
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 22(2), 173–182 (FEBRUARY 1992)

Experience with Fagan’s Inspection Method

E. P. DOOLAN
Shell Research B. V., P. O. Box 60, 2280AB Rijswijk (Z-H), The Netherlands

SUMMARY

Fagan’s inspection method was used by a software development group to validate requirements specifi-
cations for software functions. The experiences of that group are described in this paper. In general,
they have proved to be favorable. Because the costs of fixing errors in software were known, the
payback for every hour invested in inspection was shown to be a factor 30. There are also other benefits
that are much more difficult to quantify directly but whose effect is significant in terms of the overall
quality of the software.

Some pointers are given at the end of this paper for those who want to introduce Fagan’s inspection
method into their own development environment.

KEY WORDS Software quality assurance Fagan’s inspection method Software review Defect detection Software
requirements specifications

INTRODUCTION

In this article we describe the experiences a software development group had
with Fagan’s inspection process as a means of verifying and validating software
requirements specifications for functions within a large production software package.
The package in question exceeds 2 million lines of Fortran, contains more than 250
separate high-level geophysical functions and runs on a wide range of hardware
configurations.

The package is continually being updated. A new release of the product is made
available to the user community twice a year. In a typical release at least one-quarter
of the total code has been changed in some way, be it as a result of fault fixing, the
addition of new processing functions or the disposal of obsolete ones. The releases
are shipped together with comprehensive user documentation and installation instruc-
tions, and are prepared for running on an operating company’s specific hardware
configuration.

The enormous flexibility of the package results from a software platform that
minimizes the duplication of functionality by making the available functionality serve
multiple purposes. The development, support and maintenance of this platform and
the processing functions it contains is carried out by the Seismic Software Support
Group (SSSG) at Shell Research. This group contains some 25 people with pro-
fessional skills in software engineering and geophysics.

To maintain a competitive edge in the seismic-processing world, a strong emphasis
must be placed at all times on the quality of the package. The SSSG is continually

0038–0644/92/020173–10$05.00
© 1992 by John Wiley & Sons, Ltd.

Received 24 September 1990
Revised 2 May 1991

174 E. P. DOOLAN

seeking methods to ensure a higher standard for its product, and it is on one aspect
of this search for continual improvement that this paper concentrates.

SOFTWARE QUALITY ASSURANCE
Early in 1987 it was decided to bring the co-ordination and management of all
software-quality activities under the purview of one independent quality-assurance
group, whose task was defined to include the guiding, monitoring and promoting of
activities related to quality assurance and control within SSSG. One of the first
activities of this group was to put a price on the non-conformance 1 of the SSSG’S
software development and maintenance activities. The objective of this exercise was
to locate, using, for example, the simple Pareto principle, the stage of the software
life cycle in which an improvement would most benefit the quality of the package
as a whole.

NON-CONFORMANCE ANALYSIS
The two most ‘expensive’ items on the list of costs attributable to non-conformance
were fault-report fixing and project definition.

Fault reports are descriptions of anything that a user of the software finds unsatis-
factory. The subjects of these reports range from errors in the software (code or
documentation) to suggestions for improvement and requests for enhancements. For
the package in question, between 300 and 400 fault reports a year are received. An
analysis of these report: shows that nearly half were suggestions for improvement
or requests for enhancements to the existing software. Further analysis of these
‘faults’ shows that many were obviously items that should have been dealt with in
the software from the outset and could have been, had more care been taken with
the specification of the original product.

The average cost for the SSSG to fix a fault of any type in the package in question
is of the order of one man-week (approximately $3500). This figure includes not only
the manpower costs but also the costs of computer time, testing time, configuration
management, fault-report database updates, user notification and the generation of
release information. Taking the number of fault reports that can be classified as
suggestions or requests for enhancements and that should by all accounts have been
taken care of by the original software and simply multiplying it by the average cost
of fixing an arbitrary fault results in annual non-conformance cost of 3½ man-years.

Project definition entails the definition and validation of the scope and require-
ments of the project. The non-conformance costs associated with this aspect of a
software project were even greater than those associated with fault reports. In the
three year period between 1984 and 1986 two projects had to be shelved late in their
development cycles clearly because of inadequate requirements specifications. The
total manpower invested in these two projects was more than 10 man-years. Further-
more, there were many smaller projects for which the development time could
clearly have been reduced if more emphasis had been placed on the drawing up of
the original requirements. The annual non-conformance cost due to improper project
definition and requirements analysis amounted to at least 4 man-years.

Taking these two major sources of non-conformance costs together yields an
annual chronic waste 1 of some 7½ man-years or, equivalently, more than one-quarter
of the SSSG’S total manpower budget at that time.

FAGAN’S INSPECTION METHOD 175

SOFTWARE REQUIREMENTS SPECIFICATIONS

Both sources of chronic waste identified above arise because not enough effort was
devoted to the requirements specification phase of projects. Indeed, until 1987 the
SSSG paid almost no attention to this stage of the software life cycle. Accordingly,
any requirements analyses that had been carried out were more the exception than
the rule.

In the light of the possible gain that could be achieved, the software quality-
assurance group decided to start placing more emphasis on the software requirements
specifications (SRS). Accordingly, guidelines were drawn up for how a software
requirements specification should look, using the ANSI/IEEE standard 830 2 as a
model. Furthermore, the specifications were to be expressed in ordinary English, as
opposed to any formal language. There were two reasons for this.

First, a document written in English was generally thought to be better received
in the geophysics world. The people in this world are processors (users of the
resulting software) and researchers. Although they could be assumed to have a
background in physics or mathematics, very few felt at home with a formal-language
specification. It was considered imperative to have the opinion of these people on
the proposed product if the maximum benefit was to be reaped from the specification
phase.

Secondly, the choice of a natural language was almost forced upon us by the fact
that none of the formal languages available were really capable of handling anything
more than the simplest of problems, and the geophysical functions being built by
the SSSG were anything but simple. Having decided to use a natural language to
convey specifications, the guidelines for writing such specifications were extended
with sections on how to avoid some of the pitfalls inherent in this decision.

Since reviewing software items was an accepted practice in the SSSG, it followed
naturally that this would also be done for software requirements documents. A
survey was made of all known review methods, and their various pros and cons
were weighed against one another (see, for example, Reference 3). After due
consideration, it was decided to adopt Fagan’s inspection as the SSSG’S review
method. No other experience was available within the Shell Group at that time, but
the idea behind it seemed appealing and the results noted in the literature were
impressive.

FAGAN’S INSPECTION—AN OVERVIEW OF THE METHOD

Fagan’s inspection 4–6 is a review process developed by Michael Fagan at IBM in the
1970s. Fagan was a professional quality-control engineer who derived his basic ideas
on statistical quality control from two of the gurus of quality management, Deming
and Juran. The inspection process is akin to walkthroughs, although it differs
significantly in some aspects. It can very briefly be described as follows.

An inspection is organized by a moderator, who may be appointed by the software
quality-assurance group. The moderator receives a copy of the document to be
inspected and checks that it satisfies a number of predetermined criteria (entry
criteria). He or she then puts together an inspection panel of no more than five
people (including the author of the document to be inspected).

The inspectors are then invited to attend a short (20–30 minutes) ‘kick-off’
meeting. At this meeting the objective of the inspection is defined, the subject-

176 E. P. DOOLAN

matter briefly explained and any other relevant details are discussed. The inspection
material is distributed and roles may be assigned to some or all members of the
panel, with requests to pay specific attention to some aspect of the documents to be
inspected.

After the kick-off meeting, each member of the inspection panel studies the
document that has been submitted for inspection (the low-level document) in con-
junction with the input document to this low-level document (the high-level
document), as well as any standards and checklists that the moderator has considered
relevant, with the objective of identifying defects and omissions in the low-level
document. The high-level document for the software requirements specifications
inspected by the SSSG, for example, is a three-page document that defines the scope
of the project. All documents used in an inspection are themselves also subject to
inspection.

The inspection panel then comes together again at a specified date for the defect-
logging meeting. At this meeting, which should last no longer than two hours, every
defect discovered (both on one’s own and during the meeting itself) is logged. A
causal-analysis meeting is then organized in which the inspectors discuss the cause
of (some of) the uncovered defects and propose possible ways to prevent these types
of errors from occurring in future documents. (The causal-analysis meeting is a later
addition to the inspection process and was not an explicit integral part of the process
originally developed by Fagan.)

Thereafter the moderator checks that, for each defect discovered, the appropriate
author has taken some remedial action. (It does not necessarily have to be an update
to the document.) The moderator is also responsible for gathering statistics so that
all the techniques of statistical quality-control can be applied to the whole inspection
process.

FAGAN’S INSPECTION IN THE SSSG

Fagan’s inspection was first tried by the SSSG in March 1988. As of August 1989,
11 software requirements specifications totalling some 500 pages had been inspected.

The inspection panels consisted of between four and six people, including the
moderator, who also served as an inspector (in theory he or she does not have to
take on this role). The panel members are chosen from the geophysical research
group, the experimental seismic processing group (responsible for evaluating and
testing new software), a production processing group making full-time use of the
package, and the SSSG itself. This mix ensured that the most important aspects of
the SRS would automatically y be judged by those most qualified to judge them;
the moderator occasionally assigned other specific aspects of the SRS to certain
inspectors.

Inspectors studied the specifications on their own at an average rate of five to six
pages per hour. The average number of defects logged per page was between two
and three, usually fairly evenly divided between major and minor defects (see below
for the definitions of ‘major’ and ‘minor’). Seven to eight pages of the SRS were
covered on average per hour of the defect-logging meeting, which was kept under
two hours. One defect was logged every three minutes at these meetings. Of the
total time spent on an inspection (including kick-off meeting, administration and
self-study), an average of 2·2 h were spent on each page of the SRS.

FAGAN’S INSPECTION METHOD 177

Although the average number of pages covered in an hour of a defect-logging
meeting falls within the limits as stated in the literature (between 5 and 20), the
number of defects logged in these meetings is nearly a tenth of what can be achieved.
One reason for our low defect-logging rate is that some discussion about the defects
was allowed during the meeting; Fagan’s official rules of inspection prohibit dis-
cussion of any kind. The argument against discussion presumes that the more defects
logged per minute, the more cost-effective the inspection is. However, our experience
has shown that discussions can actually have a stimulating effect, since many
additional defects were discovered during such discussions. There are other reasons
as well why such discussions took place in the defect-logging meetings. Deficiencies
in existing standards meant that some ad hoc solution had to be adopted before the
meeting could proceed. Furthermore, because the high-level document itself had not
been inspected, serious issues often arose over the scope of the project as formulated
there.

To clarify this last point, it should be noted that the original guidelines drawn up
by the SSSG for writing an SRS closely followed ref. 2. There, the scope of the
requirements specification is an integral part of the SRS itself. Because of this, the
scope was not at first inspected as a document in its own right. Consequently, the
serious issues that arose precisely with this scope, the inspection-panel members
increasingly felt that the high-level document defining the scope of the SRS should
be issued as a separate document and inspected first. Since this item is quite short
(three pages), its inspection can be quick.

This issue illustrates one of the effects of doing an inspection. As people become
aware of the tremendous benefits of the inspection process, there is an increasing
desire to apply it to other software items, such as user documentation and code. In
this way, inspection breeds inspection.

As has been noted in the literature, standards come to life through inspections.
They no longer remain on the shelf, rarely consulted; instead, they become serious
working documents. One effect of this renewed application of standards, of course,
is that many defects are discovered in the standards themselves. Also a need for
more and better standards and guidelines arises to curb the tendency to discuss
issues that amount to a matter of taste. Valuable inspection time should not be taken
up with these types of issue, and the easiest way to achieve this is to agree on general
rules by which these questions can be quickly resolved. The resultant solutions, of
course, are automatically inspected every time they are used and therefore evolve
into something that represents the best current thinking on the subject-matter.

Even if the panels inspect higher-level documents, improve standards and intro-
duce more guidelines, their defect-logging rates for software requirements specifi-
cations are not expected to increase beyond one per minute. The synergetic effect
of bringing together a group of people who have studied the material thoroughly is
currently too great to disallow all discussion, even though the prohibition is stipulated
in the rules of Fagan’s inspection. After all, the real argument against discussion is
that it is not a profitable use of the inspectors’ time, but that has not been our
experience to date. We find discussion to be useful, but it should be tightly controlled
by the moderator.

178 E. P. DOOLAN

COST-BENEFIT ANALYSIS

The effectiveness of the SSSG’S inspections can be gauged by estimating the pay-
back (in terms of costs saved) for every hour invested in inspecting. To do this, we
must first classify the defects found by the inspectors.

THE CLASSIFICATION OF DEFECTS

Currently, we use three classes of defects. These are minor, major and super-major.
The categories can be described as follows:

1. Minor defects. These range from something like a spelling mistake (which may
be truly trivial) through sentence-construction errors (thereby possibly leaving
the meaning open to misinterpretation) to clarification issues. These last defects
arise when the specification raised some question in an inspector’s mind that
was left unanswered in the text. Such issues can be major omissions on the
author’s part (in which case they would be classified as major errors), or they
may simply need the addition of a clarifying sentence indicating the ‘lie of the
land’. In the latter case these errors would be classified as ‘minor’.

2. Major defects. These can be identified very simply: had the software been
produced according to the uncorrected specification, the ‘major defect’ would
have resulted in a fault report. Many of the major defects uncovered in
requirements specifications for the software produced by the SSSG have to do
with the user interface and the choice of default values. Filling one or two
places on the inspection panel with an experienced processor, whose prime
function is to check that the proposed user interface is comprehensible, access-
ible, logical and as user-friendly as possible, guarantees that a number of major
errors are always detected in this area. A second source of major errors is
incorrect or missing functionality or some vagueness in the specification that
would have led to serious misinterpretations.

3. Super-major errors. These are errors so serious that they would have made the
software virtually useless or, at any rate, would have caused it to deviate from
existing standards and/or processing techniques to such an extent that chaos
would have ensued. If left undiscovered in the original specification, to repair
such an error in the final product would require a complete or, (at the very
least) substantial redesign and rewrite. One example of such a problem is a
specification requiring an input file that was almost impossible to create in a
standard seismic data-processing sequence.

COSTS OF FIXING DEFECTS IN RELEASED SOFTWARE

To obtain some idea of the value of inspection, we assume that, had the requirements
specifications not been written down and reviewed with Fagan’s method, the detected
defects would have appeared in the final software product. It is generally accepted
that the cost of fixing problems in released software can be as much as 80 times
more than that of fixing them at the specification stage. So there is clear benefit to
be derived by getting the software requirements specifications down on paper and
reviewing them by almost any method.

We have defined a major defect as something that would have resulted in the

FAGAN’S INSPECTION METHOD 179

generation of a fault report, had the software been written to the original specifi-
cation. And the total average cost of fixing an error described in a fault report is
known to amount to one man-week for the package produced by the SSSG. This
figure takes into account all the costs involved, including testing, documentation
update, configuration management, machine resources, etc.

RETURN ON INVESTMENT

For the sake of argument, we assume that every 25 minor defects would have
resulted in the generation of one extra fault report. This is not unreasonable since
a minor textual error could easily lead to a misinterpretation of the information
presented. We also arbitrarily assume that a super-major defect is equivalent to 10
major defects. (We would expect in general that most super-majors would be
detected before the software was released, even without inspection, so that the costs
incurred would be less than if the software was released as specified; hence the
relatively low figure of 10.)

Basing the development and maintenance effort saved by inspection on the classi-
fication of defects into minor, major and super-major and the costs of later repairing
the three types of defect as outlined above, then we can show that for every hour
invested in inspection nearly 30 are recouped. In other words, the time it would
have taken to repair the detected defects, had they appeared in the released software,
is 30 times greater than the total time invested in the inspection. Taking into account
that the SRSS produced by the SSSG correspond to software products requiring
between two and three man-years’ development effort, we can alternatively state
that inspection results in an average saving of 16½ man-months of software develop-
ment and maintenance time over the course of the software’s lifetime (this is simply
the average time it would have taken to repair the defects detected by inspection,
had they appeared in the software). Table I shows the return on investment per
inspection.

THE UNQUANTIFIABLE BENEFITS

Along with the monetary benefits mentioned above, the inspection process also has
quite an array of benefits that do not lend themselves to quantification in financial
terms. They are no less important for that reason, however, and in fact can contribute
substantially to the quality of the software in general. The most widely relevant of
these defects are listed below.

(a) The package developed and supported by the SSSG is 15 years old. To make
optimal use of it while cutting down on maintenance and programming costs,
continued upgrading is necessary. Inspections are found to be a very good
mechanism for highlighting and prioritizing candidate areas for enhancement
in this respect.

(b) The inspection process promotes team work, and is a good means of
developing team spirit in a large group.

(c) Inspection is an excellent means for transferring technology and can accord-
ingly serve as a back-up mechanism, should key people be suddenly removed
from the project.

180 E. P. DOOLAN

Table I

SRS inspected 1 2 3 4 5 6 7 8 9 10 11

Number of pages in document
Number of inspectors
Total shelf study time in hours
Pages studied per inspector per hour
Defect-logging time in minutes per page
Major defects logged
Super-major defects
Minor defects logged
Minutes per defect logged
Defects logged per page
Pages covered per defect-logging hour
Defects effectively detected per study hour
Total hours invested
Total hours invested per page
Return on investment in hours per hour
invested

3 58 23 32 59 23 41 126 22 15 55
5 7 6 6 6 5 6 6 7 5 6

10 236 34 20 21 11 39 39 13 49 30
2 2 4 1 0 1 7 1 1 6 1 9 1 2 1 11

30 8 23 5 6 1 5 8 2 8 4 8 8
19 85 66 25 39 55 31 41 15 125 30
— 2 1 — — — 2 1— 8 3

46 50 24 41 50 96 91 27 127 91
3 3 4 3 4 3 2 2 4 3 3
9 2 5 2 1 5 3 1 2 17 2
2 8 3 11 11 4 830 8 1 8
3 1 3 3 410 3 3 3 5 4

22 306 100 47 64 49 80 77 38 131 85
7 5 4 2 1 2 2 1 2 9 2

35 14 31 22 26 46 27 29 17 64 30

(d) The inspection process provides on-the-job training for employees who need
to become familiar with:

(i) Standards. They are actively applied in inspections and become docu-
ments that represent the best working knowledge in the area in ques-
tion.

(ii) Technical material Inspections provide an excellent way of introducing
people to a new technical subject. They can still perform as inspectors,
if they concentrate on a subject with which they are already familiar,
but along the way they learn new technical details.

(iii) Culture. By having new people attend inspections (either as inspectors
or observers), they are quickly introduced to the group’s working
methods and ways of doing things. To this end, observers should also
attend the causal-analysis sessions.

(iv) Inspection. One of the best ways of learning about inspection is actually
doing it.

(e) Inspectors identify the root causes of detected defects (in the causal-analysis
meetings) and can propose modifications to the software development process
that will prevent similar defects from occurring in the future.

SOME POINTERS FOR STARTING UP

A number of pointers are listed below for those who want to adopt Fagan’s inspection
as a review technique. These pointers have been culled from our experiences with
the method and the lessons we have learned along the way. In particular, the wide
range of returns on investment shown in Table I has its origin in points (b) and (h)
below.

(a) Starting a process such as Fagan’s inspection is difficult. It is important that

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FAGAN’S INSPECTION METHOD 181

the first project(s) be seen as a success by everybody. They should therefore
be chosen with extreme care and should not be too large. Also, the people
involved in these initial projects should be highly motivated and inclined to
make both the projects and the process a success.
Starting off is also difficult for another reason: none of the input material for
the inspection sessions will have been inspected, and consequently it will
probably be riddled with errors and defects. This tends to make the initial
inspection sessions difficult, because time has to be spent trying to resolve
the problems that the input documents should have resolved; there can easily
be a tendency to get bogged down. A good moderator is essential if these
problems are to be overcome.
Stick to the inspection process. All the elements in it are essential if it is to
achieve its potential. Giving any piece short shrift is one of the main reasons
for failing to get the process going.
When the potential of inspection begins to become apparent, pressure arises
to inspect more and more. A stepwise approach should be taken to this
problem: one new type of document at a time. Even so, the amount of
material to be inspected can become very large. As a result, project schedules
can become affected. Therefore, it is important to arrange for the training of
new moderators as early as possible and to have them moderate a number of
inspections under guidance before they get their ‘wings’.
It is vitally important to keep as many statistics as possible. Only with
statistics can the power of the method be made visible to others, especially
management. Be constantly on the look-out for ways to prove the benefits
that arise from inspection, for these arise in connection not only with defect
detection and prevention but also with on-the-job training and team building.
Getting people from other groups to invest time in your inspection sessions
can be difficult. However, it is essential that they do so if maximum benefit
is to be derived from the process. Consequently, some effort should be
expended in securing the full support of department heads and the panel
members’ superiors. Also, an account should be set up on which inspectors
from other sections, departments, etc., can book their time.
Constantly monitor the whole process and be prepared to make frequent
minor updates to it while maintaining all essential elements (see (c) above).
The kind of changes envisaged are those that have to do with the adminis-
tration and organization of the process as a whole and the interrelationship
of the various steps with one another. In this way the process can be tuned
to suit the environment in which it takes place. Some of these types of
improvement will be proposed as a result of the causal-analysis meetings.
Because writing software requirements specifications is a difficult task, it
should be assigned to highly qualified people. Otherwise, so much time tends
to be spent on inspecting the SRS that, in effect, the inspectors end up
rewriting it. This is a very poor use of their time and also leads to their
becoming disgruntled and unwilling to participate in further inspections. The
inspectors’ time must be valued appropriately.

182 E. P. DOOLAN

CONCLUSION

We have described our experiences of using Fagan’s method to inspect software
requirements specifications. We adhered to the inspection process as closely as
possible but found that some discussion, tightly controlled by the moderator, greatly
increased the synergetic effect of bringing together a group of people who had
(individually) thoroughly studied the material in question.

A cost–benefit analysis of the defects uncovered by inspecting software require-
ments specifications according to the method of Fagan indicates that such a validation
process is indeed worthwhile. However, we should not ascribe all the benefits of
this process to Fagan’s inspection methodology alone. One very clear message
emanating from the emphasis placed by the SSSG on software requirements specifi-
cations is that the greater visibility and control afforded by merely getting these
requirements down on paper already constitutes an enormous benefit.

Fagan’s inspection is not only applicable to validating software requirements
specifications; it can equally well be used to inspect any item (e.g. scope documents,
user documentation, design, code, test plan, test results, etc.) produced during the
software lifecycle of a project. In fact, there is no reason why it should be confined
to the software world; there are citations in the literature to instances in which the
method has been applied successfully to documents as far removed from software
as engineering drawings. Any effort to apply it to other areas—management docu-
ments, for example—could be very profitable.

ACKNOWLEDGEMENT

The author thanks the members of various departments in Shell who participated in
the inspections. Even though they were initially sometimes somewhat reticent, the
results reported here would not have been possible to achieve without their enthusi-
asm, co-operation and willingness to participate in and discuss the process.

REFERENCES

1. J. M. Juran, ‘The quality trilogy’, Quality Progressj August 1986, pp. 18-24.
2. IEEE Guide to Software Requirements Specifications, ANSI/IEEE Standard 830, The Institute of

Electrical & Electronic Engineers, Inc., 1984.
3. Daniel P. Freedman and Gerald M. Weinberg, Ethnotechnical Review Handbook, Ethnotech Inc.,

1979.
4. M. E. Fagan, ‘Design and code inspections to reduce errors in program development’, IBM System

Journal, 15, (3), 182–211 (1976).
5. M. E, Fagan, ‘Advances in software inspections’, IEEE Trans. Software Engineering, 12, (7),

744–751 (1986).
6. T. Gilb, Software Engineering Design, to be published.

	Experience with Fagan’s Inspection Method
	SUMMARY
	INTRODUCTION
	SOFTWARE QUALITY ASSURANCE
	NON-CONFORMANCE ANALYSIS
	SOFTWARE REQUIREMENTS SPECIFICATIONS
	FAGAN’S INSPECTION—AN OVERVIEW OF THE METHOD
	FAGAN’S INSPECTION IN THE SSSG
	COST-BENEFIT ANALYSIS
	THE CLASSIFICATION OF DEFECTS
	COSTS OF FIXING DEFECTS IN RELEASED SOFTWARE
	RETURN ON INVESTMENT
	THE UNQUANTIFIABLE BENEFITS
	SOME POINTERS FOR STARTING UP
	CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

