STEVEN ALEXANDER

defeating compiler-
level buffer
overflow protection

Steven is a network test engineer at Front Porch in
Sonora, CA. He gets to break things and shoot Nerf
guns at people.

m alexander.steven@sbcglobal.net

BUFFER OVERFLOW ATTACKS ARE THE
most popular method intruders use to gain
remote and privileged access to computer
systems. Programs that fail to use appropri-
ate bounds checking can allow an attacker
to write data beyond the intended bound-
aries of a buffer and thus possibly corrupt
control structures in the program. This
enables an attacker to execute arbitrary code
with the same privilege as the victim process.
An attacker’s preference is usually to over-
write the saved instruction pointer that is
pushed onto the stack before a function call
or to overwrite a function pointer that will
be used later in the program.

It is also possible to use these attacks simply to over-
write other data. This kind of attack is harder to pre-
vent but, fortunately, is less common than the previous
type and is not discussed here.

Buffer overflows first gained attention with the release
of the famed Morris worm which exploited a buffer
overflow in fingerd [1]. Despite the attack used in the
Morris worm, buffer overflows did not become popular
until the release of two papers that detailed the discov-
ery and exploitation of these vulnerabilities [2,3].

This paper discusses vulnerabilities in two compiler-
level protection mechanisms, StackGuard and Point-
Guard. While this paper takes a critical look at both of
these solutions, it does not intend to make them seem
insignificant. The attacks described in this paper help
to show how StackGuard and PointGuard should be
complemented to construct a more complete protec-
tion system.

The reader should also note that PointGuard has not
been publicly deployed. It was presented at the
USENIX Security Symposium in 2003. The design
might be changed before its release to correct func-
tionality problems with some real-world software [4].

The reader should also note that StackGuard has
reverted from the more advanced random XOR canary
protection method analyzed here to the simpler termi-
nator canary [5]. The justification for the change is
that the attack method that prompted the change also
enables an attacker to manipulate a program in ways
that StackGuard cannot, and was not designed to, pro-
tect against. Because StackGuard has reverted to a
weaker method and PointGuard is not available, the
attacks in this paper are mostly of importance to the
designers of new protection methods and have little
consequence for currently deployed systems.

;LOGIN: JUNE 2005 DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 59

60

;LOGIN: VOL. 30, NO. 3

Exploiting a Buffer Overflow

To understand how a buffer overflow exploit works, we must first understand
how a function call occurs:

1. The calling procedure pushes any function arguments onto the stack in
reverse order.

2. The calling procedure executes a “call” instruction, which pushes the address
of the next sequential instruction onto the stack and tells the processor to
transfer execution to the target function.

3. Assuming that frame pointers are being used, the called function pushes the
old frame pointer onto the stack and copies the value stored in the stack
pointer over the frame pointer. Then, the stack pointer is decremented (the
stack grows down) to make room for local variables.

Figure 1 show the stack layout for a called function with a single variable (a
character array).

Function Arguments

Saved Instruction
Pointer

Saved Frame Pointer

buf[255]

buf[0]

FIGURE 1: STACK LAYOUT FOR A CALLED FUNCTION
WITH CHARACTER ARRAY ARGUMENT

The function epilogue consists of popping the saved frame pointer from the
stack and executing a return instruction. The return instruction causes the
processor to pop the saved instruction pointer from the stack into the program
counter and begin execution at that address. The saved instruction pointer is
supposed to hold the instruction address that was saved on the stack in step 2
above.
Consider the following code:
#include <stdio.h>
int main (int argc, char *argvl]) {
char buf[256];
iflfargc < 2) {
printf("Oops.\n");
return -1;
}
strepy(buf, argvl1]);
return O;

}

This snippet of code is vulnerable to a trivial buffer overflow attack. The strcpy
function does not perform bounds checking (unlike its cousin strncpy), so the
program will copy characters from argv[1] to buf until the program crashes or
strcpy encounters a null character, \0. An attacker could find a way to provide a
carefully crafted input that will cause this function to execute his own code
instead.

First, such an attacker would assemble a small bit of code that will do something
useful such as the semantic equivalent of exec (“/bin/sh”). Such code is usually

;LOGIN: JUNE 2005

referred to as “shellcode” since the popular use is to execute a command shell.
Shellcode can be used to do more complicated things, such as open a network
connection or add a new root user. There are some restrictions as to how this
code can be constructed. For instance, there cannot be any null characters in the
resulting machine code. Aleph One discusses constructing workable shellcode
[3]. There is quite a lot of shellcode available online so, unfortunately, aspiring
exploit writers don’t have to start from scratch.

In order to execute some shellcode, an attacker provides the code as a part of
the input to a vulnerable program. The attacker crafts the input so that it will
exceed the bounds of the allocated buffer and overwrite the saved instruction
pointer with the address of the provided shellcode. If the attacker does not know
the exact address at which the shellcode will be stored, he can prepend a series
of null instructions (NOPs) to the shellcode. If the provided address points to
any location within the series of NOPs, execution will continue through the
NOPs and eventually reach the shellcode. If the attacker does not know the
exact location of the saved instruction pointer (common if the attacker doesn’t
have access to the source code), he may duplicate the shellcode address several
times. In such a case, it might take the attacker a few tries to overwrite the saved
instruction pointer on the correct 4-byte boundary.

It might also take the attacker a few extra tries to guess the correct shellcode
address. The address at which the shellcode is stored is usually not difficult to
guess, even in black-box analysis, since the stack begins at a known location.
This does not hold true if the target program runs on a system with good stack
randomization. Figure 2 shows the attacker’s input layout. Figure 3 depicts the
manner in which this input corresponds to the function stack layout.

Address of Attacker’s
Shellcode

Attacker’s Shellcode

NOPs

FIGURE 2: ATTACKER’S STACK LAYOUT AFTER INPUT

Higher Addresses

Function Arguments

Overwritten with the address

Saved Ipsh’uction % of the attacker's shellcode
Pointer

Saved Frame Pointer

buf[255] Filled with the attacker's
shellcode, possibly
padded with NOP
nstructions
buf[0]

Lower Addresses

FIGURE 3: EXPLICATION OF FUNCTION STACK LAYOUT
WITH ATTACK

DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 61

62

;LOGIN: VOL. 30, NO. 3

Solutions, a Survey

Many methods have been proposed to prevent the execution of buffer overflow
attacks [6], some of which are discussed here. Papers about several solutions
and attacks are available on Purdue University’s SmashGuard buffer overflow
prevention page [7].

OS-LEVEL

NON-EXECUTABLE STACK

One of the first methods, the non-executable stack, was proposed by Solar
Designer [8]. A non-executable stack prevents the standard buffer overflow
attack which modifies the saved instruction pointer so that it points at the
attacker’ shellcode. The attacker’s shellcode is normally stored in the same
stack-allocated buffer that was overrun to change the instruction pointer. If the
stack is non-executable, the attempt to resume execution at this location will fail.

This defense can be defeated by injecting executable code into other data areas,
such as the standard .data and .bss sections. The defense was also defeated by
Solar Designer [9] and Rafal Wojtczuk [10] using the return-into-libc method.
In this method, the saved instruction pointer is modified so that the program
will return into an instruction sequence in the C library. It is not necessary that
the instruction pointer direct execution to the beginning of a function in the C
library. Often, an attacker will wish to point at a call to system() inside one of
the C library functions. An attacker can manipulate the stack so that his pro-
vided arguments will be used in the call to system().

PAX/ASLR

Randomizing the base address at which libraries are loaded can hinder return-
into-libc attacks (used to defeat non-executable restrictions such as those in
Solar Designer’s stack patch). This technique was introduced in [11] and used
by ASLR in PaX [12]. In early versions of PaX, an attacker could defeat this by
instead returning into the Process Linkage Table (PLT) [13,14]. The PLT is used
to resolve libc (and other) function addresses automatically. Currently, PaX can
also randomize the executable base for ELF executables [12]; this prevents the
return-into-PLT attack. There is another attack that can be used against
PaX/ASLR with the randomized executable base in effect [15]. The attack uses a
partial overwrite of the saved instruction pointer to gain control over the argu-
ments passed to printf, which allows an attacker to discover information about
the randomized library base using a format string attack so that a normal return-
into-libc attack can be performed. When used with PaX, StackGuard and Pro-
Police/SSP can both prevent these attacks. The OpenBSD project has imple-
mented W/X, which uses techniques similar to PaX. OpenBSD also uses address
randomization and ProPolice/SSP.

COMPILER-LEVEL

STACKGUARD AND PROPOLICE/SSP

Another possible solution was proposed by Crispin Cowan and is used in Stack-
Guard [16,5]. StackGuard places a canary value between the saved frame and
instruction pointers and the local function arguments. Figure 4 shows the
revised stack layout. The canary value is set in the prologue to each function and
is checked for validity in the epilogue. If the canary value has been modified, a

;LOGIN: JUNE 2005

handler function is called and the program terminates. A direct attack will over-
write the canary value before it overwrites the saved instruction or frame point-
ers. Any of three types of canary can be used: a terminator canary, a random
canary, or a random XOR canary.

Function Arguments

Saved Instruction
Pointer

Saved Frame Pointer

Canary

buf[255]

buf[0]

FIGURE 4: REVISED STACK LAYOUT WITH CANARY

A terminator canary contains multiple terminator values, such as a NULL byte
or newline, which are used to indicate the end of a string in the various C library
string functions. Because these values are used to terminate a string, an attacker
cannot avoid changing them with a direct buffer overrun. It is possible to repair
a terminator canary if an attacker has the opportunity to perform multiple over-
runs in one function. The first overrun can be used to change the instruction
pointer and the subsequent overrun can be used to repair the canary by lining
up the terminator in the string with the corresponding value in the terminator
canary.

A random canary is a random value chosen at runtime. The random value is
stored in a global variable and is used for each function in a program. It is stored
in the same manner as the terminator canary. It is assumed that an attacker will
be unable to overwrite the global value or to cause the program to leak the
value. In some circumstances it is possible, however, to force the program to
leak the random value using a format string attack. Overwriting the global vari-
able is not useful since an attacker could just as easily overwrite a function
pointer (.got entry, .dtors, etc.).

The random XOR canary was introduced into StackGuard to prevent an attack
published in Phrack Magazine [17]. Rather than directly overwriting the canary
and saved instruction pointers, an attacker can overwrite a data pointer that will
be used later in the function as the destination for a string or memory copy that
uses attacker-supplied data. The attacker can modify the pointer so that it points
directly at the saved instruction pointer. When the attacker’s data is copied to
that address later in the function, the saved instruction pointer will be overwrit-
ten without modifying the canary.

With the random XOR canary, a random value is again generated at runtime and
stored in a global variable. Rather than storing the random value on the stack,
the random value is XORed with the saved instruction pointer and the result is
stored on the stack. During the function epilogue, the saved canary is XORed
with the random value and the result is compared to the saved instruction

DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 63

pointer. If the values do not match, the handler function is called and the pro-
gram terminates. The maintainers of StackGuard have reverted to using the ter-
minator canary because the attack used to defeat the terminator canary can also
be used to corrupt other important values such as function pointers.

SSP, previously known as ProPolice, is based on StackGuard and uses a random
canary [18]. SSP offers several improvements over StackGuard, however, and is
more difficult to defeat. SSP reorders local function variables so that pointers are
stored below buffers in memory (i.e., higher on the stack). This rearrangement
prevents an attacker from successfully employing attacks such as the one used
to defeat StackGuard. There is a limitation to this: the variables within a data
structure cannot be reordered, so it is possible for an attacker to exploit a buffer
overflow within a data structure and overwrite a pointer value within that same
structure. This does not seem (to me) to be a common problem.

SSP also copies function arguments to the local stack frame. An attacker can tar-
get the arguments of a function if they will be used inside the function after he
modifies them. In some cases, an attacker can use them (perhaps by overwriting
a pointer value) to write arbitrary data to any writable location in memory. The
canary value will be overwritten but, since an attacker can write anywhere, he
could also overwrite the address in .got of one of the functions used in the han-
dler function that is called to terminate the program. By copying the function
arguments to a local memory area below the local variables, SSP prevents this.

StackGuard and SSP cannot prevent attacks that occur in heap memory
[19,20,21]. Early versions of StackGuard did not attempt to protect the saved
frame pointer. If the frame pointer is not protected, StackGuard can be bypassed
by taking control of the stack frame [22].

PointGuard

PointGuard protects pointer values inside programs, a technique that promises
much better protection than using StackGuard alone [23]. PointGuard works by
XOR-encrypting pointer values with a random value determined at runtime and
stored in a global variable. Code is added to a protected program to decrypt
pointer values automatically before each use. Pointer values are decrypted only
in registers, and the decrypted pointer is not stored in memory. Without knowl-
edge of the random value used to encrypt the pointers in a program, an attacker
cannot overwrite a pointer and hope for a meaningful decryption. If an attacker
overwrites a pointer hoping to point to an exact location, his chances are 1 in
232 orabout 1 in 4 billion. An attacker has a much better chance if he is trying
to point a function pointer at NOP-padded shellcode, but even with a 1-kilobyte
NOP bulffer, his chances are only about 1 in 4 million. Dereferencing a random
pointer value is likely to cause a segmentation violation, which will cause the
targeted program to exit and dump core.

Unlike StackGuard and SSP, PointGuard does provide protection against heap
attacks. Note that in order to provide protection against malloc and free
attacks, libc must be compiled with PointGuard. Unfortunately, PointGuard can
be defeated using format string attacks, as discussed on Bugtraq [24] and using
an attack detailed below. An implementation of PointGuard has not been pub-
licly released.

Format String Vulnerabilities

Format string vulnerabilities arise when functions that accept format strings and
a variable number of arguments (e.g., printf) are used without a programmer-

64 ;LOGIN: VOL. 30, NO. 3

;LOGIN: JUNE 2005

provided format string. If the function is used to process user-provided input, a
malicious user can supply his own format string. An attacker can use specially
crafted input to leak information from the victim program (most likely by walk-
ing the stack) or to overwrite arbitrary data. (For an introduction to format
string exploits, see [25]; for more advanced techniques, see [26] and [27].)

In the printf family of functions, data can be overwritten using the %n format
specifier. The %n specifier stores the number of bytes that printf has written so
far at the provided address. An attacker can use this feature to overwrite a
pointer (including a function pointer), a saved instruction address, an entry in
the Global Offset Table (GOT) [14], or any other value in memory that can be
changed to aid an attacker in diverting a program’s execution or elevating
privilege.

While some RISC systems have alignment requirements for writes that use the
%n specifier, Intel-based systems do not. Because of this, the %n specifier can
be used multiple times, with each write operation targeting an address just one
byte higher than the previous operation. In this case, only the least significant
byte of each count is used to construct a new value for a 32-bit word. This tech-
nique has the consequence that it will also overwrite three bytes adjacent to the
target value. This is usually not a problem for an attacker. If, for instance, an
attacker uses this method to overwrite a saved instruction pointer, the first three
bytes lower in the stack (at a higher memory address) will be corrupted. Nor-
mally, this value will be one of the arguments passed in to the current function.
If this value is dereferenced after the attacker corrupts it, the program may crash.
If, on the other hand, it is not, the attacker can cause the program to execute
arbitrary code when it exits from the current function. If this is a problem, the
attacker need only overwrite another value, such as _atexit or a GOT entry,
instead.

Attacker-provided format strings can also be used to leak information from the
currently running program. The %iii$ specifier is extremely useful in this
regard. In this specifier, iii is the number of the argument to print; for instance,
%2$08x will print the second argument on the stack in zero-padded hexadeci-
mal format. This can be used to “walk” the stack or to print arbitrary values
directly. This technique was crucial in gathering information for the return-into-
libc exploit used to defeat PaX [15]. In that particular case, the least significant
byte of the saved instruction pointer was overwritten by a buffer overflow to
cause a vulnerable function to return directly to a printf call in the middle of that
same function. In doing this, the author was able to cause his own arguments to
be provided to the printf function instead of those that were hard-coded into the
program. The author used this technique to force the program to leak the infor-
mation necessary to execute a return-into-libc exploit on a PaX protected system
with ASLR. The target function was not otherwise vulnerable to a format string
attack. The format string attack was made possible only by the buffer overflow,
which prevented the correct values from being placed on the stack before printf
was called.

A New Weakness in PointGuard

In addition to the previously discussed vulnerability to information leaking with
format strings, PointGuard is also vulnerable to buffer overflows and to data
manipulation with format strings. The claim given in the PointGuard paper [23]
is that an attacker can destroy a pointer value but cannot produce a predictable
pointer value. This is not completely true.

PointGuard is weak because pointer encryption is achieved by using a bitwise
exclusive-OR operation rather than a more complex nonlinear operation.
Because of this, any byte of the encrypted pointer that is not overwritten will

DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 65

66

;LOGIN: VOL. 30, NO. 3

still decrypt correctly. This enables an attacker to make use of partially overwrit-
ing a pointer. If an attacker can find a situation in which it is advantageous to
redirect a pointer toward a location whose most significant one to three bytes are
the same as the location that the pointer originally referenced, he can, by brute
force, attempt to redirect the pointer to this new location with far less effort than
would be required to brute-force a 32-bit value.

On little-endian architectures, an attacker can use a simple buffer overflow to
overwrite the least significant bytes of a pointer value, since the least significant
bytes are stored at a lower address and thus overwritten first. Using format string
attacks, which allow considerable flexibility in the way a value is overwritten, an
attacker can bypass PointGuard on both little-endian and big-endian systems.

Consider the following code, a variation of the vulnerable “straw man” program
included in the PointGuard paper:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ERROR -1
#define BUFSIZE 64

int goodfunc(const char *string) {
printf("%s\n", string);
return O;

}

int main(int argc, char **argv) {
static char buf[BUFSIZE];
static int (*funcptr)(const char *str);
iflargc <= 2) {
fprintf(stderr, "Usage: %s <buf> <goodfunc arg>\n",
argv([0]);
exit(ERROR);

}

funcptr = (int (*)(const char *str))goodfunc;
memset(buf, 0, sizeof(buf));

strnepy(buf, argv[1], strlen(argv[1]));
(void)(*funcptr)(argvl2]);

return O;

}

I compiled this code on an Athlon XP running FreeBSD 4.9. When the exe-
cutable is loaded, the goodfunc function is located at 0x080485¢4 and the buf
buffer is located at 0x08049940. An attacker who loaded buf with his own exe-
cutable shellcode would only need to overwrite the two least significant bytes
of funcptr correctly in order to execute his code instead of goodfunc. Since
those two bytes are XOR-encrypted with 16 random bits, an attacker who
overwrites the two least significant bytes of funcptr will have a 1 in 65,536
chance of redirecting that pointer to the beginning of his shellcode. While this
might be difficult to accomplish remotely before the attack is noticed by a sys-
tem administrator, such an attack could be accomplished locally without any
trouble.

Obviously, this example is contrived and does not necessarily provide a realistic
memory layout for a real-life program. Instead, let us consider the layout infor-
mation (see Figure 5, below) from three real, privileged programs from FreeBSD
4.9: 1pr, ftpd, and rcp. In the case of Ipr, redirecting a vulnerable pointer in a
PointGuard-protected instance of the program would require an amount of
effort similar to our example, since the .text and both data sections are located
inside the same 16-bit segment. The other two programs would be more difficult
to subvert since the data sections and the .text section share only the most sig-
nificant eight bits of their addresses. An attacker would thus be required to over-

;LOGIN: JUNE 2005

write the lower 24 bits of a function pointer in order to redirect it to his injected
shellcode in one of these sections.

The odds of an attacker providing a 24-bit value that will correctly decrypt to
the address of his shellcode are slightly better than 1 in 17 million. The outlook
for an attacker is not quite so bleak, however. If the attacker is able to place
shellcode in more than one location or to prepend a long series of null opera-
tions (NOP) to his shellcode, he can increase his odds tremendously.

Assume that an attacker’s shellcode is only 50 bytes (a number well within the
normal range). Further, assume that he is able to place this shellcode at the end
of a one-kilobyte buffer after padding the buffer with NOPs. The attacker’s odds
increase to one in 17,000. In some situations, the attacker may be able to con-
struct an even longer series of NOPs by having access to a large character array
or by overwriting several data structures with the NOPs and shellcode without
that data being molested before the altered function pointer is dereferenced. In
highly favorable situations, an attacker might be able to guess a correct value
with only a few thousand guesses on average. Clearly, such situations do not
correspond with the argument in the PointGuard paper that an attacker cannot
meaningfully corrupt a pointer without knowledge of the PointGuard encryp-
tion key.

In general, the complexity of guessing a value that will successfully cause a
function pointer to reference NOP-padded shellcode is 2(X-In(number of NOPs))
where X is the number of bits guessed.

On little-endian systems, the security of PointGuard can be improved slightly by
rotating a pointer value one byte to the left after the XOR encryption and rotat-
ing it back before the XOR decryption. In most situations, this would force an
attacker to overwrite the entire 32-bit value. Using format string attacks, it
would still be possible in some circumstances to overwrite only the least signifi-
cant three bytes. Still, such situations are likely to be far more rare than those in
which an attacker can corrupt a pointer with a simple buffer overflow. Unfortu-
nately, such a change is likely to at least double the current performance penalty
imposed by PointGuard.

Program text .data .bss

/usr/bin/lpr 0x0804964c 0x0804f140 0x0804f400
/usr/libexec/ftpd ~ 0x0804a974 0x08059ce0 0x0805a560
/bin/rcp 0x080480b8 0x08081ae0 0x080831a0

FIGURE 5: ACTUAL MEMORY LAYOUTS FOR THREE
COMMON PROGRAMS

A New Weakness in StackGuard

In this section, all references to StackGuard should be interpreted to mean
StackGuard with the random XOR canary [5,17].

StackGuard has a weakness that corresponds to the previously discussed vulner-
ability in PointGuard. The random XOR canary is the result of exclusive-ORing
arandom canary value (generated at runtime) with the saved instruction
pointer. The result is stored on the stack after the saved instruction and frame
pointers and before the local function variables. Code in the function epilogue
exclusive-ORs the saved canary with the random value (thus canceling out the
effect of the random value) and compares the result to the saved instruction
pointer. If the two values do not match, the program exits.

Since exclusive-OR is a bitwise operation, if only some bytes of the saved
instruction pointer are modified, then only the corresponding bytes of the saved
canary value need to be modified. The bytes of the saved canary can be overwrit-
ten with any random value.

DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 67

68

;LOGIN: VOL. 30, NO. 3

This weakness is more difficult to exploit than the one in PointGuard. The con-
ditions that must exist in a program’s code for exploitation to be possible are
more specific. The value used to overwrite the saved canary must be equal to the
result of exclusive-ORing the pertinent bytes of the random canary and the
attacker-supplied instruction pointer value, since a direct comparison is used in
the function epilogue to determine whether the exclusive-OR of the random
canary and the saved instruction pointer match the saved canary. It is still possi-
ble to overwrite the saved canary value with any random or fixed value, since
the random canary used by the program changes with each execution.

PointGuard offers more room for error because it does not perform a direct com-
parison; instead, PointGuard allows the pointer to be dereferenced, under the
assumption that a corrupted pointer will decrypt to a random value and most
likely reference an invalid memory region, which will cause the program to
crash. With PointGuard, an attacker can inject NOP-padded shellcode, which
allows him the opportunity to guess a value that will decrypt to any location
within the series of NOPs (or the first useful instruction in the shellcode).

If a format string overwrite attack is used to circumvent StackGuard, the attack
is fairly straightforward. The attacker uses the %n modifier to overwrite all or
part of the saved instruction pointer with a newly constructed value of his
choosing. The attacker also uses the %n modifier to overwrite the correspon-
ding bytes of the saved canary with any random or fixed value (probably fixed).

If an attacker overwrites the entire saved instruction pointer, he must also over-
write the entire saved canary. In this case, his attack has less than a 1 in 4 billion
chance of success. An attacker’s goal will be to find a situation in which he is
able to inject code at a location that shares one or two significant bytes with the
value of the original saved instruction pointer (as in the above PointGuard
attack).

In order to bypass StackGuard using traditional techniques, an attacker must
use a buffer overflow to overwrite the least significant bytes of the saved canary
value. The attacker can overwrite these bytes with any value, fixed or random.
He must also overwrite a data pointer so that it points directly at the saved
instruction pointer. This modified data pointer must later be used as the destina-
tion for a string or memory copy that uses user-supplied input. An attacker will
use the string or memory copy to point the saved instruction pointer at his
shellcode (or to perform a return-into-libc attack). The affected data pointer
must point directly at the saved instruction pointer; there is no margin for error
as when attempting to point at NOP-padded shellcode.

Assuming that an attacker is successful in overwriting a pointer value and that
he uses the corrupted pointer to correctly overwrite the saved instruction point-
er, this attack will fail in each instance that the saved canary value is not equal to
the exclusive-OR of the random canary (generated at each execution of the pro-
gram) and the attacker-supplied return address. Since the random canary chang-
es with each execution of the program, an attacker can supply any fixed or ran-
dom value to overwrite the least significant bytes of the saved canary and will
eventually succeed.

Consider the following source code:
int main(int argc, char **argv) {

char *ptr;
char buf[256];

strepy(buf, argv[1]);
do_some_parsing(buf);
strepy(ptr, buf);

;LOGIN: JUNE 2005

This program is vulnerable to a standard buffer overflow attack; an attacker can
provide input that will be copied beyond the boundaries of the buf array, poten-
tially overwriting the saved frame or instruction pointers that are stored on the
stack between the function arguments and the local variables.

StackGuard will prevent a generic buffer overflow attack against this code. If an
attacker attempts a standard buffer overflow attack against the saved instruction
pointer, the canary value will be overwritten, StackGuard will detect the modifi-
cation in the function epilogue, and the attack will fail.

In the versions of StackGuard that use a random or terminator canary, the previ-
ously published attack [17] applies and ptr can be overwritten instead. Instead
of attacking the saved instruction pointer, an attacker can use a stack overflow
to modify ptr so that it points at the return instruction pointer. The second
strcpy operation will then overwrite the instruction pointer with the contents of
buf without modifying the canary.

Although the random XOR canary prevents a direct application of this attack,
the attack remains possible with some modifications. An attacker can still use
ptr to overwrite part or all of the saved instruction pointer. In addition, he will
have to overwrite the bytes of the canary that correspond to the bytes of the
instruction pointer that he modifies. If he modifies every byte of the saved
instruction pointer, his chances of success are slim, because he will have to over-
write the entire canary and will have less than a 1 in 4 billion chance that he will
overwrite the canary with the correct value.

To improve his chances, the attacker will have to inject code into the .bss or
.data memory regions, which often share the one or two most significant bytes
of their addresses with the .text section. Alternatively, the attacker can attempt a
return-into-PLT attack, since the .plt section often shares the most significant
bytes of its address with the .text section. By using a return-into-PLT attack or
injecting code in the .bss or .data sections, an attacker can redirect control of
the program by only partially overwriting the saved instruction pointer and,
consequently, only partially overwriting the saved canary.

This attack is an extension of the technique used to bypass StackGuard [17]. In
the Phrack article, a string pointer was overwritten using a simple stack over-
flow. The pointer was later used as a destination pointer for a string copy which
overwrote the saved instruction pointer with the location of either attacker-
supplied shellcode or the address of a libc function (for a return-into-libc
attack). The attack in this paper carries the restrictions that the saved instruc-
tion pointer should only be partially overwritten in order to ensure a reasonable
chance of success and that corresponding bytes of the saved canary value must
also be overwritten.

Conclusion

The attack against StackGuard is easy to ameliorate since it depends on exact
knowledge of the location of the saved instruction pointer on the stack. Run-
time and load-time stack randomization [11] greatly increase the difficulty of
this attack. Load-time stack randomization can be implemented with only a few
lines of code on most operating systems [28]. The difficulty of this attack is mul-
tiplied by the amount of stack randomization applied. Thus, if an attacker con-
structs an exploit that has a 1 in 16 million chance of success (he modified three
bytes) and the attack is used against a system that uses 10 bytes of stack ran-
domization, the chance of success drops to less than 1 in 16 billion. PaX uses 24
bits of stack randomization; the code published in ;login: uses 18. Load-time
stack randomization carries a negligible performance penalty at load-time and
does not affect runtime performance at all.

DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 69

70

;LOGIN: VOL. 30, NO. 3

The attack against StackGuard is not possible when PointGuard is used. Under
most circumstances, this attack would not be possible if StackGuard used local
variable reordering as in ProPolice/SSP.

The use of buffer overflows against PointGuard is possible only under specific
circumstances. SSP’s local variable reordering has no runtime performance
penalty and would make these circumstances extremely rare. FormatGuard can
likewise protect PointGuard against most format string attacks [29]. Unfortu-
nately, FormatGuard protects only calls to the C library. Programs such as
wu-ftpd, which use an alternative implementation of printf, would not be
protected. In some circumstances, the combination of SSP, PointGuard, and
FormatGuard would still be vulnerable. Replacing SSP with StackGuard makes
the combination even weaker.

The non-executable restrictions imposed by PaX and WAX would make the
attack against PointGuard difficult because an attacker would not be able to exe-
cute code injected into the .data or .bss sections. The various memory random-
ization features of ASLR would make it even more difficult for an attacker to
meaningfully redirect a pointer value.

The use of compiler-level stack protection, as in StackGuard and SSP, along with
PaX, can defeat the attacks that have been published for defeating PaX alone.
Some more advanced variations on these attacks may be possible, but the
pointer protection offered by SSP’s local variable reordering is likely to prevent
most of them. Even without the benefit of StackGuard or SSP, the attacks against
PaX are more difficult than the above attack against PointGuard.

Pointer encryption, canary protection methods, and execution restriction mech-
anisms have all been shown to be vulnerable to various attacks. The risk of a
successful attack against these systems can be reduced if a host intrusion detec-
tion mechanism such as Segvguard [13] is used to prevent a program from exe-
cuting after some number of crashes. A mechanism such as Segvguard is neces-
sary to complement PointGuard, PaX, WAX, or any address space randomization.

REFERENCES

[1] Eugene Spatford, “The Internet Worm Program: Analysis,” Computer Communications
Review (January 1989).

[2] Mudge, “How to Write Buffer Overflows” (October 1995)
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html.

[3] Aleph One, “Smashing the Stack for Fun and Profit,” Phrack Magazine 49 (November
1996), http://www.phrack.org/49/P49-14.

[4] Crispin Cowan, personal communication, January 2004.

[5] Crispin Cowan and Perry Wagle, “StackGuard: Simple Stack Smash Protection for
GCC,” Proceedings of the GCC Developers Summit (May 2003).

[6] Crispin Cowan et al., “Buffer Overflows: Attacks and Defenses for the Vulnerability of
the Decade,” DARPA Information Survivability Conference and Expo (DISCEX), January
2000.

[7] See http://engineering.purdue.edu/ResearchGroups/SmashGuard/.
[8] Solar Designer, “Non-Executable User Stack,” http://www.openwall.com/linux/.

[9] Solar Designer, “Getting Around Non-Executable Stack (and Fix).” http://www
.securityfocus.com/archive/1/7480.

[10] Rafal Wojtczuk, “Defeating Solar Designer’s Non-Executable Stack Patch” (January
1998), http://www.securityfocus.com/archive/1/8470.

[11] Monica Chew and Dawn Song, “Mitigating Buffer Overflows by Operating System
Randomization,” Tech Report CMU-CS-02-197 (December 2002).

[12] See http://pax.grsecurity.net/docs/index.html.

[13] Nergal, “The Advanced return-into-lib(c) Exploits: PaX Case Study,” Phrack
Magazine 58 (December 2001), http://www.phrack.org/phrack/58/p58-0x04.

;LOGIN: JUNE 2005

[14] John R. Levine, Linkers and Loaders (San Diego: Academic Press, 2000).

[15] Anonymous, “Bypassing PaX ASLR Protection,” Phrack Magazine 59 (July 2002),
http://www.prhack.org/phrack/59/p59-0x09.

[16] Crispin Cowan et al., “StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks,” 7th USENIX Security Symposium (January 1998), pp. 63-77.

[17] Bulba and Kil3r, “Bypassing StackGuard and StackShield,” Phrack Magazine 56 (May
2000), http://www.phrack.org/phrack/56/p56-0x05.

[18] Hiroaki Etoh, “ProPolice: GCC Extension for Protecting Applications from Stack-
Smashing Attacks,” IBM (April 2003), http://www.trl.ibm.com/projects/security/ssp/.

[19] Matt Conover, “w00w00 on Heap Overflows” (January 1999),
http://www.w00w00.org/files/articles/heaptut.txt.

[20] Michel Kaempf, “Vudo Malloc Tricks,” Phrack Magazine 57 (August 2001),
http://www.phrack.org/phrack/57/p57-0x0b.

[21] Anonymous, “Once upon a free(),” Phrack Magazine 57 (August 2001),
http://www.phrack.org/phrack/57/p57-0x0c.

[22] Gerardo Richarte, “Bypassing the StackShield and StackGuard Protection” (April
2002), http://www]1.corest.com/corelabs/papers/index.php.

[23] Crispin Cowan et al., “PointGuard: Protecting Pointers from Buffer Overflow Vulner-
abilities,” 12th USENIX Security Symposium (August 2003), pp. 91-104.

[24] Crispin Cowan, “Re: PointGuard: It’s not the Size of the Buffer, it's the Address.”
http://www.securityfocus.com/archive/1/333988.

[25] Pascal Bouchareine, “Format String Vulnerability” (July 2000),
http://www.hert.org/papers/format.html.

[26] scut and Team Teso, “Exploiting Format String Vulnerabilities” (September 2001),
http://www.team-teso.net/articles/formatstring/.

[27] gera and riq, “Advances in Format String Exploitation,” Phrack Magazine 59 (July
2002), http://www.phrack.org/phrack/59/p59-0x12.

[28] Steven Alexander, “Improving Security with Homebrew System Modifications,”
;login:, vol. 29, no. 6 (December 2004), pp. 26-32.

[29] Crispin Cowan et al., “FormatGuard: Automatic Protection from printf Format
String Vulnerabilities,” 10th USENIX Security Symposium (August 2001).

DEFEATING COMPILER-LEVEL BUFFER OVERFLOW PROTECTION 7

