Substantial net improvements in programming quality and pro-
ductivity have been obtained through the use of formal inspec-
tions of design and of code. Improvements are made possible by
a systematic and efficient design and code verification process,
with well-defined roles for inspection participants. The manner
in which inspection data is categorized and made suitable for
process analysis is an important factor in attaining the improve-
ments. It is shown that by using inspection results, a mechanism
for initial error reduction followed by ever-improving error rates
can be achieved.

Design and code inspections to reduce errors in program
development

by M. E. Fagan

Successful management of any process requires planning, mea-
surement, and control. In programming development, these re-
quirements translate into defining the programming process in
terms of a series of operations, each operation having its own
exit criteria. Next there must be some means of measuring com-
pleteness of the product at any point of its development by
inspections or testing. And finally, the measured data must be
used for controlling the process. This approach is not only con-
ceptually interesting, but has been applied successfully in sever-
al programming projects embracing systems and applications
programming, both large and small. It has not been found to “get
in the way” of programming, but has instead enabled higher
predictability than other means, and the use of inspections has
improved productivity and product quality. The purpose of this
paper is to explain the planning, measurement, and control func-
tions as they are affected by inspections in programming terms.

An ingredient that gives maximum play to the planning, mea-
surement, and control elements is consistent and vigorous disci-
pline. Variable rules and conventions are the usual indicators of
a lack of discipline. An iron-clad discipline on all rules, which
can stifle programming work, is not required but instead there
should be a clear understanding of the flexibility (or nonflex-
ibility) of each of the rules applied to various aspects of the pro-
ject. An example of flexibility may be waiving the rule that all
main paths will be tested for the case where repeated testing of
a given path will logically do no more than add expense. An ex-
ample of necessary inflexibility would be that all code must be
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Figure 1 Programming process
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inspected. A clear statement of the project rules and changes to
these rules along with faithful adherence to the rules go a long
way toward practicing the required project discipline.

A prerequisite of process management is a clearly defined series
of operations in the process (Figure 1). The miniprocess within
each operation must also be clearly described for closer manage-
ment. A clear statement of the criteria that must be satisfied to
exit each operation is mandatory. This statement and accurate
data collection, with the data clearly tied to trackable units of
known size and collected from specific points in the process, are
some essential constituents of the information required for pro-
cess management.

In order to move the form of process management from qualita-
tive to more quantitative, process terms must be more specific,
data collected must be appropriate, and the limits of accuracy of
the data must be known. The effect is to provide more precise
information in the correct process context for decision making
by the process manager.

In this paper, we first describe the programming process and
places at which inspections are important. Then we discuss fac-
tors that affect productivity and the operations involved with
inspections. Finally, we compare inspections and walk-throughs
on process control.
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The process

A process may be described as a set of operations occurring in a
definite sequence that operates on a given input and converts it
to some desired output. A general statement of this kind is suffi-
cient to convey the notion of the process. In a practical applica-
tion, however, it is necessary to describe the input, output, inter-
nal processing, and processing times of a process in very specific
terms if the process is to be executed and practical output is to
be obtained.

In the programming development process, explicit requirement
statements are necessary as input. The series of processing op-
erations that act on this input must be placed in the correct se-
quence with one another, the output of each operation satisfying
the input needs of the next operation. The output of the final
operation is, of course, the explicitly required output in the form
of a verified program. Thus, the objective of each processing
operation is to receive a defined input and to produce a definite
output that satisfies a specific set of exit criteria. (It goes with-
out saying that each operation can be considered as a minipro-
cess itself.) A well-formed process can be thought of as a con-
tinuum of processing during which sequential sets of exit criteria
are satisfied, the last set in the entire series requiring a well-de-
fined end product. Such a process is not amorphous. It can be
measured and controlled.

Unambiguous, explicit, and universally accepted exit criteria
would be perfect as process control checkpoints. It is frequently
argued that universally agreed upon checkpoints are impossible
in programming because all projects are different, etc. However,
all projects do reach the point at which there is a project check-
point. As it stands, any trackable unit of code achieving a clean
compilation can be said to have satisfied a universal exit criteri-
on or checkpoint in the process. Other checkpoints can also be
selected, albeit on more arguable premises, but once the prem-
ises are agreed upon, the checkpoints become visible in most, if
not all, projects. For example, there is a point at which the de-
sign of a program is considered complete. This point may be
described as the level of detail to which a unit of design is re-
duced so that one design statement will materialize in an esti-
mated three to 10 source code instructions (or, if desired, five
to 20, for that matter). Whichever particular ratio is selected
across a project, it provides a checkpoint for the process con-
trol of that project. In this way, suitable checkpoints may be
selected throughout the development process and used in process
management. (For more specific exit criteria see Reference 1.)
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The cost of reworking errors in programs becomes higher the
later they are reworked in the process, so every attempt should
be made to find and fix errors as early in the process as possible.
This cost has led to the use of the inspections described later
and to the description of exit criteria which include assuring that
all errors known at the end of the inspection of the new “clean-
compilation” code, for example, have been correctly fixed. So,
rework of all known errors up to a particular point must be
complete before the associated checkpoint can be claimed to be
met for any piece of code.

Where inspections are not used and errors are found during de-
velopment or testing, the cost of rework as a fraction of overall
development cost can be suprisingly high. For this reason, er-
rors should be found and fixed as close to their place of origin as
possibie.

Production studies have validated the expected quality and pro-
ductivity improvements and have provided estimates of standard
productivity rates, percentage improvements due to inspections,
and percentage improvements in error rates which are applicable
in the context of large-scale operating system program produc-
tion. (The data related to operating system development con-
tained herein reflect results achieved by I1BM in applying the sub-
ject processes and methods to representative samples. Since the
results depend on many factors, they cannot be considered rep-
resentative of every situation. They are furnished merely for
the purpose of illustrating what has been achieved in sample
testing. )

The purpose of the test plan inspection IT,, shown in Figure 1,
is to find voids in the functional variation coverage and other
discrepancies in the test plan. IT,, test case inspection of the
test cases, which are based on the test plan, finds errors in the
test cases. The total effects of IT, and IT, are to increase the
integrity of testing and, hence, the quality of the completed
product. And, because there are less errors in the test cases to
be debugged during the testing phase, the overall project schedule
is also improved.

A process of the kind depicted in Figure 1 installs all the intrin-
sic programming properties in the product as required in the
statement of objectives (Level 0) by the time the coding opera-
tion (Level 5) has been completed —except for packaging and
publications requirements. With these exceptions, all later work
is of a verification nature. This verification of the product pro-
vides no contribution to the product during the essential develop-
ment (Levels 1 to 5); it only adds error detection and elimina-
tion (frequently at one half of the development cost). I, I, and
1, inspections were developed to measure and influence intrinsic
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Figure 2 A study of coding productivity
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quality (error content) in the early levels, where error rework
can be most economically accomplished. Naturally, the benefi-
cial effect on quality is also felt in later operations of the de-
velopment process and at the end user’s site.

An improvement in productivity is the most immediate effect of
purging errors from the product by the I, 1,, and 1, inspections.

This purging allows rework of these errors very near their ori-
gin, early in the process. Rework done at these levels is 10 to
100 times less expensive than if it is done in the last half of the
process. Since rework detracts from productive effort, it reduces
productivity in proportion to the time taken to accomplish the
rework. It follows, then, that finding errors by inspection and
reworking them earlier in the process reduces the overall rework
time and increases productivity even within the early operations
and even more over the total process. Since less errors ship with
the product, the time taken for the user to install programs is
less, and his productivity is also increased.

The quality of documentation that describes the program is of as
much importance as the program itself for poor quality can mis-
lead the user, causing him to make errors quite as important as
errors in the program. For this reason, the quality of program
documentation is verified by publications inspections (PI,, PI,,
and PL,). Through a reduction of user-encountered errors, these
inspections also have the effect of improving user productivity
by reducing his rework time.
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A study of coding productivity

A piece of the design of a large operating system component (all
done in structured programming) was selected as a study sample
(Figure 2). The sample was judged to be of moderate complexi-
ty. When the piece of design had been reduced to a level of de-
tail sufficient to meet the Design Level 4 exit criteria’ (a level of
detail of design at which one design statement would ultimately
appear as three to 10 code instructions), it was submitted to a
design-complete inspection (100 percent), I,. On conclusion of
I,, all error rework resulting from the inspection was completed,
and the design was submitted for coding in pL/S. The coding was
then done, and when the code was brought to the level of the
first clean compilation,” it was subjected to a code inspection
(100 percent), I,. The resultant rework was completed and the
code was subjected to unit test. After unit test, a unit test
inspection, 1,, was done to see that the unit test plan had been
fully executed. Some rework was required and the necessary
changes were made. This step completed the coding operation.
The study sample was then passed on to later process opera-
tions consisting of building and testing.

The inspection sample was considered of sufficient size and na-
ture to be representative for study purposes. Three programmers
designed it, and it was coded by 13 programmers. The inspection
sample was in modular form, was structured, and was judged to
be of moderate complexity on average.

Because errors were identified and corrected in groups at I, and
I,, rather than found one-by-one during subsequent work and

handled at the higher cost incumbent in later rework, the over-
all amount of error rework was minimized, even within the cod-
ing operation. Expressed differently, considering the inclusion of
all 1, time, 1, time, and resulting error rework time (with the
usual coding and unit test time in the total time to complete the
operation), a net saving resulted when this figure was compared
to the no-inspection case. This net saving translated into a 23
percent increase in the productivity of the coding operation
alone. Productivity in later levels was also increased because
there was less error rework in these levels due to the effect of
inspections, but the increase was not measured directly.

An important aspect to consider in any production experiment
involving human beings is the Hawthorne Effect.” If this effect is
not adequately handled, it is never clear whether the effect ob-
served is due to the human bias of the Hawthorne Effect or due
to the newly implemented change in process. In this case a con-
trol sample was selected at random from many pieces of work
after the 1, and 1, inspections were accepted as commonplace.
(Previous experience without I, and I, approximated the net cod-
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ing productivity rate of 100 percent datum in Figure 2.) The
difference in coding productivity between the experimental sam-
ple (with I, and I, for the first time) and the control sample was
0.9 percent. This difference is not considered significant. There-
fore, the measured increase in coding productivity of 23 percent
is considered to validly accrue from the only change in the
process: addition of I, and I, inspections.

The control sample was also considered to be of representative
size and was from the same operating system component as the
study sample. It was designed by four programmers and was
coded by seven programmers. And it was considered to be of
moderate complexity on average.

Within the coding operation only, the net savings (including
inspection and rework time) in programmer hours per 1000
Non-Commentary Source Statements (K.NCSS)* were 1.: 94, 1,:
51, and I,: —20. As a consequence, I, is no longer in effect.

If personal fatigue and downtime of 15 percent are allowed in
addition to the 145 programmer hours per K.NCSS, the saving
approaches one programmer month per K.NCSS (assuming that
our sample was truly representative of the rest of the work in
the operating system component considered).

The error rework in programmer hours per K.NCSS found in this
study due to I, was 78, and 36 for 1,(24 hours for design errors
and 12 for code errors). Time for error rework must be specifi-
cally scheduled. (For scheduling purposes it is best to develop
rework hours per K.NCSS from history depending upon the par-
ticular project types and environments, but figures of 20 hours

for 1, and 16 hours for I, (after the learning curve) may be suit-
able to start with.)

The only comparative measure of quality obtained was a com-
parison of the inspection study sample with a fully comparable
piece of the operating system component that was produced
similarly, except that walk-throughs were used in place of the I,
and I, inspections. (Walk-throughs® were the practice before
implementation of I, and I, inspections.) The process span in
which the quality comparison was made was seven months of
testing beyond unit test after which it was judged that both sam-
ples had been equally exercised. The results showed the inspec-
tion sample to contain 38 percent less errors than the walk-
through sample.

Note that up to inspection I,, no machine time has been used for
debugging, and so machine time savings were not mentioned.
Although substantial machine time is saved overall since there
are less errors to test for in inspected code in later stages of the
process, no actual measures were obtained.
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Table 1 Error detection efficiency

Errors Found Percent of Total
Process Operuations per K.NCSS Errors Found

Design

I, inspection

Coding

L, inspection

Unit test

Preparation for
acceptance test—

Acceptance test

Actual usage (6 mo.)

Total

*51% were logic errors, most of which were missing rather than due to incorrect design.

In the development of applications, inspections also make a sig- inspections in
nificant impact. For example, an application program of eight applications

modules was written in COBOL by Aetna Corporate Data Pro- development
cessing department, Aetna Life and Casualty, Hartford, Con-

necticut, in June 1975.° Two programmers developed the pro-

gram. The number of inspection participants ranged between

three and five. The only change introduced in the development

process was the 1, and I, inspections. The program size was

4,439 Non-Commentary Source Statements.

An automated estimating program, which is used to produce the
normal program development time estimates for all the Corpo-
rate Data Processing department’s projects, predicted that de-
signing, coding, and unit testing this project would require 62
programmer days. In fact, the time actually taken was 46.5 pro-
grammer days including inspection meeting time. The resulting
saving in programmer resources was 25 percent.

The inspections were obviously very thorough when judged by
the inspection error detection efficiency of 82 percent and the
later results during testing and usage as shown in Table 1.

The results achieved in Non-Commentary Source Statements Table 2 Inspection rates in
per Elapsed Hour are shown in Table 2. These inspection rates NCSS per hour

are four to six times faster than for systems programming. If
these rates are generally applicable, they would have the effect
of making the inspection of applications programs much less Preparation
expensive. Inspection

Operations I,

Inspections

Inspections are a formal, efficient, and economical method of
finding errors in design and code. All instructions are addressed
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Table 3. Inspection process and rate of progress

Process Rate of progress*(loclhr) Objectives of
operations Design I, Code I, the operation

. Overview 500 not Communication
necessary education
. Preparation 100 125 Education
. Inspection 130 150 Find errors
. Rework 20 16 Rework and re-
hrs/K.NCSS hrs/KINCSS solve errors
found by
inspection
. Follow-up See that all
errors, prob-
lems, and concerns
have been resolved

*These notes apply to systems programming and are conservative. Comparable rates for applications pro-
gramming are much higher. Initial schedules may be started with these numbers and as project history that
is keyed to unique environments evolves, the historical data may be used for future scheduling algorithms.

at least once in the conduct of inspections. Key aspects of
inspections are exposed in the following text through describing
the I, and I, inspection conduct and process. 1, IT,, I'T,, PI,,
PI,, and PI, inspections retain the same essential properties as
the I, and 1, inspections but differ in materials inspected, num-
ber of participants, and some other minor points.

The inspection team is best served when its members play their
particular roles, assuming the particular vantage point of those
roles. These roles are described below:

. Moderator — The key person in a successful inspection. He
must be a competent programmer but need not be a technical
expert on the program being inspected. To preserve objectivi-
ty and to increase the integrity of the inspection, it is usually
advantageous to use a moderator from an unrelated project.
The moderator must manage the inspection team and offer
leadership. Hence, he must use personal sensitivity, tact, and
drive in balanced measure. His use of the strengths of team
members should produce a synergistic effect larger than their
number; in other words, ke is the coach. The duties of mod-
erator also include scheduling suitable meeting places, report-
ing inspection results within one day, and follow-up on re-
work. For best results the moderator should be specially
trained. (This training is brief but very advantageous.)

. Designer —The programmer responsible for producing the
program design.

. Coder/Implementor — The programmer responsible for trans-
lating the design into code.

. Tester — The programmer responsible for writing and/or exe-
cuting test cases or otherwise testing the product of the de-
signer and coder.
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If the coder of a piece of code also designed it, he will function
in the designer role for the inspection process; a coder from
some related or similar program will perform the role of the co-
der. If the same person designs, codes, and tests the product
code, the coder role should be filled as described above, and
another coder—preferably with testing experience —should fill
the role of tester.

Four people constitute a good-sized inspection team, although cir-
cumstances may dictate otherwise. The team size should not be
artificially increased over four, but if the subject code is involved
in a number of interfaces, the programmers of code related to
these interfaces may profitably be involved in inspection. Table 3
indicates the inspection process and rate of progress.

The total time to complete the inspection process from overview
through follow-up for I, or I, inspections with four people in-
volved takes about 90 to 100 people-hours for systems program-
ming. Again, these figures may be considered conservative but
they will serve as a starting point. Comparable figures for appli-
cations programming tend to be much lower, implying lower
cost per K.NCSS.

Because the error detection efficiency of most inspection teams
tends to dwindle after two hours of inspection but then picks up
after a period of different activity, it is advisable to schedule
inspection sessions of no more than two hours at a time. Two
two-hour sessions per day are acceptable.

The time to do inspections and resulting rework must be sched-
uled and managed with the same attention as other important
project activities. (After all, as is noted later, for one case at
least, it is possible to find approximately two thirds of the errors
reported during an inspection.) If this is not done, the immediate
work pressure has a tendency to push the inspections and/or
rework into the background, postponing them or avoiding them
altogether. The result of this short-term respite will obviously
have a much more dramatic long-term negative effect since the
finding and fixing of errors is delayed until later in the process
(and after turnover to the user). Usually, the result of postponing
early error detection is a lengthening of the overall schedule and
increased product cost.

Scheduling inspection time for modified code may be based on
the algorithms in Table 3 and on judgment.

Keeping the objective of each operation in the forefront of team
activity is of paramount importance. Here is presented an out-
line of the 1, inspection process operations.
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Figure 3 Summary of design inspections by error type
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Figure 4 Summary of code inspections by error type

Inspection file
VP Individual Name Missing  Wrong  Extra Errors

CC Code Comments 5 17
CB Usage 3 21
Design Error 32

8
Interconnect Calls
Logic 49
Maintainability
Other
Performance
Prologue/Prose
PL/S or BAL Use
Register Usage
Storage Usage
Test & Branch

1. Overview (whole team)—The designer first describes the
overall area being addressed and then the specific area he has
designed in detail —logic, paths, dependencies, etc. Documen-
tation of design is distributed to all inspection participants on
conclusion of the overview. (For an I, inspection, no over-
view is necessary, but the participants should remain the
same. Preparation, inspection, and follow-up proceed as for
I, but, of course, using code listings and design specifications
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as inspection materials. Also, at I, the moderator should flag
for special scrutiny those areas that were reworked since I,
errors were found and other design changes made.)

. Preparation (individual) — Participants, using the design doc-
umentation, literally do their homework to try to understand
the design, its intent and logic. (Sometimes flagrant errors are
found during this operation, but in general, the number of
errors found is not nearly as high as in the inspection opera-
tion.) To increase their error detection in the inspection, the
inspection team should first study the ranked distributions of
error types found by recent inspections. This study will
prompt them to concentrate on the most fruitful areas. (See
examples in Figures 3 and 4.) Checklists of clues on finding
these errors should also be studied. (See partial examples of
these lists in Figures 5 and 6 and complete examples for I in
Reference 1 and for I, and 1, in Reference 7.)

. Inspection (whole team) —A “‘reader’” chosen by the moder-
ator (usually the coder) describes how he will implement the
design. He is expected to paraphrase the design as expressed
by the designer. Every piece of logic is covered at least once,
and every branch is taken at least once. All higher-level docu-
mentation, high-level design specifications, logic specifica-
tions, etc., and macro and control block listings at 1, must be
available and present during the inspection.

Now that the design is understood, the objective is to find
errors. (Note that an error is defined as any condition that
causes malfunction or that precludes the attainment of ex-
pected or previously specified results. Thus, deviations from
specifications are clearly termed errors.) The finding of er-
rors is actually done during the implementor/coder’s dis-
course. Questions raised are pursued only to the point at
which an error is recognized. It is noted by the moderator; its
type is classified; severity (major or minor) is identified, and
the inspection is continued. Often the solution of a problem is
obvious. If so, it is noted, but no specific solution hunting is
to take place during inspection. (The inspection is nof intend-
ed to redesign, evaluate alternate design solutions, or to find
solutions to errors; it is intended just to find errors!) A team
is most effective if it operates with only one objective at a
time.

Within one day of conclusion of the inspection, the modera-
tor should produce a written report of the inspection and its
findings to ensure that all issues raised in the inspection will
be addressed in the rework and follow-up operations. Exam-
ples of these reports are given as Figures 7A, 7B, and 7C.
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Figure 5 Examples of what to examine when looking for errors at I,

I, Logic
Missing

1. Are All Constants Defined?

2. Are All Unique Values Explicitly Tested on Input Parameters?

3. Are Values Stored after They Are Calculated?

4. Are All Defaults Checked Explicitly Tested on Input Parameters?

5. If Character Strings Are Created Are They Complete, Are All Delimiters
Shown?

6. If a Keyword Has Many Unique Values, Are They All Checked?

7. If a Queue Is Being Manipulated, Can the Execution Be Interrupted; If
So, Is Queue Protected by a Locking Structure; Can Queue Be Destroyed
Over an Interrupt?

8. Are Registers Being Restored on Exits?

9. In Queuing/Dequeuing Should Any Value Be Decremented/Incremented?

10. Are All Keywords Tested in Macro?

11. Are All Keyword Related Parameters Tested in Service Routine?

12. Are Queues Being Held in Isolation So That Subsequent Interrupting
Requestors Are Receiving Spurious Returns Regarding the Held Queue?

13. Should any Registers Be Saved on Entry?

14. Are All Increment Counts Properly Initialized (0 or 1)?

Wrong

{. Are Absolutes Shown Where There Should Be Symbolics?

2. On Comparison of Two Bytes, Should All Bits Be Compared?

3. On Built Data Strings, Should They Be Character or Hex?

4. Are Internal Variables Unique or Confusing If Concatenated?

Extra
1. Are All Blocks Shown in Design Necessary or Are They Extraneous?

4. Rework—All errors or problems noted in the inspection re-
port are resolved by the designer or coder/implementor.

. Follow-Up—1t is imperative that every issue, concern, and
error be entirely resolved at this level, or errors that result
can be 10 to 100 times more expensive to fix if found later in
the process (programmer time only, machine time not
included). 1t is the responsibility of the moderator to see that
all issues, problems, and concerns discovered in the inspec-
tion operation have been resolved by the designer in the case
of I,, or the coder/implementor for I, inspections. If more
than five percent of the material has been reworked, the team
should reconvene and carry out a 100 percent reinspection.
Where less than five percent of the material has been re-
worked, the moderator at his discretion may verify the qual-
ity of the rework himself or reconvene the team to reinspect
either the complete work or just the rework.

commencing In Operation 3 above, it is one thing to direct people to find er-
inspections rors in design or code. It is quite another problem for them to
find errors. Numerous experiences have shown that people have

to be taught or prompted to find errors effectively. Therefore, it

FAGAN IBM SYST 1J




Figure 6 Examples of what to examine when looking for errors at |,

INSPECTION SPECIFICATION
1, Test Branch
Is Correct Condition Tested (If X = ON vs. [F X = OFF)?
Is (Are) Correct Variable(s) Used for Test
(If X=0ONvs, If Y=0N)?
Are Null THENS/ELSESs Included as Appropriate?
Is Each Branch Target Correct?
Is the Most Frequently Exercised Test Leg the THEN Clause?

Interconnection (or Linkage) Calls

For Each Interconnection Call to Either a Macro, SVC or Another Module:
Are All Required Parameters Passed Set Correctly?

If Register Parameters Are Used, Is the Correct Register Number Specified?
If Interconnection Is a Macro,

Does the Inline Expansion Contain All Required Code?

No Register or Storage Conflicts between Macro and Calling Module?

If the Interconnection Returns, Do All Returned Parameters Get Processed
Correctly?

is prudent to condition them to seek the high-occurrence, high-
cost error types (see example in Figures 3 and 4), and then de-
scribe the clues that usually betray the presence of each error
type (see examples in Figures 5 and 6).

One approach to getting started may be to make a preliminary
inspection of a design or code that is felt to be representative of
the program to be inspected. Obtain a suitable quantity of errors,
and analyze them by type and origin, cause, and salient indicative
clues. With this information, an inspection specification may be
constructed. This specification can be amended and improved in
light of new experience and serve as an on-going directive to
focus the attention and conduct of inspection teams. The objec-
tive of an inspection specification is to help maximize and make
more consistent the error detection efficiency of inspections
where

Error detection efficiency

_ Errors found by an inspection
Total errors in the product before inspection

00

The reporting forms and form completion instructions shown in
the Appendix may be used for I, and I, inspections. Although
these forms were constructed for use in systems programming
development, they may be used for applications programming
development with minor modification to suit particular environ-
ments.

The moderator will make hand-written notes recording errors
found during inspection meetings. He will categorize the errors
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Figure 7A  Error list

1. PR/IM/MIN Line 3: the statement of the prologue in the REMARKS
section needs expansion.

. DA/W/MAJ Line : ERR—-RECORD —TYPE is out of sequence.

. PU/W/MAJ Line : the wrong bytes of an 8-byte field (current—data)
are moved into the 2-byte field (this year).

. LO/W/MAJ Line : while counting the number of leading spaces in
NAME, the wrong variable (I) is used to calcu-
late *“J”.

. LO/W/MAJ i : NAME —-~CHECK is PERFORMED one time too
few.

. PU/E/MIN i 5. In NAME —~CHECK, the check for SPACE is re-
dundant.

. DE/W/MIN i : the design should allow for the occurrence of a
period in a last name.

Figure 7B Example of module detail report

CODE INSPECTION REPORT
MODULE DETAIL
MOD/MAC: CHECKER SUBCOMPONENT/APPLICATION. B

SEE NOTE BELOW

MINOR 1

PROBLEM TYPE: w

1
LO: LOGIC

TB: TEST AND BRANCH

EL: EXTERNAL LINKAGE

RU: REGISTER USAGE

SU: STORAGE USAGE

DA: DATA AREA USAGE

PU: PROGRAM LANGUAGE.

PE: PERFORMANCE
: MAINTAINABILITY

DE: DESIGN ERROR

PR: PROLOGUE

CC: CODE COMMENTS.

OT: OTHER

REINSPECTION REQUIRED? Y

*A PROBLEM WHICH WOULD CAUSE THE PROGRAM TO MALFUNCTION: A BUG. M = MISSING, W = WRONG, E = EXTRA.
NOTE: FOR MODIFIED MODULES, PROBLEMS IN THE CHANGED PORTION VERSUS PROBLEMS IN THE BASE SHOULD BE SHOWN IN THIS MANNER: 3(2), WHERE 3
1S THE NUMBER OF PROBLEMS IN THE CHANGED PORTION AND 2 IS THE NUMBER OF PROBLEMS IN THE BASE

and then transcribe counts of the errors, by type, to the module
detail form. By maintaining cumulative totals of the counts by
error type, and dividing by the number of projected executable
source lines of code inspected to date, he will be able to estab-
lish installation averages within a short time.

Figures 7A, 7B, and 7C are an example of a set of code inspec-
tion reports. Figure 7A is a partial list of errors found in code
inspection. Notice that errors are described in detail and are
classified by error type, whether due to something being missing,
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Figure 7C Example of code inspection summary report

CODE INSPECTION REPORT
SUMMARY Date_ 11/20/-
To: Design g KRAUSS Development Manager. GIOTT!
Subject:  Inspection Report for. CHECKER Inspection date 11/19/-
System/Application Release Build.
Component Subcomponenits(s).

ELOC Inspection T
Full Added, Modified, Deleted People-hours (X.X)

or Pre-insp Est Post Rework
Part Insp | Re- {Follow- Sub-
Insp. |Programmer {Tester { A{M|D |[A|M|D{A | M|D Meetg {work | up |componen

McGINLEY | HALE [348 400 50 . 88 [80] 1.5

—

I I
I | 1

Totals ‘ 1

Reinspection required?___YES | ength of inspection (clock hours and tenths) 22
Reinspection by (datej_ 11/25/= _ additional modules/macros?
DCR #'s written €2
Problem summary: Ma‘or‘w_vMinor 5 Total 18

Errors in changed code:  Major Minor Errors in base code: Major Minor..
LARSCN McGINLEY HALE
initial Desr Detailed Dr Programmer Team Leader Other Moderator’s Signature

wrong, or extra as the cause, and according to major or minor
severity. Figure 7B is a module level summary of the errors con-
tained in the entire error list represented by Figure 7A. The
code inspection summary report in Figure 7C is a summary of
inspection results obtained on all modules inspected in a particu-
lar inspection session or in a subcomponent or application.

Inspections have been successfully applied to designs that are
specified in English prose, flowcharts, HIrPO, (Hierarchy plus
Input-Process-Output) and PIDGEON (an English prose-like
meta language).

The first code inspections were conducted on PL/S and Assem-
bler. Now, prompting checklists for inspections of Assembler,
COBOL, FORTRAN, and PL/1 code are available.’

One of the most significant benefits of inspections is the detailed
feedback of results on a relatively real-time basis. The program-
mer finds out what error types he is most prone to make and
their quantity and how to find them. This feedback takes place
within a few days of writing the program. Because he gets early
indications from the first few units of his work inspected, he is
able to show improvement, and usually does, on later work even
during the same project. In this way, feedback of results from
inspections must be counted for the programmer’s use and bene-
fit: they should not under any circumstances be used for pro-
grammer performance appraisal.

Skeptics may argue that once inspection results are obtained,
they will or even must count in performance appraisals, or at
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Figure 8 Example of most error-prone modules based on |, and |,

Number of Error density,
Module name errors Lines of code Errors|K. Loc

Echo 128

Zulu 323

Foxtrot 71

Alpha 264 27« Average
Lima 106 19 Error
Delta 195 15 Rate

least cause strong bias in the appraisal process. The author can
offer in response that inspections have been conducted over the
past three years involving diverse projects and locations,
hundreds of experienced programmers and tens of managers,
and so far he has found no case in which inspection results have
been used negatively against programmers. Evidently no man-
ager has tried to “kill the goose that lays the golden eggs.”

A preinspection opinion of some programmers is that they do
not see the value of inspections because they have managed
very well up to now, or because their projects are too small or
somehow different. This opinion usually changes after a few
inspections to a position of acceptance. The quality of accep-
tance is related to the success of the inspections they have expe-
rienced, the conduct of the trained moderator, and the attitude
demonstrated by management. The acceptance of inspections
by programmers and managers as a beneficial step in making
programs is well-established amongst those who have tried
them.

Process control using inspection and testing results

Obviously, the range of analysis possible using inspection re-
sults is enormous. Therefore, only a few aspects will be treated
here, and they are elementary expositions.

A listing of either 1,, I,, or combined I, + I, data as in Figure 8
immediately highlights which modules contained the highest
error density on inspection. If the error detection efficiency of
each of the inspections was fairly constant, the ranking of error-
prone modules holds. Thus if the error detection efficiency of
inspection is 50 percent, and the inspection found 10 errors in a
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Figure 9 Example of distribution of error types

Number of Normallusual

errors distribution, %
Logic 23 44
Interconnection/Linkage 21 ? 18

(Internal)

Control Blocks 6 13
— . ]0
- . 7
— . 6
_ . 2

module, then it can be estimated that there are 10 errors remain-
ing in the module. This information can prompt many actions to
control the process. For instance, in Figure 8, it may be decided
to reinspect module “Echo’ or to redesign and recode it entirely.
Or, less drastically, it may be decided to test it “harder” than
other modules and look especially for errors of the type found in
the inspections.

If a ranked distribution of error types is obtained for a group of
“error-prone modules” (Figure 9), which were produced from
the same Process A, for example, it is a short step to comparing
this distribution with a ‘“Normal/Usual Percentage Distribu-
tion.” Large disparities between the sample and “‘standard” will
lead to questions on why Process A, say, yields nearly twice as
many internal interconnection errors as the ‘“‘standard” process.
If this analysis is done promptly on the first five percent of pro-
duction, it may be possible to remedy the problem (if it is a
problem) on the remaining 95 percent of modules for a particu-
lar shipment. Provision can be made to test the first five percent
of the modules to remove the unusually high incidence of inter-
nal interconnection problems.

Analysis of the testing results, commencing as soon as testing
errors are evident, is a vital step in controlling the process since
future testing can be guided by early results.

Where testing reveals excessively error-prone code, it may be
more economical and saving of schedule to select the most
error-prone code and inspect it before continuing testing. (The
business case will likely differ from project to project and case
to case, but in many instances inspection will be indicated). The
selection of the most error-prone code may be made with two
considerations uppermost:
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Table 4. Inspection and walk-through processes and objectives

Inspection Walk-through

Process Operations Objectives Process Operations Objectives

1. Overview Education — —
(Group)
2. Preparation Education 1. Preparation Education
(Individual) (Individual)
. Inspection Find errors! 2. Walk-through Education
(Group) (Group)
Discuss
design
. Rework Fix problems alternatives
Find errors
. Follow-up Ensure all
fixes
correctly
installed

Note the separation of objectives in the inspection process.

Table 5 Comparison of key properties of inspections and walk-throughs

Properties Inspection Walk-Through

. Formal moderator training Yes No
. Definite participant roles Yes No
. Who “drives” the inspection Moderator Owner of
or walk-through material
(Designer or
coder)
. Use “How To Find Errors” No
checklists
. Use distribution of error No
types to look for
. Follow-up to reduce bad fixes No
. Less future errors because of Incidental
detailed error feedback to
individual programmer
. Improve inspection efficiency No
from analysis of results
. Analysis of data — process No
problems — improvements

. Which modules head a ranked list when the modules are rated
by test errors per K.NCSS?

. In the parts of the program in which test coverage is low,
which modules or parts of modules are most suspect based
on (I, +1,) errors per K.NCSS and programmer judgment?

From a condensed table of ranked ‘“most error-prone’” modules,
a selection of modules to be inspected (or reinspected) may be
made. Knowledge of the error types already found in these
modules will better prepare an inspection team.
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The reinspection itself should conform with the I, process, ex-
cept that an overview may be necessary if the original overview
was held too long ago or if new project members are involved.

Inspections and walk-throughs

Walk-throughs (or walk-thrus) are practiced in many different
ways in different places, with varying regularity and thorough-
ness. This inconsistency causes the results of walk-throughs to
vary widely and to be nonrepeatable. Inspections, however, hav-
ing an established process and a formal procedure, tend to vary
less and produce more repeatable results. Because of the varia-
tion in walk-throughs, a comparison between them and inspec-
tions is not simple. However, from Reference 8 and the walk-
through procedures witnessed by the author and described to
him by walk-through participants, as well as the inspection
process described previously and in References 1 and 9, the
comparison in Tables 4 and § is drawn.

Figure 10A describes the process in which a walk-through is
applied. Clearly, the purging of errors from the product as it
passes through the walk-through between Operations 1 and 2 is
very beneficial to the product. In Figure 10B, the inspection
process (and its feedback, feed-forward, and self-improvement)
replaces the walk-through. The notes on the figure are self-ex-
planatory.

Inspections are also an excellent means of measuring complete-
ness of work against the exit criteria which must be satisfied to
complete project checkpoints. (Each checkpoint should have a
clearly defined set of exit criteria. Without exit criteria, a check-
point is too negotiable to be useful for process control).

Inspections and process management

The most marked effects of inspections on the development pro-
cess is to change the old adage that, ‘““design is not complete un-
til testing is completed,” to a position where a very great deal
must be known about the design before even the coding is be-
gun. Although great discretion is still required in code implemen-
tation, more predictability and improvements in schedule, cost,
and quality accrue. The old adage still holds true if one regards
inspection as much a means of verification as testing.

Observations in one case in systems programming show that
approximately two thirds of all errors reported during develop-
ment are found by I, and I, inspections prior to machine testing.
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Figure 10 (A) Walk-sthrough process, {B) Inspection process

OPERATION 1 A OPERATION 2

/ wT
REWORK

'I?EIS?ngSNE-TIME IMPROVEMENT DUE TO ERROR REMOVAL IN PROPORTION TO ERROR DETECTION EFFICIENCY OF WALK-
(A)

OPERATION 1 OPERATION 2

T T._ f

REWORK

FIX PROCESS HOLES

FIX SHORT TERM PROBLEMS & ERROR PRONE
MODULES
—RANKED

ERROR FEEDBACK FOR J] ERROR TYPES FOR
LEARNING EACH /ALL -|  ANALYSIS DISTRIBUTION SPECIAL
PROGRAMMERS | ~—RANKED ATTENTION

o NUMBER OF ERRORS /
K. LOC COMPARED TO
SPECIAL REWORK AVERAGE

OR REWRITE —
RECOMMENDATIONS
FEED-BACK FEED-FORWARD
- —_——

RESULTS: ONE TIME IMPROVEMENT
L]
raaaMNNA I + ITERATIVE IMPROVEMENT
MODERATORS DUE TO IMPROVEMENTS IN
OPERATION 1, |, AND OPERATION 2
(o] % WHAT ERROR TYPES TO ENABLED BY ANALYZED
LOCK FOR FEED-BACK,/FORWARD +

ERROR DETECTION EFFICIENCY
(o[ e BETTER WAYS TO IMPROVED FOR REASONS

FIND EACH ERROR TYPE SHOWN AS (e

* DETAIL ERROR
FOLLOW-UP

89 NUMBER OF ERRORS/
INSPECTION HOUR

NUMBER OF LOC
INSPECTIONS/HOUR

(B)

The error detection efficiencies of the I, and I, inspections sepa-
rately are, of course, less than 66 percent. A similar observation
of an application program development indicated an 82 percent
find (Table 1). As more is learned and the error detection effi-
ciency of inspection is increased, the burden of debugging on
testing operations will be reduced, and testing will be more able
to fulfill its prime objective of verifying quality.

Comparing the “old” and “‘new” (with inspections) approaches
to process management in Figure 11, we can see clearly that
with the use of inspection results, error rework (which is a very
significant variable in product cost) tends to be managed more
during the first half of the schedule. This results in much lower
cost than in the “old” approach, where the cost of error rework
was 10 to 100 times higher and was accomplished in large part
during the last half of the schedule.

Inserting the I, and I, checkpoints in the development process
enables assessment of project completeness and quality to be
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Figure 11 Effect of inspection on process management

OLD APPROACH

L _

TEST ZTDSHIP/CUT OVER

FIRST QUANTITATIVE INDICATION
OF QUALITY—FROM TEST RESULTS

[~ SCHEDULE

NEW APPROACH

DESIGN

[ TEST
b h f STILL GET TEST RESULTS
—

FIRST QUANTITATIVE
INDICATION OF QUALITY

i e ——

| 1
| 1

APPROXIMATE SCALE OF PROGRAMMER FiX TIME/PROBLEM
o
I I

|
1
1.5 1 1.5 10|60 100

& POINT OF MANAGEMENT CONTROL OVER QUALITY IS MOVED UP MUCH EARLIER IN SCHEDULE.
® ERROR REWORK AT THIS LEVEL S 1/10 AS EXPENSIVE,

made early in the process (during the first half of the project in-
stead of the latter half of the schedule, when recovery may be
impossible without adjustmeiits in schedule and cost). Since in-
dividually trackable modules of reasonably well-known size can
be counted as they pass through each of these checkpoints, the
percentage completion of the project against schedule can be
continuously and easily tracked.

The overview, preparation, and inspection sequence of the oper-
ations of the inspection process give the inspection participants
a high degree of product knowledge in a very short time. This
important side benefit results in the participants being able to
handle later development and testing with more certainty and
less false starts. Naturally, this also contributes to productivity
improvement.

An interesting sidelight is that because designers are asked at
pre-1, inspection time for estimates of the number of lines of
code (NCsS) that their designs will create, and they are present
to count for themselves the actual lines of code at the I, inspec-
tion, the accuracy of design estimates has shown substantial
improvement.

For this reason, an inspection is frequently a required event
where responsibility for design or code is being transferred from
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one programmer to another. The complete inspection team is
convened for such an inspection. (One-on-one reviews such as
desk debugging are certainly worthwhile but do not approach
the effectiveness of formal inspection.) Usually the side benefit
of finding errors more than justifies the transfer inspection.

Code that is changed in, or inserted in, an existing module either
in replacement of deleted code or simply inserted in the module
is considered modified code. By this definition, a very large part
of programming effort is devoted to modifying code. (The addi-
tion of entirely new modules to a system count as new, not mod-
ified, code.)

Some observations of errors per K.NCSS of modified code show
its error rate to be considerably higher than is found in new
code; (i.e., if 10.NCSS are replaced in a 100.NCSS module and
errors against the 10.NCSS are counted, the error rate is de-
scribed as number of errors per 10.NCSS, not number of errors
per 100.NCss). Obviously, if the number of errors in modified
code are used to derive an error rate per K.NCSS for the whole
module that was modified, this rate would be largely dependent
upon the percentage of the module that is modified: this would
provide a meaningless ratio. A useful measure is the number of
errors per K.NCSS (modified) in which the higher error rates
have been observed.

Since most modifications are small (e.g., 1 to 25 instructions),
they are often erroneously regarded as trivially simple and are
handled accordingly; the error rate goes up, and control is lost.
In the author’s experience, all modifications are well worth in-
specting from an economic and a quality standpoint. A con-
venient method of handling changes is to group them to a mod-
ule or set of modules and convene the inspection team to inspect
as many changes as possible. But all changes must be inspected!

Inspections of modifications can range from inspecting the modi-
fied instructions and the surrounding instructions connecting it
with its host module, to an inspection of the entire module. The
choice of extent of inspection coverage is dependent upon the
percentage of modification, pervasiveness of the modification, etc.

A very serious problem is the inclusion in the product of bad
fixes. Human tendency is to consider the “fix,” or correction, to
a problem to be error-free itself. Unfortunately, this is all too
frequently untrue in the case of fixes to errors found by inspec-
tions and by testing. The inspection process clearly has an oper-
ation called Follow-Up to try and minimize the bad-fix problem,
but the fix process of testing errors very rarely requires scrutiny
of fix quality before the fix is inserted. Then, if the fix is bad, the
whole elaborate process of going from source fix to link edit, to
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test the fix, to regression test must be repeated at needlessly
high cost. The number of bad fixes can be economically reduced
by some simple inspection after clean compilation of the fix.

Summary

We can summarize the discussion of design and code inspec-
tions and process control in developing programs as follows:

1. Describe the program development process in terms of opera-
tions, and define exit criteria which must be satisfied for com-
pletion of each operation.

. Separate the objectives of the inspection process operations
to keep the inspection team focused on one objective at a
time:

Operation Objective

Overview Communications/education

Preparation Education

Inspection Find errors

Rework Fix errors

Follow-up Ensure all fixes are applied
correctly

. Classify errors by type, and rank frequency of occurrence of
types. Identify which types to spend most time looking for in
the inspection.

. Describe how to look for presence of error types.

. Analyze inspection results and use for constant process im-
provement (until process averages are reached and then use
for process control).

Some applications of inspections include function level inspec-
tions 1, design-complete inspections 1,, code inspections I, test
plan inspections IT, test case inspections IT,, interconnections
inspections IF, inspection of fixes/changes, inspection of publi-
cations, etc., and post testing inspection. Inspections can be ap-
plied to the development of system control programs, applica-
tions programs, and microcode in hardware.

We can conclude from experience that inspections increase pro-
ductivity and improve final program quality. Furthermore, im-
provements in process control and project management are en-
abled by inspections.
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Figure 12 Design inspection module detail form

DETAILED DESIGN {NSPECTION REPORT
MODULE DETAIL
MOD/MAC: SUBCOMPONENT/APPLICATION.

SEE NOTE BELOW

MAJOR* MINOR

PROBLEM TYPE: w w

LO: LOGIC
TB: TEST AND BRANCH
DA: DATA AREA USAGE
RM: RETURN CODES/MESSAGES
RU: REGISTER USAGE
MA: MODULE ATTRIBUTES
EL: EXTERNAL LINKAGES
MD: MORE DETAIL
ST: STANDARDS
PR: PROLOGUE OR PROSE
HL: HIGHER LEVEL DESIGN DOC
US: USER SPEC
: MAINTAINABILITY
PE: PERFORMANCE
OT: OTHER

TOTAL

REINSPECTION REQUIRED?

*A PROBLEM WHICH WOULD CAUSE THE PROGRAM TO MALFUNCTION: A BUG. M = MISSING, W = WRONG, E =
NOTE: £0R MODIFIED MODULES, PROBLEMS IN THE CHANGED PORTION VERSUS PROBLEMS N THE SASE SHOULD BE SHOWN IN THIS MANNER: 3(2), WHERE 3
THE NUMBER OF PROBLEMS IN THE CHANGED PORTION AND 2 IS THE NUMBER OF PROBLEMS [N THE BASE.
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Appendix: Reporting forms and form completion
instructions

Instructions for Completing Design Inspection Module Detail
Form

This form (Figure 12) should be completed for each module/
macro that has valid problems against it. The problem-type
information gathered in this report is important because a histo-
ry of problem-type experience points out high-occurrence types.
This knowledge can then be conveyed to inspectors so that they
can concentrate on seeking the higher-occurrence types of prob-
lems.

1. MOD/MAC: The module or macro name.

2. SUBCOMPONENT: The associated subcomponent.

3. PROBLEM TYPE: Summarize the number of problems by type
(logic, etc.), severity (major/minor), and by category (miss-
ing, wrong, or extra). For modified modules, detail the num-
ber of problems in the changed design versus the number in
the base design. (Problem types were developed in a systems
programming environment. Appropriate changes, if desired,
could be made for application development.)
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Figure 13 Design inspection summary form

DESIGN {NSPECTION REPORT

SUMMARY
To: Design Manager. —Development N
Subject:  Inspection Report for Inspection date.
System/Application Release Build
Component Subcomponents(s)

ELOC Inspection
Full Added, Modified, Deleted People-hours (X.X.)
New | or _ Est. Pre | Est. Post Rework | Over-
Mod/Mac| or | Part| Detailed view &| Insp | Re- |Follow-|  Sub-
Name [Mod | Insp.|Designer |Programmer| A {M | D | A [M [D { A [ M | D| Prep. [Meetg|work| up |componen

Totals

Reinspection required?. . Length of inspection (clock hours and tenths).
Reinspection by (date)______________Additional modules/macros?
DCR #’s written
Problem summary:  Major. Minot Total

Errors in changed code:  Major Minor. Errors in base code:  Major Minor.

Initial Desr Detailed Dr Programmer Team Leader Other Moderator's Signature

4. REINSPECTION REQUIRED?: Indicate whether the module/
macro requires a reinspection.

All valid problems found in the inspection should be listed and
attached to the report. A brief description of each problem, its
error type, and the rework time to fix it should be given (see
Figure 7A, which describes errors in similar detail to that re-
quired but is at a coding level).

Instructions for Completing Design Inspection Summary Form

Following are detailed’ instructions for completing the form in
Figure 13.
1. TO: The report is addressed to the respective design and
development managers.
2. SUBJECT: The unit being inspected is identified.
3. MOD/MAC NAME: The name of each module and macro as it
resides on the source library.

. NEW OR MOD: “N”’ if the module is new; “M” if the module
i1s modified.

. FULL OR PART INSP: If the module/macro is “modified,”
indicate ““F” if the module/macro was fully inspected or *“‘P”
if partially inspected.

. DETAILED DESIGNER: and PROGRAMMER: Identification of
originators.

. PRE-INSP EST ELOC: The estimated executable source lines
of code (added, modified, deleted). Estimate made prior to
the inspection by the designer.
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Figure 14 Code inspection module detail form

CODE INSPECTION REPORT
MODULE DETAIL
MOD/MAC: SUBCOMPONENT/APPLICATION

SEE NOTE BELOW

MAJOR* MINOR
PROBLEM TYPE: w w

: LOGIC
: TEST AND BRANCH.

: EXTERNAL LINKAGES.
: REGISTER USAGE

: STORAGE USAGE

: DATA AREA USAGE

: PROGRAM LANGUAGE.

: PERFORMANCE
: MAINTAINABILITY.
: DESIGN ERROR
: PROLOGUE

: CODE COMMENT

: OTHER

REINSPECTION REQUIRED?

*A PROBLEM WHICH WOULD CAUSE THE PROGRAM TO MALFUNCTION; ABUG. M = MISSING, W = WRONG, E = EXTRA.
NOTE: FOR MODIFIED MODULES, PROBLEMS N THE CHANGED PORTION VERSUS PROBLEMS IN THE BASE SHOULD BE SHOWN IN THIS MANNER. 3(2), WHERE 3
1S THE NUMBER OF PROBLEMS IN THE CHANGED PORTION AND 2 IS THE NUMBER OF PROBLEMS IN THE BASE. !

. POST-INSP EST ELOC: The estimated executable source lines
of code. Estimate made after the inspection.

. REWORK ELOC: The estimated executable source lines of
code in rework as a result of the inspection.

. OVERVIEW AND PREP: The number of people-hours (in
tenths of hours) spent in preparing for the overview, in the
overview meeting itself, and in preparing for the inspection
meeting.

. INSPECTION MEETING: The number of people-hours spent
on the inspection meeting.

. REWORK: The estimated number of people-hours spent to
fix the problems found during the inspection.

. FOLLOW-UP: The estimated number of people-hours spent by
the moderator (and others if necessary) in verifying the cor-
rectness of changes made by the author as a result of the
inspection.

. SUBCOMPONENT: The subcomponent of which the module/
macro is a part.

. REINSPECTION REQUIRED?: Yes or no.

. LENGTH OF INSPECTION: Clock hours spent in the inspec-
tion meeting.

. REINSPECTION BY (DATE): Latest acceptable date for
reinspection.

1976 DESIGN AND CODE INSPECTIONS
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. REWORK ELOC: The estimated noncommentary source lines
of code in rework as a result of the inspection.

. PREP: The number of people hours (in tenths of hours) spent
in preparing for the inspection meeting.

Reprint Order No. G321-5033.
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