foo(int x) { // x is an input
 int y = x + 3;
 if (y == 13) abort(); // error
 return 0;
}

has only 1 in 232 chances of being exercised if the input variable x has a randomly chosen 32-bit
value. This intuitively explains why blackbox fuzzing usually provides low code coverage and can
miss security bugs.

INTRODUCING WHITEBOX FUZZING
A few years ago, we started developing an alternative to blackbox fuzzing, called whitebox fuzzing.5 It
builds upon recent advances in systematic dynamic test generation4 and extends its scope from unit
testing to whole-program security testing.

Starting with a well-formed input, whitebox fuzzing consists of symbolically executing the program
un der test dynamically, gathering constraints on inputs from conditional branches encountered along
the ex ecution. The collected constraints are then systemat ically negated and solved with a constraint
solver, whose solutions are mapped to new inputs that exer cise different program execution paths.
This process is repeated using novel search techniques that attempt to sweep through all (in practice,
many) feasible ex ecution paths of the program while checking many properties simulta neously using
a runtime checker (such as Purify, Valgrind, or AppVerifier).

For example, symbolic execution of the previous pro gram fragment with an initial value 0 for the
input vari able x takes the else branch of the conditional state ment and generates the path constraint
x+3 ≠ 13. Once this constraint is negated and solved, it yields x = 10, providing a new input that
causes the program to follow the then branch of the conditional statement. This allows us to exercise
and test additional code for security bugs, even without specific knowledge of the input format.
Furthermore, this approach automatically discovers and tests “corner cases” where programmers may
fail to allocate memory or manipulate buffers properly, leading to security vulnerabilities.

SECURITY

3

In theory, systematic dynamic test generation can lead to full program path coverage, i.e., program
ver ification. In practice, however, the search is typically incomplete both because the number of
execution paths in the program under test is huge, and because symbolic execution, constraint
generation, and constraint solving can be imprecise due to complex program statements (pointer
manipulations, floating-point operations, etc.), calls to external operating-system and library func-
tions, and large numbers of constraints that cannot all be solved perfectly in a reasonable amount of
time. Therefore, we are forced to explore practical tradeoffs.

SAGE
Whitebox fuzzing was first implemented in SAGE (Scalable Automated Guided Execu tion).5 Because
SAGE targets large applications where a single execution may contain hundreds of millions of
instructions, symbolic execution is its slowest compo nent. Therefore, SAGE implements a novel
directed-search algorithm, dubbed generational search, that maximizes the number of new input tests
generated from each symbolic execution. Given a path con straint, all the constraints in that path
are systemati cally negated one by one, placed in a conjunction with the prefix of the path constraint
leading to it, and at tempted to be solved by a constraint solver. This way, a single symbolic execution
can generate thousands of new tests. (In contrast, a standard depth-first or breadth-first search would
negate only the last or first constraint in each path constraint and generate at most one new test per
symbolic execution.)

The pro gram shown in figure 2 takes four bytes as input and contains an error when the value of

void top(char input[4] {
 int cnt=0;
 if (input[0] == ’b’) cnt++;
 if (input[1] == ’a’) cnt++;
 if (input[2] == ’d’) cnt++;
 if (input[3] == ’!’) cnt++;
 if (cnt >= 4) abort(); ?? error
}

0
good

1
goo!

1
godd

2
god!

1
gaod

2
gao!

2
gadd

3
gad!

1
bood

2
boo!

3
bod!

1
bodd

2
baod

3
bao!

3
badd

4
bad!

Example of Program (Left) and Its Search Space (Right)
with the Value of cnt at the End of Each Run

SECURITY

4

the variable cnt is greater than or equal to four. Starting with some initial input good, SAGE runs this
program while performing a symbolic execution dynamically. Since the program path taken during
this first run is formed by all the else branches in the program, the path constraint for this initial
run is the con junction of constraints i0 ≠ b, i1 ≠ a, i2 ≠ d and i3 ≠ !. Each of these constraints
is negated one by one, placed in a conjunction with the prefix of the path constraint leading to it,
and then solved with a constraint solver. In this case, all four constraints are solvable, leading to
four new test inputs. Figure 2 also shows the set of all feasible program paths for the func tion top.
The leftmost path represents the initial run of the program and is labeled 0 for Generation 0. Four
Generation 1 inputs are obtained by systemati cally negating and solving each constraint in the Gen-
eration 0 path constraint. By repeating this process, all paths are eventually enumerated for this
example. In practice, the search is typically incomplete.

SAGE was the first tool to perform dynamic symbolic execution at the x86 binary level. It is
implemented on top of the trace replay infrastructure TruScan,8 which consumes trace files generated
by the iDNA framework1 and virtually reexecutes the recorded runs. TruScan offers several features
that substantially simplify symbolic execution, including in struction decoding, providing an
interface to program symbol information, monitoring various input/output system calls, keeping
track of heap and stack frame allocations, and tracking the flow of data through the pro gram
structures. Thanks to offline tracing, constraint generation in SAGE is completely deterministic be-
cause it works with an execution trace that captures the outcome of all nondeterministic events
encountered during the recorded run. Working at the x86 binary level allows SAGE to be used on
any program regard less of its source language or build process. It also en sures that “what you fuzz is
what you ship,” as compil ers can perform source-code changes that may affect security.

SAGE uses several optimizations that are crucial for dealing with huge execution traces. For
example, a single symbolic execution of Excel with 45,000 in put bytes executes nearly 1 billion x86
instructions. To scale to such execution traces, SAGE uses several techniques to improve the speed
and memory usage of constraint generation: symbolic-expression caching ensures that structurally
equivalent symbolic terms are mapped to the same physical object; unrelated con straint elimination
reduces the size of constraint solver queries by removing the constraints that do not share symbolic
variables with the negated constraint; local constraint caching skips a constraint if it has already been
added to the path constraint; flip count limit es tablishes the maximum number of times a constraint
generated from a particular program branch can be flipped; using a cheap syntactic check, constraint
sub sumption eliminates constraints logically implied by other constraints injected at the same
program branch (most likely resulting from successive iterations of an input-dependent loop).

SAGE ARCHITECTURE
The high-level architecture of SAGE is depicted in fig ure 3. Given one (or more) initial input Input0,
SAGE starts by running the program under test with AppVer ifier to see if this initial input triggers
a bug. If not, SAGE then collects the list of unique program instruc tions executed during this run.
Next, SAGE symboli cally executes the program with that input and gener ates a path constraint,
characterizing the current pro gram execution with a conjunction of input constraints.

Then, implementing a generational search, all the con straints in that path constraint are negated
one by one, placed in a conjunction with the prefix of the path constraint leading to it, and
attempted to be solved by a constraint solver (we currently use the Z3 SMT solver2). All satisfiable

SECURITY

5

constraints are mapped to N new inputs, which are tested and ranked according to incremental
instruction cover age. For example, if executing the program with new Input1 discovers 100 new
instructions, then Input1 gets a score of 100, and so on. The new input with the highest score is
selected to go through the (expensive) symbolic execution task, and the cycle is repeated, pos sibly
forever. Note that all the SAGE tasks can be exe cuted in parallel on a multicore machine or even on a
set of machines.

Building a system such as SAGE poses many other challenges: how to recover from impre cision in
symbolic execution, how to check many properties together efficiently, how to leverage grammars
(when available) for complex input formats, how to deal with path explosion, how to reason precisely
about pointers, how to deal with floating-point instructions and input-dependent loops. Space
constraints prevent us from discussing these challenges here, but the authors’ Web pages provide
access to other papers addressing these issues.

AN EXAMPLE
On April 3, 2007, Microsoft released an out-of-band critical security patch (MS07-017) for code
that parses ANI-format animated cursors. The vulnerability was originally reported to Microsoft in
December 2006 by Alex Sotirov of Determina Security Research, then made public after exploit code
appeared in the wild.9 This was only the third such out-of-band patch released by Microsoft since
January 2006, indicating the seri ousness of the bug. The Microsoft SDL Policy We blog stated that
extensive blackbox fuzzing of this code failed to uncover the bug and that existing static-anal ysis
tools were not capable of finding the bug without excessive false positives.6

SAGE, in contrast, synthesized a new input file ex hibiting the bug within hours of starting from
a well-formed ANI file, despite having no knowledge of the ANI format. A seed file was picked

input0 coverage
data

constraints

input1

input2
. . .

inputN

check for
crashes

(AppVeri�er)

code
coverage
(Nirvana)

generate
constraints
(TruScan)

solve
constraints

(Z3)

Architecture of SAGE

SECURITY

6

arbitrarily from a library of well-formed ANI files, and SAGE was run on a small test program that
called user32.dll to parse ANI files. The initial run generated a path constraint with 341 branch
constraints after executing 1,279,939 total x86 instructions over 10,072 symbolic input bytes. SAGE
then created a crashing ANI file af ter 7 hours 36 minutes and 7,706 test cases, using one core of a
2-GHz AMD Opteron 270 dual-core processor running 32-bit Windows Vista with 4 GB of RAM.

IMPACT OF SAGE
Since 2007, SAGE has discovered many security -related bugs in many large Microsoft applications,
in cluding image processors, media players, file decoders, and document parsers. Notably, SAGE found
roughly one-third of all the bugs discovered by file fuzzing during the development of Microsoft’s
Windows 7. Because SAGE is typically run last, those bugs were missed by everything else, including
static program analysis and blackbox fuzzing.

Finding all these bugs has saved millions of dollars to Microsoft, as well as to the world in time
and energy, by avoiding expensive security patches to more than 1 billion PCs. The software
running on your PC has been affected by SAGE.

Since 2008, SAGE has been running 24/7 on an aver age of 100-plus machines/cores automatically
fuzzing hun dreds of applications in Microsoft security testing labs. This is more than 300 machine-
years and the largest compu tational usage ever for any SMT (Satisfiability Modulo Theories) solver, with
more than 1 billion constraints processed to date.

SAGE is so effective at finding bugs that, for the first time, we faced “bug triage” issues with
dynamic test generation. We believe this effectiveness comes from being able to fuzz large
applications (not just small units as previously done with dynamic test generation), which in turn
allows us to find bugs resulting from problems across multiple components. SAGE is also easy to
deploy, thanks to x86 binary analysis, and it is fully automatic. SAGE is now used daily in various
groups at Microsoft.

CONCLUSION
SAGE has had a remark able impact at Microsoft. It combines and extends program analysis, testing,
verification, model checking, and automated theorem-proving techniques that have been developed
over many years.

Which is best in practice—blackbox or whitebox fuzzing? Both offer different cost/precision
tradeoffs. Blackbox is simple, lightweight, easy, and fast but can yield limited code coverage.
Whitebox is smarter but more complex.

Which approach is more effective at finding bugs? It depends. If an application has never been
fuzzed, any form of fuzzing is likely to find bugs, and simple blackbox fuzzing is a good start. Once
the low -hanging bugs are gone, however, fuzzing for the next bugs has to become smarter. Then it’s
time to use whitebox fuzzing and/or user-provided guidance, for example, using an input grammar.

The bottom line? In practice, use both. We do at Mi crosoft.

ACKNOWLEDGMENTS

Many people across different groups at Microsoft have contributed to SAGE’s suc cess. Special thanks
go to Ella Bounimova, Chris Marsh, Lei Fang, Stuart de Jong, and Hunter Hudson. SAGE builds on
the work of the TruScan team—in cluding Andrew Edwards and Jordan Tigani, as well as Evan Tice,

SECURITY

7

David Grant, and Vince Orgovan—and of the Z3 team, including Nikolaj Bjorner and Leonardo de
Moura, as well as Youssef Hamadi and Lucas Bor deaux—for which we are grateful. SAGE would not
exist without the extraordinary large-scale deployment and usage made possible by work done in
the Win dows security testing team, including Nick Bartmon, Eric Douglas, Dustin Duran, Elmar
Langholz, and Dave Weston, and the Office security testing team, including Tom Gallagher, Eric
Jarvi, and Octavian Timofte. We are also thankful to our MSEC colleagues Dan Mar golis, Matt
Miller, and Lars Opstad. SAGE also bene fited from contributions of many talented research interns,
namely Dennis Jeffries, Adam Kiezun, Bassem Elkarablieh, Marius Nita, Cindy Rubio-Gonzalez,
Johannes Kinder, Daniel Luchaup, Nathan Rittenhouse, Mehdi Bouaziz, and Ankur Taly. We thank
our managers for their support and feedback on this project. We also thank all other SAGE users
across Microsoft.

REFERENCES

1. Bhansali, S., Chen, W., De Jong, S., Edwards, A., Drinic, M. 2006. Framework for instruction-
level tracing and analysis of programs. In Second International Conference on Virtual Execution
Environments.

2. de Moura, L., Bjorner, N. 2008. Z3: an efficient SMT solver. In Proceedings of TACAS (Tools and
Algorithms for the Construction and Analysis of Systems), volume 4963 of Lecture Notes in Computer
Science: 337–340. Springer-Verlag.

3, Forrester, J. E., Miller, B. P. 2000. An empirical study of the robustness of Windows NT applications
using random testing. In Proceedings of the 4th Usenix Windows System Symposium, Seattle (August).

4. Godefroid, P., Klarlund, N., Sen, K. 2005. DART: Directed Automated Random Testing. In
Proceedings of PLDI (Programming Language Design and Implementation): 213–223.

5. Godefroid, P., Levin, M. Y., Molnar, D. 2008. Automated whitebox fuzz testing. In Proceedings of
NDSS (Network and Distributed Systems Security): 151– 166.

6. Howard, M. 2007. Lessons learned from the animated cursor security bug; http://blogs.msdn.com/
sdl/archive/2007/04/26/lessons-learned-from the-animated-cursor-security-bug.aspx.

7. Howard, M., Lipner, S. 2006. The Security Development Lifecycle. Microsoft Press.
8. Narayanasamy, S.,Wang, Z., Tigani, J., Edwards, A., Calder, B. 2007. Automatically classifying

benign and harmful data races using replay analysis. In Programming Languages Design and
Implementation (PLDI).

9 Sotirov, A. 2007. Windows animated cursor stack overflow vulnerability; http://www.determina.
com/security.research/vulnerabilities/ani-header.html.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

PATRICE GODEFROID is a principal researcher at Microsoft Research. He received a B.S. degree in
electrical engineering (computer science elective) and a Ph.D. degree in computer science from the
University of Liege, Belgium, in 1989 and 1994, respectively. From 1994 to 2006, he worked at Bell
Laboratories. His research interests include program specification, analysis, testing, and verification.
pg@microsoft.com.
MICHAEL Y. LEVIN is a principal development manager in the Windows Azure Engineering

SECURITY

8

Infrastructure team where he leads a team developing the Windows Azure Monitoring and Diagnostics
Service. His additional interests include automated test generation, anomaly detection, data mining, and
scalable debugging in distributed systems. He received his Ph.D. in computer science from the University
of Pennsylvania. mlevin@microsoft.com.
DAVID MOLNAR is a researcher at Microsoft Research, where his interests focus on software security,
electronic privacy, and cryptography. He earned a Ph.D. in 2009 from the University of California at
Berkeley, working with David Wagner. dmolnar@microsoft.com.
© 2012 ACM 1542-7730/12/0100 $10.00

