
Substantial net improvements in programming quality and pro-
ductivity have been obtained through the use of formal inspec-
tions of design and of code. Improvements are made possible by
a systematic and eficient design and code verijicution process,
with well-dejined roles for inspection participants. The manner
in which inspection data is categorized and made suitable for
process analysis is an important factor in attaining the improve-
ments. It is shown that by using inspection results, a mechanism
f o r initial error reduction followed by ever-improving error rates
can be achieved.

Design and code inspections to reduce errors in program
development

by M. E. Fagan

Successful management of any process requires planning, mea-
surement, and control. In programming development, these re-
quirements translate into defining the programming process in
terms of a series of operations, each operation having its own
exit criteria. Next there must be some means of measuring com-
pleteness of the product at any point of its development by
inspections or testing. And finally, the measured data must be
used for controlling the process. This approach is not only con-
ceptually interesting, but has been applied successfully in sever-
al programming projects embracing systems and applications
programming, both large and small. It has not been found to “get
in the way” of programming, but has instead enabled higher
predictability than other means, and the use of inspections has
improved productivity and product quality. The purpose of this
paper is to explain the planning, measurement, and control func-
tions as they are affected by inspections in programming terms.

An ingredient that gives maximum play to the planning, mea-
surement, and control elements is consistent and vigorous disci-
pline. Variable rules and conventions are the usual indicators of
a lack of discipline. An iron-clad discipline on all rules, which
can stifle programming work, is not required but instead there
should be a clear understanding of the flexibility (or nonflex-
ibility) of each of the rules applied to various aspects of the pro-
ject. An example of flexibility may be waiving the rule that all
main .paths will be tested for the case where repeated testing of
a given path will logically do no more than add expense. An ex-
ample of necessary inflexibility would be that all code must be

182 FAGAN IBM SYST J

The cost of reworking errors in programs becomes higher the
later they are reworked in the process, so every attempt should
be made to find and fix errors as early in the process as possible.
This cost has led to the use of the inspections described later
and to the description of exit criteria which include assuring that
all errors known at the end of the inspection of the new “clean-
compilation” code, for example, have been correctly fixed. So,
rework of all known errors up to a particular point must be
complete before the associated checkpoint can be claimed to be
met for any piece of code.

Where inspections are not used and errors are found during de-
velopment or testing, the cost of rework as a fraction of overall
development cost can be suprisingly high. For this reason, er-
rors should be found and fixed as close to their place of origin as
possible.

Production studies have validated the expected quality and pro-
ductivity improvements and have provided estimates of standard
productivity rates, percentage improvements due to inspections,
and percentage improvements in error rates which are applicable
in the context of large-scale operating system program produc-
tion. (The data related to operating system development con-
tained herein reflect results achieved by IBM in applying the sub-
ject processes and methods to representative samples. Since the
results depend on many factors, they cannot be considered rep-
resentative of every situation. They are furnished merely for
the purpose of illustrating what has been achieved in sample
testing.)

The purpose of the test plan inspection IT,, shown in Figure 1,
is to find voids in the functional variation coverage and other
discrepancies in the test plan. IT,, test case inspection of the
test cases, which are based on the test plan, finds errors in the
test cases. The total effects of IT, and IT, are to increase the
integrity of testing and, hence, the quality of the completed
product. And, because there are less errors in the test cases to
be debugged during the testing phase, the overall project schedule
is also improved.

A process of the kind depicted in Figure 1 installs all the intrin-
sic programming properties in the product as required in the
statement of objectives (Level 0) by the time the coding opera-
tion (Level 5) has been completed-except for packaging and
publications requirements. With these exceptions, all later work
is of a verification nature. This verification of the product pro-
vides no contribution to the product during the essential develop-
ment (Levels 1 to 5) ; it only adds error detection and elimina-
tion (frequently at one half of the development cost). I,, I , , and
I, inspections were developed to measure and influence intrinsic

NO. 3 * 1976 DESIGN AND CODE INSEPCTIONS

I Figure 2 A study of coding productivity - CODINGOPERATION -
/ \

REWORK Y ' REWORK REWORK I Y L i
'DETECTION

EFFICIENCY
ASSUMED = 100%

NET CODING PRODUCTIVITY

I I + l2 +r$ - 123% SAMPLE SHOWED 23% NET INCREASE

l i +px- 112% \122% IN POST STUDY SAMPLE FROM NORMAL

)(+x+x - 100%
PRODUCTION (TO NORMALIZE FOR HAWTHORNE EFFECT)

0 NET SAVINGS (PROGRAMMER HOURS/K) DUE TO:
11: 94, 12. 51, 1 3 : - 20

REWORK (PROGRAMMER/HOURS/K LOC) FROM

11: 78. 12: 36, -

QUALITY

AN INSPECTION SAMPLE HAD 38% FEWER ERRORS/K LOC THAN A WALK-THROUGH SAMPLE DURING EQUIVALENT TEST-
ING BETWEEN POST UNIT TEST AND SYSTEM TEST IN THIS STUDY.

quality (error content) in the early levels, where error rework
can be most economically accomplished. Naturally, the benefi-
cial effect on quality is also felt in later operations of the de-
velopment process and at the end user's site.

An improvement in productivity is the most immediate effect of
purging errors from the product by the I,, I,, and I, inspections.
This purging allows rework of these errors very near their ori-
gin, early in the process. Rework done at these levels is 10 to
100 times less expensive than if it is done in the last half of the
process. Since rework detracts from productive effort, it reduces
productivity in proportion to the time taken to accomplish the
rework. It follows, then, that finding errors by inspection and
reworking them earlier in the process reduces the overall rework
time and increases productivity even within the early operations
and even more over the total process. Since less errors ship with
the product, the time taken for the user to install programs is
less, and his productivity is also increased.

The quality of documentation that describes the program is of as
much importance as the program itself for poor quality can mis-
lead the user, causing him to make errors quite as important as
errors in the program. For this reason, the quality of program
documentation is verified by publications inspections (PI,, PI,,
and PI,). Through a reduction of user-encountered errors, these
inspections also have the effect of improving user productivity
by reducing his rework time.

186 FAGAN IBM SYST J

A study of coding productivity

A piece of the design of a large operating system component (all
done in structured programming) was selected as a study sample
(Figure 2). The sample was judged to be of moderate complexi-
ty. When the piece of design had been reduced to a level of de-
tail sufficient to meet the Design Level 4 exit criteria' (a level of
detail of design at which one design statement would ultimately
appear as three to 10 code instructions), it was submitted to a
design-complete inspection (100 percent), I,. On conclusion of
I,, all error rework resulting from the inspection was completed,
and the design was submitted for coding in PL/S. The coding was
then done, and when the code was brought to the level of the
first clean compilation,' it was subjected to a code inspection
(100 percent), I,. The resultant rework was completed and the
code was subjected to unit test. After unit test, a unit test
inspection, I,, was done to see that the unit test plan had been
fully executed. Some rework was required and the necessary
changes were made. This step completed the coding operation.
The study sample was then passed on to later process opera-
tions consisting of building and testing.

The inspection sample was considered of sufficient size and na-
ture to be representative for study purposes. Three programmers
designed it, and it was coded by 13 programmers. The inspection
sample was in modular form, was structured, and was judged to
be of moderate complexity on average.

Because errors were identified and corrected in groups at I, and
I,, rather than found one-by-one during subsequent work and
handled at the higher cost incumbent in later rework, the over-
all amount of error rework was minimized, even within the cod-
ing operation. Expressed differently, considering the inclusion of
all I , time, I, time, and resulting error rework time (with the
usual coding and unit test time in the total time to complete the
operation), a net saving resulted when this figure was compared
to the no-inspection case. This net saving translated into a 23
percent increase in the productivity of the coding operation
alone. Productivity in later levels was also increased because
there was less error rework in these levels due to the effect of
inspections, but the increase was not measured directly.

An important aspect to consider in any production experiment
involving human beings is the Hawthorne Effect.3 If this effect is
not adequately handled, it is never clear whether the effect ob-
served is due to the human bias of the Hawthorne Effect or due
to the newly implemented change in process. In this case a con-
trol sample was selected at random from many pieces of work
after the I , and I , inspections were accepted as commonplace.
(Previous experience without I, and I, approximated the net cod-

NO. 3 * 1976 DESIGN AND CODE INSPECTIONS

I Table 1 Error detection efficiency

I
Errors Found Percent o j Total

Process Operutions per K . N C S S Errors Found

~ Design
I , inspection-

~ Coding
' I, inspection--

Unit test
Preparation for

acceptance test-
Acceptance test
Actual usage (6 mo.)
Total

38*

8

0
0

46

82

18

100

* 5 1 4 were logic errors, most of which were missing rather than due to incorrect design

In the development of applications, inspections also make a sig- inspections in
nificant impact. For example, an application program of eight applications
modules was written in COBOL by Aetna Corporate Data Pro- development
cessing department, Aetna Life and Casualty, Hartford, Con-
necticut, in June 1975.6 Two programmers developed the pro-
gram. The number of inspection participants ranged between
three and five. The only change introduced in the development
process was the I, and I, inspections. The program size was
4,439 Non-Commentary Source Statements.

An automated estimating program, which is used to produce the
normal program development time estimates for all the Corpo-
rate Data Processing department's projects, predicted that de-
signing, coding, and unit testing this project would require 62
programmer days. In fact, the time actually taken was 46.5 pro-
grammer days including inspection meeting time. The resulting
saving in programmer resources was 25 percent.

The inspections were obviously very thorough when judged by
the inspection error detection efficiency of 82 percent and the
later results during testing and usage as shown in Table 1.

The results achieved in Non-Commentary Source Statements Table 2 Inspection rates in

per Elapsed Hour are shown in Table 2. These inspection rates
are four to six times faster than for systems programming. If

Opercrtions these rates are generally applicable, they would have the effect 1, 1 2

of making the inspection of applications programs much less Preparation 898 709
expensive. Inspection 652 539

NCSS per hour

Inspections

Inspections are a formal, eficient, and economical method of
finding errors in design and code. All instructions are addressed

NO. 3 ' 1976 DESIGN A N D CODE INSPECTIONS 189

Table 3. I n s p e c t i o n p r o c e s s a n d r a t e of p r o g r e s s
~~

Process Rate of yrogress*(loc/hr) Objectives o f
operations Design I , Code I , the operation

1. Overview 500 not Communication
necessary education

2. Preparation 100 I25 Education
3. Inspection 130 150 Find errors
4. Rework 20 16 Rework and re-

hrs/K.NCSS hrs/K.NCSS solve errors
found by
inspection

5. Follow-up - - See that all
errors, prob-
lems, and concerns
have been resolved

gramming are much hlgher. Initial schedules may be started with these numbers and as project history that
*These notes apply to systems programming and are conservatlve. Comparable rates for applications pro-

I S keyed to unique environments evolves, the historical data may be used for future schedullng algorithms.

at least once in the conduct of inspections. Key aspects of
inspections are exposed in the following text through describing
the I , and I, inspection conduct and process. I,, IT,, IT,, PI,,
PI,, and PI, inspections retain the same essential properties as
the I, and I, inspections but differ in materials inspected, num-
ber of participants, and some other minor points.

the The inspection team is best served when its members play their
people particular roles, assuming the particular vantage point of those

involved roles. These roles are described below:

1 . Moderator-The key person in a successful inspection. He
must be a competent programmer but need not be a technical
expert on the program being inspected. To preserve objectivi-
ty and to increase the integrity of the inspection, it is usually
advantageous to use a moderator from an unrelated project.
The moderator must manage the inspection team and offer
leadership. Hence, he must use personal sensitivity, tact, and
drive in balanced measure. His use of the strengths of team
members should produce a synergistic effect larger than their
number; in other words, he is the coach. The duties of mod-
erator also include scheduling suitable meeting places, report-
ing inspection results within one day, and follow-up on re-
work. For best results the moderator should be specially
trained. (This training is brief but very advantageous.)

2. Designer - The programmer responsible for producing the
program design.

3. Coder/Implernentor-The programmer responsible for trans-
lating the design into code.

4. Tester-The programmer responsible for writing and/or exe-
cuting test cases or otherwise testing the product of the de-
signer and coder.

190 FAGAN IBM SYST J

I f the coder of a piece of code also designed it, he will function
in the designer role for the inspection process; a coder from
some related or similar program will perform the role of the co-
der. If the same person designs, codes, and tests the product
code, the coder role should be filled as described above, and
another coder -preferably with testing experience - should fill
the role of tester.

Four people constitute a good-sized inspection team, although cir-
cumstances may dictate otherwise. The team size should not be
artificially increased over four, but if the subject code is involved
in a number of interfaces, the programmers of code related to
these interfaces may profitably be involved in inspection. Table 3
indicates the inspection process and rate of progress.

The total time to complete the inspection process from overview
through follow-up for I , or I, inspections with four people in-
volved takes about 90 to 100 people-hours for systems program-
ming. Again, these figures may be considered conservative but
they will serve as a starting point. Comparable figures for appli-
cations programming tend to be much lower, implying lower
Cost per K.NCSS.

Because the error detection efficiency of most inspection teams
tends to dwindle after two hours of inspection but then picks up
after a period of different activity, it is advisable to schedule
inspection sessions of no more than two hours at a time. Two
two-hour sessions per day are acceptable.

The time to do inspections and resulting rework must be sched-
uled and managed with the same attention as other important
project activities. (After all, as is noted later, for one case at
least, it is possible to find approximately two thirds of the errors
reported during an inspection.) If this is not done, the immediate
work pressure has a tendency to push the inspections and/or
rework into the background, postponing them or avoiding them
altogether. The result of this short-term respite will obviously
have a much more dramatic long-term negative effect since the
finding and fixing of errors is delayed until later in the process
(and after turnover to the user). Usually, the result of postponing
early error detection is a lengthening of the overall schedule and
increased product cost.

Scheduling inspection time for modified code may be based on
the algorithms in Table 3 and on judgment.

Keeping the objective of each operation in the forefront of team
activity is of paramount importance. Here is presented an out-
line of the I , inspection process operations.

NO. 3 * 1976 DESIGN A N D CODE INSPECTIONS

as inspection materials. Also, at I, the moderator should flag
for special scrutiny those areas that were reworked since I,
errors were found rrnd other desigM changes made.)

2. Preparation (individual) - Participants, using the design doc-
umentation, literally do their homework to try to understand
the design, its intent and logic. (Sometimes flagrant errors are
found during this operation, but in general, the number of
errors found is not nearly as high as in the inspection opera-
tion.) To increase their error detection in the inspection, the
inspection team should first study the ranked distributions of
error types found by recent inspections. This study will
prompt them to concentrate on the most fruitful areas. (See
examples in Figures 3 and 4.) Checklists of clues on finding
these errors should also be studied. (See partial examples of
these lists in Figures 5 and 6 and complete examples for I,, in
Reference 1 and for I , and I , in Reference 7.)

3 . Insprction (whole team) -A “reader” chosen by the moder-
ator (usually the coder) describes how he will implement the
design. He is expected to paraphrase the design as expressed
by the designer. Every piece of logic is covered at least once,
and every branch is taken at least once. All higher-level docu-
mentation, high-level design specifications, logic specifica-
tions, etc., and macro and control block listings at I, must be
available and present during the inspection.

Now that the design is understood, the objective is t o f ind
errors. (Note that an error is defined as any condition that
causes malfunction or that precludes the attainment of ex-
pected or previously specified results. Thus, deviations from
specifications are clearly termed errors.) The finding of er-
rors is actually done during the implementor/coder’s dis-
course. Questions raised are pursued only to the point at
which an error is recognized. It is noted by the moderator; its
type is classified; severity (major or minor) is identified, and
the inspection is continued. Often the solution of a problem is
obvious. If so, it is noted, but no specific solution hunting is
to take place during inspection. (The inspection is no1 intend-
ed to redesign, evaluate alternate design solutions, or to find
solutions to errors; it is intended just to find errors!) A team
is most effective if it operates with only one objective at a
time.

Within one day of conclusion of the inspection, the modera-
tor should produce a written report of the inspection and its
findings to ensure that all issues raised in the inspection will
be addressed in the rework and follow-up operations. Exam-
ples of these reports are given as Figures 7A, 7B, and 7C.

NO. 3 * 1976 DESIGN A N D CODE INSPECTIONS

Figure 5 Examples of what to examine when looking for errors at I,

I, Logic
Missing

I . Are All Constants Defined'?
2. Are All Unique Values Explicitly Tested on Input Parameters?
3. Are Values Stored after They Are Calculated?
4. Are All Defaults Checked Explicitly Tested on Input Parameters?
5. If Character Strings Are Created Are They Complete, Are All Delimiters

6. If a Keyword Has Many Unique Values, Are They All Checked?
7. If a Queue Is Being Manipulated, Can the Execution Be Interrupted; If

So, IS Queue Protected by a Locking Structure: Can Queue Be Destroyed
Over an Interrupt?

Shown?

8. Are Registers Being Restored on Exits?
9. In Queuing/Dequeuing Should Any Value Be DecrementediIncremented?

10. Are All Keywords Tested in Macro?
11. Are All Keyword Related Parameters Tested in Service Routine?
12. Are Queues Being Held in Isolation So That Subsequent Interrupting

Requestors Are Receiving Spurious Returns Regarding the Held Queue?
13. Should any Registers Be Saved on Entry?
14. Are All Increment Counts Properly Initialized (0 or 1) ?
Wrong

1. Are Absolutes Shown Where There Should Be Symbolics?
2. On Comparison of Two Bytes, Should All Bits Be Compared?
3. On Built Data Strings, Should They Be Character or Hex?
4. Are Internal Variables Unique or Confusing If Concatenated?

1. Are All Blocks Shown in Design Necessary or Are They Extraneous?
Extru

4. Rework- All errors or problems noted in the inspection re-
port are resolved by the designer or coderlimplementor.

5 . F o l l o ~ - - U p - I t is imperative that every issue, concern, and
error be entirely resolved at this level, or errors that result
can be 10 to 100 times more expensive to fix if found later in
the process (programmer time only, machine time not
included). It is the responsibility of the moderator to see that
all issues, problems, and concerns discovered in the inspec-
tion operation have been resolved by the designer in the case
of I,, or the coder/implementor for I, inspections. If more
than five percent of the material has been reworked, the team
should reconvene and carry out a 100 percent reinspection.
Where less than five percent of the material has been re-
worked, the moderator at his discretion may verify the qual-
ity of the rework himself or reconvene the team to reinspect
either the complete work or just the rework.

commencing In Operation 3 above, it is one thing to direct people to find er-
inspections rors in design or code. I t is quite another problem for them to

find errors. Numerous experiences have shown that people have
to be taught or prompted to find errors effectively. Therefore, it

194 FAGAN IBM SYST J

Figure 6 Examples of what to examine when looking for errors at l 2

INSPECTlON SPECIFICATION
Test Branch
Is Correct Condition Tested (I f X = ON vs. IF X = OFF)?
Is (Are) Correct Variable(s) Used for Test
(I f X = ON vs. If Y = O N) ?
Are Null THENs/ELSEs Included as Appropriate?
Is Each Branch Target Correct?
Is the Most Frequently Exercised Test Leg the THEN Clause?

Interconnection (or Linhaxe) C d l s
For Each Interconnection Call to Either a Macro, SVC or Another Module:
Are All Required Parameters Passed Set Correctly?
If Register Parameters Are Used, Is the Correct Register Number Specified?
If Interconnection Is a Macro,
Does the Inline Expansion Contain All Required Code?
No Register or Storage Conflicts between Macro and Calling Module?
If the Interconnection Returns, Do All Returned Parameters Get Processed
Correctly?

prudent to condition them to seek the high-occurrence, high-
cost error types (see example in Figures 3 and 4) , and then de-
scribe the clues that usually betray the presence of each error
type (see examples in Figures 5 and 6) .

One approach to getting started may be to make a preliminary
inspection of a design or code that is felt to be representative of
the program to be inspected. Obtain a suitable quantity of errors,
and analyze them by type and origin, cause, and salient indicative
clues. With this information, an inspection specification may be
constructed. This specification can be amended and improved in
light of new experience and serve as an on-going directive to
focus the attention and conduct of inspection teams. The objec-
tive of an inspection specification is to help maximize and make
more consistent the error detection efficiency of inspections
where

Error detection efficiency

- - Errors found by an inspection
Total errors in the product before inspection

x 100

The reporting forms and form completion instructions shown in reporting
the Appendix may be used for I , and I, inspections. Although inspection

these forms were constructed for use in systems programming results

development, they may be used for applications programming
development with minor modification to suit particular environ-
ments.

The moderator will make hand-written notes recording errors
found during inspection meetings. He will categorize the errors

NO. 3 ’ 1976 DESIGN AND CODE INSPECTIONS 195

Figure 7A Error list

1. PR/M/MIN 1-ine 3 : the statement of the prologue in the REMARKS

2. DA/W/MAJ Line I
3 . PU/W/MAJ Line 1

4. LO/W/MAJ Line 1

5 . LO/W/MAJ L

6 . PU/E/MIN L

7. DE/W/MIN L

.ine

.ine

h e

section needs expansion.
23: ERR-RECORD-TYPE is out of sequence.
47: the wrong bytes of an 8-byte field (current-data)

are moved into the 2-byte field (this year).
69: while counting the number of leading spaces in

NAME, the wrong variable (I) is used to calcu-
late "J".

72: NAME-CHECK is PERFORMED one time too
few.

7.5: In NAME-CHECK, the check for SPACE is re-
dundant.

75: the design should allow for the occurrence of a
period in a last name.

Figure 78 Example of module detail report

DATE -
CODE INSPECTION REPORT

MODULE DETAIL

MODIMAC C H E C K E R SUBCOMPONENT/APPLICATlON

SEE NOTE BELOW

PROBLEM TYPE:

LO. LOGIC--
TB: TEST AND BRAN
EL EXTERNAL LINKAGES-

RU: REGISTER USAGE

SU: STORAGE USAGE-
OA. DATA AREA USAGE
PU. PROGRAM LANGUA
P I PERFORMANCE-
M N MAINTAINABILITY--

DE. DESIG'U ERROR-
PR PROLOGUE"

CC: CODE COMMENTS---

01. OTHER-
TOTAL: .- 13 5 ____

and then transcribe counts of the errors, by type, to the module
detail form. By maintaining cumulative totals of the counts by
error type, and dividing by the number of projected executable
source lines of code inspected to date, he will be able to estab-
lish installation averages within a short time.

Figures 7A, 7B, and 7C are an example of a set of code inspec-
tion reports. Figure 7A is a partial list of errors found in code
inspection. Notice that errors are described in detail and are
classified by error type, whether due to something being missing,

196 FAGAN IBM SYST J

