Design of a Process for Software Security

David Byers

Nahid Shahmehri

Department of computer and information science
LinkOpings universitet, SE-58183 Linkoping, Sweden
E-mail: {davby,nahsh}@ida.liu.se

Abstract

Security is often an afterthought when developing
software, and is often bolted on late in development or
even during deployment or maintenance, through activ-
ities such as penetration testing, add-on security soft-
ware and penetrate-and-patch maintenance. We believe
that security needs to be built in to the software from the
beginning, and that security activities need to take place
throughout the software lifecycle. Accomplishing this
effectively and efficiently requires structured approach
combining a detailed understanding on what causes vul-
nerabilities, and how to prevent them.

In this paper we present a process for software se-
curity that is based on vulnerability cause graphs, a for-
malism we have developed for modeling the causes of
software vulnerabilities. The purpose of the software
security process is to evolve the software development
process so that vulnerabilities are prevented. The pro-
cess we present differs from most current approaches to
software security in its high degree of adaptability and
in its ability to evolve in step with changing threats and
risks. This paper focuses on how to apply the process
and the criteria that have influenced the process design.

1. Introduction

Vulnerabilities — security-related flaws — in soft-
ware affect us almost daily, have forced us to change
how we use computers, and are at the center of some of
the most spectacular and costly computer failures in re-
cent years. For example, the total cost of the Code Red
worm has been estimated at $2.6 billion, and the Nachi
worm affected operations at Air Canada and CSX rail-
road. Both exploited buffer overflows, a class of vulner-
abilities that has been known since at least 1988. Efforts
are being made to reduce vulnerabilities in software, but
the industry clearly has a long way to go.

There are a number of tools and techniques for
building secure software [8, 12, 13, 15, 16], but they are

typically applied in an ad-hoc fashion; their benefits and
limitations are rarely fully understood; they do not take
risk assessments into account; and there are no methods
for keeping up with changing threats and risks. These
issues limit the applicability of current methods.

We are developing a process for systematic and
continuous improvement of software security through-
out the software lifecycle, that is suitable for industrial
adoption, and focuses on preventing vulnerabilities in all
phases of software development. In contrast to nearly
all existing approaches, our process can be used in con-
junction with any software development process, adapts
to the needs of the business (rather than the other way
around), and takes risk into account.

Our process [2] consists of three major steps:
vulnerability modeling [5], vulnerability cause mitiga-
tion [1], and process component definition. The process
is described in section 2.

Through collaboration with companies that want to
improve software security in their products, we can em-
pirically validate our work and collect criteria related to
applicability and adoption issues. These issues are dis-
cussed in sections 3 and 4, and are the focus of this pa-
per.

2. Process Overview

Our security process is a software process improve-
ment (SPI) process: it runs parallel to the software life-
cycle, throughout the entire lifecycle, and its output is
used to improve the software development process. It
consists of three main steps: vulnerability modeling,
vulnerability cause mitigation, and process component
definition. Although a single iteration of the process is
predominately linear, steps may be revisited as required
to refine the result.

2.1. Process Steps

Vulnerability modeling [5] is a process similar to
root cause analysis, and results in a structure called

a vulnerability cause graph (VCG), that models how
causes (conditions or events that may contribute to the
presence of a vulnerability; e.g. “Use of strcat”) may
contribute to the presence of software vulnerabilities.
Non-leaf nodes in the VCG represent causes, and the
single root node, labeled with the vulnerability that the
VCG models, is used to calculate the model semantics.
Figure 1 shows the VCG for a buffer overflow vulnera-
bility in MySQL [18].

The intuition behind the VCG is that in order to pre-
vent a cause C, then either C itself must be directly mit-
igated through activities in the software lifecycle, or all
the predecessors of C must be prevented. Preventing a
vulnerability becomes a matter of preventing a subset of
its causes.

Vulnerability modeling is performed by first con-
ducting a deep analysis of the vulnerability being mod-
eled. The vulnerability must be understood completely
before its causes are determined. This analysis is typi-
cally sufficient to determine the direct causes (which are
usually found in the source code) of the vulnerability.
After determining direct causes, modeling progresses to
indirect causes; the modeling process calls for attempt-
ing to identify causes in all phases of software the soft-
ware lifecycle. This process typically requires consult-
ing external data sources (e.g. requirements and design
documents, version control history, process documenta-
tion etc) in order to identify causes.

The final step of vulnerability modeling is a valida-
tion phase, in which the model is validated by an inde-
pendent analyst. We have found that this step signifi-
cantly increases the quality and consistency of models.

Vulnerability cause mitigation [1] is the process of
determining how to prevent individual causes that are
present in some VCG. This is modeled using structure
called a security activity graph (SAG), that shows how
activities in the software lifecycle combine to prevent a
cause or vulnerability. Leaf nodes in the SAG represent
activities; these are connected using logic (and and or)
gates to form the complete graph. Figure 2 shows the
SAG for a single cause

Activities are fully documented, concrete, activities
in the software lifecycle. They include complete in-
formation on how to implement them, and how to ver-
ify that they are successful. The process of vulnerabil-
ity cause mitigation calls for identifying activities in all
phases of the software lifecycle. Causes related to e.g.
source code need not be prevented by implementation-
related activities; it is sometimes more efficient to pre-
vent them earlier in the development process.

The SAG for a cause shows how to prevent that par-
ticular cause. The SAG for a vulnerability, which shows
how to prevent that vulnerability, is computed automati-

cally by combining the SAGs for each cause in the vul-
nerability’s VCG, according to the structure of the VCG.
The SAG for a typical vulnerability can be very large
and complex, but has a structure that lends itself to au-
tomatic processing.

Process Component Definition is the process of se-
lecting activities to implement from a set of security ac-
tivity graphs, in order to prevent software vulnerabili-
ties. Activities should be chosen that are suitable to the
product, development process, and organization. To ac-
complish this, activities are assigned weights, and best
weight valid set of activities is selected.

The weight of an activity depends on a number
of factors, such as its fit to the development process,
product, staff, and organization; direct costs associated
with performing the activity; and cost of required tools
or training. For example, an activity that staff already
knows how to perform will be cheaper (from a train-
ing point of view) than one that requires extensive staff
training. There may also be dynamic effects, such as
synergism or conflicts between activities, that affect the
overall weight of a set of activities. For example, there
is synergy between activities that use the same tool.
Weight estimation needs to be made for each individual
project, and must be maintained as controlling factors
change.

We are currently in the process of specifying how
to determine and assign weights to activities. Given a
SAG (or set of SAGs) and activity weights, the least ex-
pensive set of activities that prevent the vulnerability is
selected. This set is then transformed, manually at the
moment, to whatever documentation or other artifacts
the organization requires for changing their processes.

2.2. The vulnerability analysis database

All information that is collected or generated dur-
ing the process is stored in a shared repository, known
as a vulnerability analysis database (VAD). Using this
database during analysis and modeling promotes re-use
of existing results, which in turn speeds up the process,
and promotes consistency in modeling. Re-use is central
to the process as it satisfies some of our more important
design criteria (see section 4.

Ideally the VAD would be a shared resource, avail-
able to anyone using the security process. Input from
our partners has clearly shown that this is not a tenable
position, as some of the information in the VAD cannot
be shared with others. For example, some information
may relate to confidential methods or tools, or may be
restricted due to contractual or legal obligations. We are
considering architectures for the VAD that allow sharing
of partial information.

Use of C-like strings

Copy of external data to
internal buffer

Use of non-adaptive
buffers

|
| Use of unsafe function for
} string copying

CVE-2005-2558

Documentation hard to

Developer lacks skills to read
understand documentation

Developer doesn’t

understand
documentation
Lacking design to Documentation not used
implementation compeletly

traceability

L o

Two different concepts
assumed to be same

)

Different values defined
for same concept

Wrong source size is
used

Figure 1. Vulnerability cause graph for CVE-2005-2558, with a compound node expanded

Lacking design to
implementation traceability

\ ®

Make design objects ‘

&' &

Generate all code from

identifiable

Code comments linking
code to design objects

design

Cross-reference index
between design and code

Figure 2. The security activity graph for a cause of CVE-2005-2558

The VAD contains five major sets of data:

Vulnerabilities Every vulnerability that has been an-
alyzed is entered into the VAD. This includes ID, ti-
tle, summary and description of the vulnerability, to-
gether with an in-depth analysis, optional references or
excerpts of code, references to external sources (e.g.
CERT advisories or NVD entries), references to exploit
code and a reference to the VCG for the vulnerability.

Vulnerability cause graphs Every vulnerability
cause graph that has been created is stored in the
VAD. Graphs can be visualized, and are linked to the
vulnerabilities they represent, and to the causes they
contain.

Causes Every cause present in some VCG has an ID,
title, summary, in-depth description, code examples, ref-
erences to relevant vulnerabilities, and a SAG. Figure 3
shows a typical cause in our current database.

Security activity graphs Every SAG that has been
created is stored in the VAD. Graphs can be visualized,
and are linked to the causes they represent, and to the
activities they contain.

Activities Every activity present in some SAG has at
least an ID, a title, an implementation procedure, a ver-
ification procedure, a set of constraints, and estimated

Shared data and state

ID
Summary

SharedDataAndState
A single variable/value can hold both state and data values.

Description A single variable or value in the program can contain both data and state at
some location in the program. Whether the variable holds data or state is
context dependent, and distinguishing one from the other depends on an

external condition or the current value of the variable/value.

Values include values produced during computation and return values from
functions.

Many functions in libc return error values in place of results when there is
an error condition. For example, fgetc returns a int set to EOF (typically -1)
when an end-of-file condition is encountered, but returns a character if end-
of-file is not encountered. For functions like fgetc, this is a problem when
the programmer incorrectly uses a signed char variable to hold the return
value from the function, because it will be impossible to distinguish EOF

from Oxff.
Shared data and state
n
\ T
Separate data and Verify instances of
state in design shared data and stae

Example

Mitigation

Use type system to
separate data and state

Figure 3. A typical cause

weight. This section of the VAD is the collected knowl-
edge of security-related activities in the software lifecy-
cle. Figure 4 a typical activity in our current database.

We have developed a very simple prototype VAD,
accessible through a web browser, sufficient for the cur-
rent needs of our research. We are in the process of de-
veloping a full-fledged VAD, which will be used in field
trials of the process.

Use strncpy

Description The strcpy C library function does not (and cannot) perform range
checks on its inputs. As a result, it can write beyond the end of the target
buffer it is provided. When the data being copied is user-supplied, this can
easily result in an exploitable vulnerability. To avoid this problem, alternate
string concatenation mechanisms should be used.

Implementation Phase: implementation Type: coding standard

When coding, never use the strcpy function. When copying C strings,
use strncpy instead.

Verify no use of strcpy
n

[T

‘ Inspect for strcpy ‘ ‘ Search for strcpy ‘ ‘ Detect strcpy with splint

Verification

Dependency None
constraints

Ordering None
constraints
Applicability
constraints

C or C++ used as the implementation language

Figure 4. A typical activity

2.3. Tool Support

Although our process can be applied without the use
of any tools, tool support is expected to be required for
effective application of the process. We are currently in
the process of developing these tools.

Vulnerability modeling will require visualization
and model editing tools, as well as tools to search the
VAD for re-usable model elements. To support the
analysis process that precedes modeling, integration be-
tween the modeling tool and e.g. source code control
systems, defect management systems, documentation,
and so on would be useful.

Vulnerability cause mitigation will require visual-
ization model editing tools, as well as tools to search the
VAD for re-usable model elements. Additionally, inte-
gration with e.g. internal process documentation would
be useful.

Process component definition will require tools to
estimate weights of activities (and maintain such esti-
mates), visualize VCGs and SAGs, make activity selec-
tions, visualize activity selections, and generate process
documentation. Integration with systems used to doc-
ument software development processes would also be
useful.

3. Practical Application

Application of our process in a project should be
fairly straightforward since it has been designed to cause
minimal disruption to the business and to the develop-
ment process on introduction (see section 4). It can be
introduced incrementally, or on a trial basis, to further
reduce its initial impact on the business.

For this process, much like other processes, to be
implemented successfully, it is necessary to have man-

agement support and buy-in from those affected by
the process; without this, the likelihood of success is
small [9].

3.1. Staffing

The process requires two individuals who are
trained in vulnerability modeling and cause mitigation
analysis (two individuals are required to perform model
validation). There must also be an individual or team
with the mandate to alter the organization’s development
processes; this individual or team is a good candidate for
ownership of the overall process.

It is possible for a single individual to implement
our process without model validation. This may be ap-
propriate during a trial of the process.

Our empirical work has shown that vulnerability
modeling requires a mindset that is initially foreign to
most developers: they tend to think in terms of fixing
problems, rather than in terms of their causes. This
matches our own experience from developing the pro-
cess. We have also found that the more experience an
individual has, the more varied causes they identify.

Our recommendation is that senior developers with
experience from all phases of software development are
trained in vulnerability modeling and cause mitigation
analysis.

3.2. Input to the Process

The input to our process is essentially problem re-
ports: reports of vulnerabilities or potential vulnerabil-
ities in the software. Problems need to be reported in
all phases of the software lifecycle, including problems
uncovered (and possibly fixed) during development. If
problem reports are limited to problems uncovered in
test or after deployment, there is a significant risk that
flaws similar to those discovered during development
still exist in the software.

We do not mandate a particular process for collect-
ing problem reports, or their contents. A simple problem
description is sufficient for our process, as the first stage
is an in-depth analysis of the problem.

3.3. When is the Process Executed

Vulnerabilities and potential vulnerabilities can be
discovered at any time, so the process we are develop-
ing must exist throughout the software lifecycle. The
process is iterative in nature: at any time in the software
lifecycle when conditions mandate it, an iteration of the
process is initiated, possibly leading to changes to the
software development process. Figure 5 illustrates the

New mitigation

New/changed risks
Process environment

techniques changes
r--————=—====—=—=-=-=-~= ‘L‘ —————————— L il
I
I
| "
| Vulnerability Vulnerability Process | Security
! modeling cause com_pc_)r_1ent | process
I mitigation definition |
! |
I

New/recurring
vulnerabilities

Process changes

¥ X

Architecture Design

Implementation

I Software

: lifecycle

Testing Deployment Maintenance

Figure 5. Security process in the context of the software lifecycle

security process in the context of the software lifecycle.
Conditions mandate initiating a new iteration of the

process any time a something that was considered in pre-

vious iterations of the process changes. For example:

e When a new vulnerability (or potential vulnerabil-
ity) is discovered, a new iteration of the process is
initiated in order to prevent the vulnerability (or re-
currences thereof), possibly resulting in changes to
existing vulnerability or activity models.

e When a known vulnerability recurs, this indicates
that the existing vulnerability or activity models are
incomplete. The existing models are augmented to
reflect the cause of the recurrence, so further recur-
rences are prevented, possibly resulting in changes
to other vulnerability or activity models.

e If new mitigation techniques become known, all
existing models are revised to include the new mit-
igation technique, where appropriate. If an existing
mitigation technique changes, all models contain-
ing the mitigation technique are reviewed, to ensure
that the continued use of the mitigation technique
is appropriate. Since the set of mitigation tech-
niques (and their properties) affect process compo-
nent definition, that step is always revisited, to see
if the selection of activities should change.

e When a new risk is identified or a known risk
changes, new vulnerability models may be created
to model potential vulnerabilities implied by the
risk. Since risk influences process component defi-
nition (for example, a user of the process may elect
not to prevent vulnerabilities with low risk, but re-
consider when that risk increases), that step is re-

visited regardless of whether new vulnerabilities
are modeled.

e If criteria that influence process component defi-
nition change (e.g. development process, staffing,
tools, or some other basis for weight estimation),
process component definition is performed again,
as the selection of activities may change.

Events relating to new or recurring vulnerabilities,
and new or changed risks are the most critical, and
should result in immediate action. New mitigation tech-
niques or issues related to weight are not critical from a
security perspective. Immediate action is typically not
required (unless mandated by business needs), but the
affected models should eventually be revisited.

4. Process Design Criteria

Since we are designing this process for commercial
adoption, it is important to examine the factors that influ-
ence adoption decisions, and attempt to address them in
the process design. In this work, we rely a great deal on
the needs of our three commercial partners. They share
the view that software security is a key issue for their
businesses, but otherwise represent a wide spectrum of
potential adopters in terms of size (SME through multi-
national), primary customer groups (civilian through
military), business model (product-oriented, customer-
oriented, service-oriented) and development processes
(from requirements-driven to agile).

In the terminology of Keen [11], a process must be
salient (a key process for the business), and an asset (re-
turns more money than it costs) to the business that con-
siders it for adoption. Our partners in this project see a
software security process as a priority process; it should

be the same for others that depend on delivering secure
software to their customers. For these businesses, the
salience is clear. Our process is does not directly gener-
ate value, unless sold as a product (which at least one of
our partners may consider). It is both an option-enabling
(by e.g. speeding up response to new threats) and value-
preserving process (it is intrinsic to the value generating
process of developing software); hence it is clear that
our process is an asset process. Determining the value
of the process a particular business is beyond the scope
of this discussion.

In addition to these aspects, process adoption is af-
fected by a number of factors related to the people. In
particular, process adoption is more likely to be success-
ful when the people involved are highly motivated, than
when they are not [9, 7, 14].

Baddoo and Hall have studied the factors that moti-
vate [3] and de-motivate [4] practitioners’ support for
software process improvement (SPI). Their results on
de-motivators are summarized in table 1. Others have
also identified several of these issues [9].

] Cited (%)
De-motivators Devel- Project Senior
opers mgrs mgrs
Commercial pressures 19 25 25
Cumbersome processes 24 13 8
Inadequate communication 5 13 17
Inertia 43 25 50
Lack of overall support 5 13 50
Negative/bad experience 5 13 33
Time pressure/constraints 62 44 58
Lack of resources 0 31 67
Lack of evidence 0 38 8
Budget constraints 24 0 25
Inexperienced staff 5 0 25
Personality clashes 10 0 8
Imposition 14 6 0

Table 1. Common de-motivators across
practitioner groups (from Baddoo and
Hall, 2003 [4])

Of these, we attempt to address cumbersome pro-
cesses, inertia, time pressure, lack of resources, lack of
evidence, and imposition. Commercial pressures are not
an issue for us: our commercial partners all cite com-
mercial pressures as their main reason for engaging in
this project. Communication, support, and personality
issues cannot be addressed by this process.

Baddoo and Hall identified a large set of motivators,
with significant differences in kind between different
groups. We feel that motivators for project and senior
management are particularly important, as fulfillment of
these can address a number of de-motivators. Project
managers identify their top motivators as visible suc-

cess, resources, process ownership, empowerment, easy
processes, maintainable processes, knowledgeable team
leaders, reward schemes. Senior management identifies
visible success, meeting targets, cost beneficial, process
ownership, resources, and reward schemes as their top
motivators. Developers identify visible success, bottom-
up initiatives, resources, and top-down commitment as
their top motivators.

Through our project partners we have also identi-
fied a number of factors that can be expected to affect
the adoption of our process (most apply to any SPI pro-
cess), the most important of which are cost efficient, evi-
dence of benefits, minimal impact on existing processes,
minimal investment, and minimal cost of maintenance.

Based on this, we have identified a number of de-
sign criteria for the process.

4.1. Leverage Existing Security Know-How

There is already a considerable body of proven se-
curity know-how, and individual organizations have de-
veloped know-how related to their specific products,
processes and other circumstances. Since this know-
how represents a considerable investment, businesses
would naturally be reluctant to adopt a process that re-
duces the value of this investment. Furthermore, from a
security point of view, it makes more sense to leverage
existing effective methods, tools, and techniques, than
to ignore them.

We integrate existing know-how in our process as
activities in the security activity graphs. Indeed, exist-
ing know-how is critical to the success of vulnerability
cause mitigation.

This criterion addresses the inertia issue, by al-
lowing existing practices to continue (if they provide
value to the business by contributing to security); lack
of evidence (to some extent), by utilizing proven se-
curity activities; inexperienced staff, since staff should
already have experience with existing practices; and
cost/resource issues, by exploiting existing investments.

4.2. Decreasing Cost, Increasing Benefit

Since cost and resource issues are clearly defined as
important issues (both as de-motivators and motivators,
and among our partners), a new process should have
greater potential for success if it is inexpensive than if
it is expensive. A process that decreases in cost and in-
creases in benefit over time, should have an even greater
chance of long-term viability, as this not only increases
the asset value of the process over time, but also mini-
mizes financial risk by avoiding hidden costs in the fu-
ture.

In our process, we address this issue through re-use
of analysis and modeling results. When new models are
developed, parts of existing models (for which vulner-
ability cause mitigation is already completed) can of-
ten be reused, thereby significantly reducing the cost of
modeling and mitigating the new vulnerability. We have
found that even after modeling only a few vulnerabili-
ties, significant re-use occurs.

This criterion addresses cost and resource issues
by reducing resource requirements over time; cumber-
some/easy process issues, since the process becomes
more streamlined over time; and cost/benefit issues by
providing increased benefits and reduced costs over
time.

4.3. Development Process Agnostic

Process change of any kind is known to be diffi-
cult and costly. The more intrusive a new process is,
by requiring changes to other processes, the greater the
obstacles are to its introduction, since changes to other
processes are costly, go against inertia, may be seen as
intrusive, and so forth. Because of this, a new process
should stand a greater chance of success if it adapts to
the business in which it is to be used, rather than require
the business to adapt to the process.

We have chosen to design our security process in
such a way that it is entirely independent of the soft-
ware development process. Instead of intruding in the
development process, it is an add-on that directly im-
pacts only a small number of people. Our impact on
the development process itself is limited to changes re-
quired to prevent vulnerabilities, and the process ensures
that those changes are as tailored to the business’ needs
as possible.

This criterion addresses the inertia issue, by allow-
ing existing processes to continue; cost and resource is-
sues, by requiring only minimal re-investments in other
processes; the inexperienced staff issue, since staff can
continue with the practices they are experienced in; and
the imposition issue, by minimizing the limiting changes
to the development process to those that are required to
prevent vulnerabilities, and allowing these changes to be
adapted to the people directly affected.

4.4. Straightforward Application

Cumbersome processes (which also tend to be ex-
pensive and resource intensive), and processes that must
be imposed by management are known to be difficult to
introduce. A process that is perceived as easy stands a
greater chance of adoption than a cuambersome one. Fur-
thermore, a process that can be introduced gradually in a

bottom-up way faces fewer obstacles than one that must
be imposed top-down in the organization.

We have designed our process to be as simple as
possible, while remaining effective. Our empirical evi-
dence indicates that vulnerability modeling requires less
than an hour of training to perform; we expect that vul-
nerability cause mitigation will require even less, as it is
closer to how developers think naturally. Understanding
VCGs and SAGs takes hardly any training at all. As a
result, it is possible to trial our process with minimal in-
vestment. It can even be done by a single developer, to
guide personal development practices.

However, despite not being cumbersome, vulnera-
bility modeling and vulnerability cause mitigation are
time-consuming activities when applied to real vulnera-
bilities. We doubt that this will be a serious obstacle to
adoption, as every part of the process contributes to the
ultimate goal of preventing vulnerabilities.

This criterion addresses the cumbersome/easy pro-
cess issue, and by implication some of the cost and re-
source issues. It also supports bottom-up initiatives.

4.5. Process Validation

All our sources identify visible success and clear
evidence of benefits as top priorities for successful adop-
tion. Although processes can occasionally be introduced
without first proving their worth, the evidence is clear
that this is not an easy path. It is better to show the
worth of the process before attempting adoption.

Our process design can only address this to a small
extent. Similar processes, such as root cause analysis,
have proven successful both in software and in other
technology areas.

In order to address this issue, we plan for validation
of our methods in a commercial setting. We have be-
gin validating key properties of each step of the process,
and will later deploy the entire process at one of more of
our partners, hoping to show that it leads to a reduction
in vulnerabilities (or recurrences thereof). Our results
to date indicate that the vulnerability modeling phase,
which is the basis for the entire process, works as in-
tended.

4.6. Sustainable Security

Security is not something that can be achieved and
then forgotten. It is generally accepted in the security
field that in order to sustain a given level of security,
it is necessary to continuously react to new threats and
vulnerabilities. This criterion is related to the salience
of the process; a security process that does not adapt to
new threats and vulnerabilities is not viable in the long

term, and hence not salient to the business.

Our process is designed to exist through the entire
software lifecycle. There is no point at which it is “com-
plete”; it is always present in case new threats or vulner-
abilities are discovered. It is also designed to accept ad-
vances in mitigation techniques, and to adapt to chang-
ing conditions within the business. Thus, by design, our
process supports the idea of sustainable security.

5. Related Work

Currently, most approaches to software security are
based on experience and best practices [8, 12, 13, 15,
16]. There is no doubt that these methods are valuable,
as evidence clearly shows that they do prevent vulnera-
bilities. Nevertheless, they typically have several draw-
backs.

One of the most important drawbacks of current
methods is that they are inflexible and provide little or no
support for evolution. For example, CLASP [16], while
comprehensive and practical, can only be used with the
Rational Unified Process [10], and evolution is accom-
plished by waiting for the next revision of the manual.
In contrast, our approach supports any process, adapts
to each user’s needs and evolves to meet new threats
through the continuous revision of vulnerability models
and their SAGs. Flexibility and evolution are two of the
primary goals of our work.

Another common drawback is lack of specificity.
Many proposals for secure software development of-
fer high-level recommendations, but little in the way
of practical guidance. They achieve flexibility by sac-
rificing specificity. For example, Howard [8] recom-
mends that a central security team is created, but does
not discuss alternatives, concrete benefits of having such
a team, or consequences of not having one. Many
other proposals for secure software development have
the same deficiencies. In contrast, our approach always
shows alternatives, benefits and consequences (through
SAGs and through the relationship between activities
and causes), and offers a very flexible framework for se-
lecting concrete activities. The high-level recommenda-
tions found in current literature may appear as activities
or consequences of activities in our method.

Essentially all current methods tend to be centered
on best practices in one way or another. Our approach
is not different in that respect: many security activi-
ties in our approach are best practices, and a thorough
knowledge of best practices is essential to successful
cause mitigation analysis. Our approach does go beyond
best practices by clarifying the security consequences
of issues that may not normally be security-related (e.g.
management or personnel issues). Our approach also

reduces some of the obstacles to implementation of best
practices [17], by clarifying the benefits of each practice.

Our overall approach to software security is related
to root cause analysis (RCA) and defect causal analy-
sis (DCA) [6]. There are significant differences: RCA
and DCA are typically most concerned with root causes,
while we are equally concerned with contributing causes
(in RCA terminology). DCA uses fishbone diagrams to
organize causes; we have found them too limiting. We
provide more guidance on actions (the work presented
in this paper) than do either RCA or DCA.

6. Conclusions

In this paper we have presented an overview of
a process designed to help software development or-
ganizations prevent vulnerabilities in the software they
develop. The process is flexible, straightforward and
well adapted to the needs of most businesses. We have
described key components (vulnerability modeling and
cause mitigation analysis) in earlier work; this paper fo-
cuses on how to apply the process and the criteria that
have influenced the process design.

The process is applied throughout the entire soft-
ware lifecycle as an adjunct to the software development
process. It can be used together with any software devel-
opment process — from requirements-driven to agile. As
new risks and vulnerabilities are identified, or the devel-
opment organization changes, the software security pro-
cess is used to adjust and adapt the development process
to these new conditions.

The design criteria we have identified are all aimed
at improving the applicability of the process and maxi-
mizing the likelihood of successful adoption. The crite-
ria include those focused on the business (costs, benefits,
and salience) as well as those focused on factors relating
to successful adoption (e.g. integration of existing prac-
tices and impact on developers). We have also discussed
how our process satisfies each criterion.

One of the key properties of our process is that it
supports the idea of sustainable security. It is designed
not only to meet the challenges we know of today, but to
be adaptable to future challenges as well. It is designed
to help its users continuously meet new threats and vul-
nerabilities as they evolve.

Another key property of our process is its flexibil-
ity. Since we make no assumptions about the devel-
opment process, our software security process can be
used in conjunction with any development process. Nor
does our process make assumptions about how specific
problems are to be mitigated; it provides a framework in
which users of the process can determine which combi-
nations of activities can potentially prevent vulnerabili-

ties, and select the set of activities that best suits their sit-
vation. In this way existing security practices can be in-
tegrated into our process, which clarifies the exact ben-
efits of each practice, with respect to the vulnerabilities
the user of the process is concerned with.

Currently, we have completely defined two of the
steps of the software security process, with the third well
under way. We have empirically validated key aspects
of the first step, and are in the process of validating the
second. We plan on performing a full-scale field test of
the process, together with our commercial partners, in
the near future.

References

[1] S.Ardi, D. Byers, C. Duma, and N. Shahmehri. A cause-
based approach to preventing software vulnerabilities.

(submitted).
[2] S. Ardi, D. Byers, and N. Shahmehri. Towards a struc-

tured unified process for software security. In Proceed-
ings of the ICSE 2006 Workshop on Software Engineer-
ing for Secure Systems (SESS06), 2006.

[3] N. Baddoo and T. Hall. Motivators of software process
improvement: an analysis of practitioners’ views. The
Journal of Systems and Software, 2002(62):85-96, 2002.

[4] N.Baddoo and T. Hall. De-motivators for software pro-
cess improvement: an analysis of practitioners’ views.
The Journal of Systems and Software, 2003(66):23-36,
2003.

[5] D. Byers, S. Ardi, N. Shahmehri, and C. Duma. Mod-
eling software vulnerabilities with vulnerability cause
graphs. In Proceedings of the International Conference
on Software Maintenance (ICSM06), 2006.

[6] D. N. Card. Learning from our mistakes with defect
causal analysis. IEEE Software, 15(1), 1998.

[7] J. D. Herbsleb and D. R. Goldenson. A systematic sur-
vey of CMM experience and results. In Proceedings

(8]

(9]

(10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

of the 18th International Conference on Software Engi-
neering, pages 323-330, Berlin, Germany, March 1996.
IEEE.

M. Howard. Building more secure software with im-
proved development processes. Security & Privacy
Magazine, 2(6):63-65, Nov-Dec 2004.

W. S. Humphrey. Why don’t they practice what we
preach. Annals of Software Engineering, 1998(6):201—
222, 1998.

I. Jacobson, G. Booch, and J. Rumbaugh. Unified Soft-
ware Development Process. Addison-Wesley, 1999.

P. G. W. Keen. The Process Edge: Creating Value Where
it Counts. Harvard Business School Press, 1997.

S. B. Lipner. The trustworthy computing security de-
velopment lifecycle. In Proceedings of the 20th Annual
Computer Security Applications Conference, pages 2—
13. IEEE Computer Society, December 2004.

G. McGraw. Software security. Security & Privacy Mag-
azine, 2(2):80-83, Mar-Apr 2004.

M. Niazi, D. Wilson, and D. Zowghi. A model for the
implementation of software process improvement: A pi-
lot study. In Proceedings of the Third International Con-

ference on Quality Software (QSIC’03), pages 196-203.

IEEE, 2003.

S. T. Redwine and N. Davis. Processes to Produce
Secure Software, appendix B. Task Force on Security
Across the Software Development Lifecycle, 2004.
Secure Software, Inc. The CLASP application security
process. http://www.securesoftware.com/
(accessed April 2006).

R. Turner. Seven pitfalls to avoid on the hunt for best
practices. IEEE Software, 20(1), 2003.
US-CERT/NIST. Vulnerability summary CVE-
2005-2558. National Vulnerability Database.
http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2005-2558.

