
This report was prepared by the University of California, Berkeley under contract
to the California Secretary of State as part of a “Top-to-Bottom” review of

electronic voting systems certified for use in the State of California.

Source Code Review of the Diebold Voting System

Joseph A. Calandrino
Princeton University1

Ariel J. Feldman
Princeton University

J. Alex Halderman
Princeton University

David Wagner2

U.C., Berkeley
Harlan Yu

Princeton University
William P. Zeller
Princeton University

July 20, 2007

1All author affiliations are for identification only.
2Team leader.

Executive Summary

This report is a security analysis of the Diebold voting system, which consists primarily of the
AccuVote-TSX (AV-TSX) DRE, the AccuVote-OS (AV-OS) optical scanner, and the GEMS election
management system. It is based on a study of the system’s source code that we conducted at the
request of the California Secretary of State as part of a “top-to-bottom” review of California voting
systems.

Our analysis shows that the technological controls in the Diebold software do not provide sufficient
security to guarantee a trustworthy election. The software contains serious design flaws that have
led directly to specific vulnerabilities that attackers could exploit to affect election outcomes. These
vulnerabilities include:

• Vulnerability to malicious software
The Diebold software contains vulnerabilities that could allow an attacker to install malicious
software on voting machines or on the election management system. Malicious software
could cause votes to be recorded incorrectly or to be miscounted, possibly altering election
results. It could also prevent voting machines from accepting votes, potentially causing long
lines or disenfranchising voters.

• Susceptibility to viruses
The Diebold system is susceptible to computer viruses that propagate from voting machine to
voting machine and between voting machines and the election management system. A virus
could allow an attacker who only had access to a few machines or memory cards, or possibly
to only one, to spread malicious software to most, if not all, of a county’s voting machines.
Thus, large-scale election fraud in the Diebold system does not necessarily require physical
access to a large number of voting machines.

• Failure to protect ballot secrecy
Both the electronic and paper records of the Diebold AV-TSX contain enough information to
compromise the secrecy of the ballot. The AV-TSX records votes in the order in which they are
cast, and it records the time that each vote is cast. As a result, it is possible for election workers
who have access to the electronic or paper records and who have observed the order in which
individuals have cast their ballots to discover how those individuals voted. Moreover, even if
this vulnerability is never exploited, the fact that the AV-TSX makes it possible for officials to
determine how individuals voted may be detrimental to voter confidence and participation.

• Vulnerability to malicious insiders
The Diebold system lacks adequate controls to ensure that county workers with access to
the GEMS central election management system do not exceed their authority. Anyone with
access to a county’s GEMS server could tamper with ballot definitions or election results and
could also introduce malicious software into the GEMS server itself or into the county’s voting
machines.

Although we present several previously unpublished vulnerabilities, many of the weaknesses
that we describe were first identified in previous studies of the Diebold system (e. g., [26], [17], [18],

i

[19], [33], [23], and [14]). Our report confirms that many of the most serious flaws that these studies
uncovered have not been fixed in the versions of the software that we studied.

Since many of the vulnerabilities in the Diebold system result from deep architectural flaws,
fixing individual defects piecemeal without addressing their underlying causes is unlikely to
render the system secure. Systems that are architecturally unsound tend to exhibit “weakness-
in-depth” — even as known flaws in them are fixed, new ones tend to be discovered. In this sense,
the Diebold software is fragile.

Due to these shortcomings, the security of elections conducted with the Diebold system
depends almost entirely on the effectiveness of election procedures. Improvements to existing
procedures may mitigate some threats in part, but others would be difficult, if not impossible, to
remedy procedurally. Consequently, we conclude that the safest way to repair the Diebold system
is to reengineer it so that it is secure by design.

ii

Table of Contents

Executive Summary i

1 Introduction 1
1.1 System Overview . 2
1.2 Methodology . 3
1.3 Limitations of this Report . 4

2 Architecture 5
2.1 Components at Polling Places . 5
2.2 Components at Election Headquarters . 7

3 Major Attacks 10
3.1 Voting Machine Viruses . 10
3.2 Virus Payloads . 13
3.3 Attacking the VVPAT . 14
3.4 Attacking Ballot Secrecy . 17

4 Systemic and Architectural Issues 18
4.1 Design . 18
4.2 Implementation . 28
4.3 Engineering Practices . 29

5 Selected Specific Issues 32
5.1 AccuVote-OS . 32
5.2 AccuVote-TSX . 40
5.3 GEMS . 52

6 Procedural Safeguards and their Limitations 58
6.1 Logic and Accuracy Testing . 58
6.2 Commercial Virus Scanners . 58
6.3 Stricter Chain of Custody Measures . 58
6.4 Tamper-Evident Seals . 59
6.5 Forensics . 59
6.6 Parallel Testing . 59
6.7 Voter-Verifiable Paper Records . 60
6.8 Ballot Secrecy Protections . 60
6.9 Minimizing Use of Modems and Shared Networks . 61
6.10 A Segregated Dual-GEMS Architecture . 62
6.11 The Alternative: A Voting System that is Secure by Design 64

7 Conclusion 65

iii

A Threat Model 66
A.1 Reference Model . 66
A.2 Attacker Goals . 69
A.3 Attacker Types . 70
A.4 Types of Attacks . 74
A.5 Mechanisms for Tamper Sealing . 75

iv

List of Issues

5.1.1 Data on the AV-OS memory cards is unauthenticated. 33
5.1.2 The connection between the GEMS server and the AV-OS is unauthenticated. 34
5.1.3 The memory card checksums do not adequately detect malicious tampering. 34
5.1.4 The audit log does not adequately detect malicious tampering. 36
5.1.5 The memory card “signature” does not adequately detect malicious tampering. 36
5.1.6 Buffer overflows in unchecked string operations allow arbitrary code execution. 36
5.1.7 Integer overflows in the vote counters are unchecked. 36
5.1.8 The machine does not adequately protect the supervisor PIN. 37
5.1.9 Votes can be swapped or neutralized by modifying the defined candidate voting

coordinates stored on the memory card. 37
5.1.10 Multiple vulnerabilities in the AccuBasic interpreter allow arbitrary code execution. . . 38
5.1.11 A malicious AccuBasic script can be used to hide attacks against the AV-OS and defeat

the integrity of zero and summary tapes printed on the AV-OS. 38
5.1.12 The physical paper ballot box deflector is under software control. 39
5.2.1 The AV-TSX automatically installs bootloader and operating system updates from the

memory card without verifying the authenticity of the updates. 40
5.2.2 The AV-TSX automatically installs application updates from the memory card without

verifying the authenticity of the updates. 41
5.2.3 Multiple buffer overflows in .ins file handling allow arbitrary code execution on startup. 41
5.2.4 Setting a jumper on the motherboard enables a bootloader menu that allows the user

to extract or tamper with the contents of the internal flash memory. 41
5.2.5 Keys used to secure smart cards and election data are not adequately protected. 42
5.2.6 Malicious code running on the machine could manipulate election databases, election

resources, ballot results, and audit logs. 43
5.2.7 The smart card authentication protocol can be broken, providing access to administra-

tor functions and the ability to cast multiple votes. 44
5.2.8 Security key cards can be forged and used to change system keys. 45
5.2.9 A local user can get to the Main Menu/System Setup menu without a smart card or key. 46
5.2.10 The protective counter is subject to tampering. 46
5.2.11 SSL certificates used to authenticate to GEMS can be stolen and have an obvious

password. 46
5.2.12 OpenSSL is not initialized with adequate entropy. 47
5.2.13 Multiple vulnerabilities in the AccuBasic interpreter allow arbitrary code execution. . . 47
5.2.14 Tampering with the memory card can result in code execution during voting. 48
5.2.15 A malicious election resource file on the memory card could exploit multiple

vulnerabilities to run arbitrary code. 48
5.2.16 Malicious election database files can cause arbitrary code execution on the AV-TSX

when uploading elections to GEMS. 48
5.2.17 A buffer overflow in the handling of IP addresses might be exploitable by voters. . . . 49
5.2.18 A malicious GEMS server can cause a crash on election download. 49
5.2.19 Ballot results files store votes in the order in which they are cast. 49
5.2.20 Stored votes and VVPAT barcodes include a timestamp. 50

v

5.2.21 Ballot serial numbers are chosen using an insecure method, which may allow attackers
to discover the order in which ballots were cast. 50

5.2.22 Files on the voting machine are not securely erased when they are deleted. 51
5.2.23 Logic errors may create a vulnerability when displaying bootloader bitmap images. . . 51
5.2.24 AV-TSX startup code contains blatant errors. 51
5.3.1 GEMS uses the Microsoft Jet data layer. 52
5.3.2 Anyone with access to the GEMS server’s local disk can modify the GEMS database. . 53
5.3.3 GEMS trusts the graphical user interface (GUI) to safeguard data and enforce security

constraints. 53
5.3.4 Procedures described in Diebold system documentation place too much trust in

third-party transcription and translation services. 53
5.3.5 Race and candidate labels may be changed after GEMS has been “set-for-election.” . . 54
5.3.6 GEMS fails to filter some user input before using it in SQL statements. 55
5.3.7 In several cases, GEMS trusts data from the database not to be malformed. 56
5.3.8 Attackers can create a valid “encrypted” password from any desired user password,

without needing to know any cryptographic keys. 56
5.3.9 In several cases where GEMS converts signed integer values to strings, GEMS writes

them into buffers that are too short. 57

vi

CHAPTER 1

Introduction

For years, many computer security researchers have been calling for state governments to conduct
thorough, independent security studies of their electronic voting equipment. California was among
the first states to do so, and we thank the Secretary of State for commissioning this study and for
providing top-to-bottom access to the source code under review. We feel honored to have had the
opportunity to participate.

Our analysis shows that the Diebold software we studied contains serious design flaws
that have led directly to specific vulnerabilities, which attackers could exploit to affect election
outcomes. By breaking the seal on just one voting machine, a criminal could launch a vote-stealing
virus that could spread to every machine in a county. By manipulating a voting machine for a few
minutes after the election, a corrupt volunteer poll worker could determine how each person who
used that machine voted. These and many other attacks are feasible.

Furthermore, because the Diebold system suffers from systemic flaws, not just implementation
defects, we cannot conclude that the list of vulnerabilities that we present in this report is
exhaustive. Indeed, even as we write, we are uncovering new vulnerabilities and learning of
additional vulnerabilities being identified by others [24]. Systems with architectural weaknesses
tend to be fragile — even as known flaws are fixed, new ones tend to come to light.

Part of the promise of electronic voting is that technological and procedural safeguards can
be combined to conduct elections more securely than ever before. The Diebold system does
not live up to this promise, however, because its vulnerabilities allow a reasonably sophisticated
attacker to surmount almost every technological barrier that is in place. As a result, the security of
elections conducted on the Diebold system depend almost entirely on the effectiveness of election
procedures.

Leaving the Diebold software largely unchanged and relying on procedural changes to mitigate
the threats that we describe may seem like an appealing option, but we consider this to be a risky
approach. First, although procedural changes are valuable, we are not confident that they can be
completely effective. There are some vulnerabilities that are difficult, if not impossible, to mitigate
procedurally. Second, because the Diebold system is vulnerable in so many ways, the procedures
required to protect it would likely be extensive, complex, and hard to follow. Hence, we worry that
despite the best efforts and intentions of election officials, the procedures would not be followed
perfectly every time and the system would sometimes be left open to attack.

The severity of the design flaws in the Diebold system and our lack of confidence in the ability
of changes in election procedures to compensate for them leads us to conclude that the surest way
to repair the system is to redesign it.

About this Report This report was prepared by the University of California, Berkeley at the
request of the California Secretary of State, as part of a “top-to-bottom” review of the state’s
electronic voting systems. This document is the final report of the team that examined the Diebold
voting system source code.

The Diebold system source code review team was located at Princeton University and consisted
of the six authors of this report. We frequently consulted with the Cleveland State University-based

1

1. Introduction

document review team1 and the UC Davis-based “Red Team”2. All opinions expressed in this
report, however, are solely those of the authors.

We started work on May 31, 2007 and received the Diebold system source code on June 8,
2007. Work ended on July 20, 2007 with the delivery of this report, at which time we destroyed all
proprietary materials.

Organization This report is organized as follows. The remainder of this chapter introduces the
scope of our study, the methods we used, and the limitations of our findings. Chapter 2 describes
the overall architecture and individual components of the Diebold election system as it is typically
deployed. In Chapter 3, we highlight the most serious attack scenarios we found and discuss
their implications. We identify high-level design and architectural problems in Chapter 4, followed
by specific vulnerabilities in the individual components in Chapter 5. In Chapter 6, we discuss
technical and procedural approaches to improving the security of the Diebold system. We conclude
our report in Chapter 7. Appendix A outlines a generic threat model for large electronic voting
systems such as the Diebold system. Appendix B contains additional details about the problems
we found as well as source code excerpts; since it may contain vendor-proprietary information, this
appendix has been designated “private.”

1.1 System Overview

The Diebold software we reviewed is part of a system that includes touchscreen direct recording
electronic (DRE) voting machines and optical scan voting machines for use at polling places as
well as election definition, management, and counting software and hardware for use at a county
election headquarters. The specific software components that we reviewed were:

• The GEMS 1.18.24.0 election management system

• The AccuVote-TSX DRE, including:

– BallotStation version 4.6.4

– Bootloader version BLR 7-1.2.1 and “Wildcat” platform

• The AccuVote-OS Precinct Count optical scan machine, version 1.96.6

• The AccuVote-OS Central Count optical scan machine, version 2.0.11.43

• Vote Card Encoder, version 1.3.2

• Key Card Tool, version 4.6.1

• VC Programmer, version 4.6.1

In total, the reviewed software comprises about 300,000 source lines of code (SLOC) written in
a variety of programming languages, including C, C++, and assembly language. (See Table 1.1.)

1Candice Hoke (team leader), Dave Kettyle, and Tom Ryan
2Robert P. Abbott (team leader), Mark Davis, Joseph Edmonds, Luke Florer, Elliot Proebstel, Brian Porter, Sujeet Shenoi,

and Jacob Stauffer
3The state certification of the Diebold voting system identifies version 2.0.12 of the AccuVote-OS Central Count software,

and that is the version that the Red Team was given. However, based on directory names and the contents of the source
code, we appear to have been given the source code for version 2.0.11.4. We cannot account for the discrepancy between
these versions and we have no way of knowing the impact it might have on our findings.

1.1 System Overview 2

1. Introduction

Component SLOC Language(s)
AV-OS Central Count 2.0.11.4 24K (asm, C, C++)
AV-OS Precinct Count 1.96.6 20K (asm, C)
AV-TSX Ballot Station 4.6.4 65K (C++)
AV-TSX bootloader and “Wildcat” 71K (asm, C, C++)
GEMS 1.18.24.0 116K (C++)
Key Card Tool 4.6.1 1K (C++)
Voter Card Encoder 1.3.2 1K (C)
VCProgrammer 4.6.1 2K (C++)

(total) 300K

Table 1.1: The number of non-blank, non-comment source lines of code in each voting system
component, as counted by David Wheeler’s sloccount 2.26. All numbers have been rounded to
the nearest thousand lines of code.

1.2 Methodology

Discovery of programming errors is a notoriously difficult problem in computer science, and
no general methodology exists that is guaranteed to find all problems in even very small
programs. Line-by-line source code analysis is an extremely time-consuming and laborious
endeavor. Consequently, given the size of our team and the time we were allotted, it was unrealistic
for us to attempt to examine every line of code or to find every defect in the Diebold system.

Instead, we focused our attention on the portions of the code that were most likely to have
an impact on security and reliability. We also used the Fortify static analysis tool4 to identify
potential problem areas that warranted further manual investigation. We made no attempt to
catalog all defects that might enable any particular kind of attack. Once we found several related
vulnerabilities in the same portion of the code, we stopped looking for other vulnerabilities of the
same type. Such an analysis is by its nature incomplete, and is particularly unlikely to discover
deliberately introduced and obfuscated flaws, such as hidden “back doors” incorporated into the
software by a malicious programmer.

Our focus was on whether the software contains effective safeguards against error and abuse
aimed at altering election results, denying service, and compromising ballot secrecy. We also placed
a special emphasis on systemic issues that might go beyond individual vulnerabilities. In general,
our review attempted to explore questions such as:

• What are the trusted components of the system, when are they trusted and for what purposes?
What parties are trusted and for what purposes? What are the implications of compromise of
trusted components?

• Is the cryptography and key management sound? Is cryptography correctly used to protect
sensitive data on untrusted media? Does the cryptography employ standard algorithms and
protocols? Are keys managed according to good practices?

• Are security failures likely to be detected? Are audit mechanisms reliable and tamper-
resistant? Is data that might be subject to tampering properly validated and authenticated?

• Can an untrusted or minimally trusted user escalate his capabilities beyond those for which
he was authorized?

• Does the design and implementation follow sound, generally accepted engineering prac-
tices? Is code defensively written against bad data, errors in other modules, changes in
environment, and so on?

4We are grateful to Fortify Software for making the tool available to us for this project at no charge.

1.2 Methodology 3

1. Introduction

• Is the system designed in a way that allows meaningful analysis? Is the architecture and code
amenable to an external review (such as ours)? Could code analysis tools be usefully applied?
Is there evidence of previous testing and other quality control practices?

1.3 Limitations of this Report

This report is an analysis of the source code to a particular version of the Diebold voting system
and its conclusions do not necessarily apply to other versions of the Diebold system. It is also not
intended to be an analysis of the security or reliability of the Diebold hardware.

Our analysis is based on the source code and documentation that we received from the State
of California, Diebold, and the Independent Testing Authorities (ITAs). We made no attempt to
validate the materials provided to us, nor do we have any way of knowing whether the source
code provided to us matches the software that is actually used on election day. Any omissions or
inaccuracies in the materials that were provided to us could have led to inaccuracies in this report.

Although we do not have a complete list of the Diebold voting system software, we are aware
of several software components that the system uses that we did not receive. They are:

• JResultsClient

• The firmware for the AccuView Printer Module

• The Windows CE operating system used on the AccuVote-TSX

• The Windows operating system and other applications used on GEMS PCs

• Third-party libraries, such as the standard C libraries provided by the compiler vendor

Some of this software, such as the standard C libraries, may be classified as unmodified COTS
(commercial off-the-shelf) software under the federal voting standards and thus may be exempt
from disclosure to testing labs. Other software, such as JResultsClient, was apparently written by
Diebold but was still not made available to us. In the absence of source code to the Windows CE
operating system used on the AV-TSX, we were not able to verify whether it qualifies as unmodified
COTS under the provisions of the federal voting standards.

This report is not intended to be a comprehensive evaluation of California election procedures.
Nevertheless, in the course of our analysis, we discuss the extent to which various election
procedures are able to mitigate security vulnerabilities in the Diebold software.

1.3 Limitations of this Report 4

CHAPTER 2

Architecture

In this chapter we provide a high-level overview of the components of the Diebold system and
describe how they are used in a typical deployment, as illustrated in Figure 2.1.

2.1 Components at Polling Places

There are several components that might be found at polling places, depending on county election
practices:

• The AccuVote-OS (AV-OS) Precinct Count is an optical scan voting machine. During an
election, voters mark paper ballots and feed them into the AV-OS. The AV-OS scans their
ballot, interprets the marked votes, increments running counts of the number of votes for
each candidate, and deposits the ballot into a sealed ballot box. If the AV-OS detects overvotes
(voting for more candidates than the allowed number of candidates in a contest), it can return
the ballot to the voter for correction.

Officials or poll workers configure the AV-OS for each election by inserting a memory card
into a slot on the front of the machine. The memory card stores the names of races and
candidates, interpreted code used for printing reports, and the running tallies of votes for
each candidate. At the end of the election, poll workers remove the memory card from
the AV-OS and officials at election headquarters upload the results to a tabulation system
to determine the result.

The AV-OS memory card uses a non-standard interface format but acts only as a passive
storage device. It contains all the election-specific information and can be used in any AV-OS
machine.

The AV-OS runs custom election software written by Diebold. The software is a monolithic
application that executes directly in a single-threaded fashion on the microprocessor. There
is no operating system and no support for multi-user operation, timesharing, or memory
protection.

• The AccuVote-TSX (AV-TSX) is a DRE voting machine. It interacts with the voter via a
touchscreen LCD display, and it supports audio ballots for increased accessibility.

The AV-TSX is configured for each election by inserting a memory card into a slot behind a
locked door on the side of the machine. The memory card is a standard PCMCIA flash storage
card. Before the election, the file system on the memory card stores the election definition,
sound files, translations for other languages, interpreted code that is used to print reports,
and other configuration information.

As each ballot is cast, the AV-TSX stores an electronic record of the votes associated with that
ballot onto a file on the memory card. At the close of polls, the AV-TSX counts all of the votes

5

2. Architecture

Smart
Card

VC Encoder

AV -TSX Memory
Card AV -TSX

Modems

Port
Server

AV -OS

GEMS

Memory
CardAV -OS

Serial

Serial

Phone Line

Ethernet

Polling Place Election HQ

Figure 2.1: Components of the Diebold system in a typical county. At election headquarters,
there is a GEMS server connected via Ethernet to one or more central-office AV-TSX machines and
through a port server to one or more central-office AV-OS machines. These machines read and write
memory cards, which are used to transfer ballots to machines at the polling place and to read back
election results. Polling places also contain voter card encoders, which program smart cards that
allow voters to access the AV-TSX machines. Optionally, modems are used to transfer unofficial
ballot results from the polling places.

and prints a summary tape showing the vote tallies. After the election, poll workers remove
the memory card from the machine and send it to election headquarters so that the electronic
vote records can be uploaded for tabulation.

The AV-TSX also contains a printer attachment that is used for printing a voter-verifiable
paper audit trail (VVPAT) corresponding to each ballot cast by the voter. Before casting their
ballots, voters have an opportunity to examine printed VVPAT records and confirm that they
accurately represent their intent.

Internally, the TSX contains much of the same hardware found in a general-purpose PC. It
contains a 32-bit Intel xScale processor, 32 MB of internal flash memory, and 64 MB of RAM.
The TSX runs version 4.1 of Microsoft’s Windows CE operating system with modifications
written by Diebold. An application called BallotStation runs on top of the operating system
and provides the user interface that voters and poll workers see. BallotStation interacts with
the voter, accepts and records votes, counts the votes, and performs all other election-related
processing. The TSX also contains a custom bootloader and other low-level support software.

• Smart cards are used with the AV-TSX to authenticate voters and poll workers. Each smart
card is a piece of plastic in the shape of a credit card with an embedded computer chip that

2.1 Components at Polling Places 6

2. Architecture

can communicate with the AV-TSX when inserted into a slot on the side of the machine. Smart
cards are used for several purposes:

– Voter cards are used to authenticate voters. When a voter signs in, a poll worker gives
them an activated voter card. The voter inserts the card into an AV-TSX, and the machine
allows her to cast one ballot. Once the vote has been recorded, the AV-TSX deactivates
the voter card so that it cannot be used to vote a second time. The voter returns the card
to poll workers, who can reactivate it for subsequent voters.
Alternatively, in some jurisdictions poll workers activate the voter card and then insert
it into the AV-TSX unit for the voter, so that voters do not have to insert it themselves.

– Supervisor cards are used to authenticate poll workers. The chief poll worker would
normally be given a supervisor card. When the supervisor card is inserted into an AV-
TSX unit, the poll worker is presented with extra functionality not available to voters,
such as the ability to close the polls or examine audit logs. Supervisor cards would
normally not be provided to voters.

• The vote card encoder is a calculator-sized device used by poll workers to generate new voter
cards. Poll workers insert voter cards into the device to activate them. Optionally, workers
can indicate which ballot style the voter should receive for split precincts or primary elections.

• Memory cards are used by the AV-OS and AV-TSX, as described above.

Practices regarding use of memory cards vary from county to county. Typically, voting
equipment might be delivered to the polling place with memory cards already sealed into
them. In other words, before the election, county staff program the memory cards with
election definition files, insert them into AV-OS or AV-TSX units at the warehouse, and place
a tamper-evident seal over the memory card door. Then they ship the AV-OS or AV-TSX units
to polling places. Alternatively, memory cards can be provided to poll workers separately
and poll workers can insert the memory cards into the AV-OS or AV-TSX units on election
morning before the polls are opened.

After the close of polls, there are several options for how memory cards can be returned to
the county. One option is that poll workers can break the seals on the memory card doors,
remove the memory cards, and transport them back to county headquarters. Another option
is that the equipment can be returned with the memory cards still sealed inside them, and
after receiving the equipment at the warehouse, county staff can break the seals and remove
the memory cards. Counties normally choose one of these two options.

We note that some counties may not use all of these components. Some counties do not use
the AV-OS; in those counties, all (or most) voters vote on AV-TSX machines, and polling places are
typically equipped with enough AV-TSX units to handle the expected turnout. Other counties use
both the AV-OS and the AV-TSX, and a polling place might contain both an AV-OS for scanning
paper ballots and one or more AV-TSX units for accessibility. Counties in the latter category can
offer voters the option of voting by paper ballot or by touchscreen, or they can require most
voters to use the paper ballot and reserve the AV-TSX unit for voters who need the accessibility
or language support it provides.

2.2 Components at Election Headquarters

In addition, there are a number of components present at the county’s elections headquarters:

• GEMS is an election management software application that runs on an ordinary desktop
PC. GEMS is used to control many aspects of the election, including designing ballots,
downloading election definition files to voting machines, compiling election results, and
reporting the election outcome.

2.2 Components at Election Headquarters 7

2. Architecture

GEMS is a Windows application. Typically, it runs on a PC configured by the vendor running
Windows 2000 or Windows XP as well as a number of commodity software applications (e. g.,
Adobe Acrobat reader). GEMS uses Microsoft’s Jet database technology (the database engine
used by Microsoft Access).

• The AccuVote-OS Central Count is an optical scan machine used for scanning and counting
paper ballots at the election headquarters. It is commonly used to scan absentee (vote-by-
mail) ballots as well as provisional, damaged, duplicated, or enhanced ballots. The AV-OS
Central Count machine connects to GEMS via a serial link, and its operation is controlled by
GEMS. It scans ballots and interprets ballot marks, but it then immediately uploads a record
of each vote to GEMS and does not attempt to tabulate or keep any record of votes.

The AV-OS Central Count uses essentially the same hardware as the AV-OS Precinct Count,
but the two models run very different software.

The AV-OS Central Count is normally used in conjunction with the AccuFeed unit, which
feeds paper ballots into the scanner at a controlled rate. A small infrared (IR) sensor attached
to the AV-OS unit, and then the AccuFeed and AV-OS communicate by IR to control ballot
feeding.

• An Ethernet network would typically be used to connect many of the devices at the central
office. As mentioned below, devices on the Ethernet network might include the GEMS
PC, a port server device, AV-TSX units, other PCs (e. g., a PC running JResultsClient, for
displaying unofficial election results to observers on election night), and potentially PCs used
for unrelated purposes.

Diebold employees normally set up an Ethernet network and configure the devices on the
network for the county. Of course, over the lifetime of the voting system, installation and
configuration decisions are at the county’s discretion. In some counties this Ethernet network
might be strictly isolated. However, we presume it is also possible that this network might be
connected to the election department’s internal network or the county intranet; we were not
provided any detailed information on individual county practices, and we were not able to
rule out such a possibility. We did not find any clear prohibition in the system documentation
that forbids connecting other devices or networks to this Ethernet network.

• One or more AV-TSX units would normally be connected to the GEMS PC by Ethernet. These
AV-TSX units are identical to AV-TSX units used in the polling place, but they serve a different
function: they are used to read and write AV-TSX memory cards. We will call any AV-TSX
unit that is used in this fashion a “central-office AV-TSX” to distinguish it from an AV-TSX
unit that is used by voters. These AV-TSX units in principle can also be connected by serial
cable, but Diebold has told us that counties would normally use an Ethernet network instead
of a serial cable. County staff insert a PCMCIA Ethernet card into one of the PCMCIA slots on
the AV-TSX and then connect the AV-TSX to an Ethernet hub. The BallotStation application
provides the result upload capabilities and interfaces with the GEMS server over the network.

Before the election, once election administrators have laid out the election on the GEMS
server, county staff use GEMS and the central-office AV-TSX units to write election definition
files onto memory cards. Staff must prepare one memory card per AV-TSX that will be
deployed in the field. For instance, a county might have 2000 AV-TSX units that will be
deployed in polling sites throughout the county on election day, and might have 5 central-
office AV-TSX units used for writing memory cards. County staff would then write those 2000
memory cards by inserting each memory card into a central-office AV-TSX unit, one at a time,
and instructing GEMS to make the proper election definition files available for the machine to
download. Once all memory cards have been programmed, they can be inserted into AV-TSX
units destined for the field.

After the election, as poll workers return memory cards to county headquarters, county staff
use the central-office AV-TSX units to read results files from the memory cards and upload

2.2 Components at Election Headquarters 8

2. Architecture

them to GEMS for tabulation. GEMS inserts the vote data into its database and tabulates the
votes.

• One or more AV-OS Precinct Count units would also normally be connected to GEMS by
serial cable. These central-office AV-OS units serve a purpose analogous to that of the central-
office AV-TSX units. They are controlled by GEMS and used to read and write memory cards
intended for use with AV-OS units in polling places.

Note that AV-OS memory cards are not compatible with AV-TSX memory cards, since they
are of a different shape and use a different technology. Therefore, AV-OS memory cards must
be read and written by central-office AV-OS units, while AV-TSX memory cards must be read
and written by central-office AV-TSX units.

• One might also find a device used to expand the number of serial links that can be connected
to the GEMS PC. The sample GEMS setup examined by the Red Team used a Digi PortServer II,
which is an embedded device that connects to the GEMS PC via an Ethernet network (using
TCP/IP) and provides up to 64 serial ports that can be connected to central-office AV-OS
units or modems [3]. Alternatively, one might find a Digi device that works similarly except
that it is connected to GEMS by a serial link instead of via an Ethernet network. These are
commodity devices sold on the open market. They are used to expand the number of AV-OS
units that can be connected to GEMS. Because ordinary PCs normally have only one serial
port (or at most a few serial ports), this provides a way to connect many AV-OS units to the
single GEMS PC.

• Several types of smart cards are also used at county headquarters to authenticate county staff
to the AV-TSX units. In particular:

– Central election administrator cards are used to authenticate county staff. Insertion of a
central administrator card into a AV-TSX unit yields access to additional functionality,
such as the ability to configure the AV-TSX unit. These cards would normally not be
provided to voters or poll workers and would be closely held by county workers.

– Security key cards are used to update the cryptographic keys on the AV-TSX. These cards
are security-sensitive and should only be available to trusted county staff. Security key
cards are created using the Key Card Tool, a Windows software application installed on a
PC in county headquarters.

Note that, while there are four types of smart cards in total, their internal components are
physically identical: the four types of smart cards differ only in the data that has been written
to them, and in the label that is printed on their exterior. When a smart card is inserted into
the AV-TSX, the AV-TSX uses the data it reads on the card to determine what type of smart
card was inserted.

• One might find modems that can be used to accept communications over the public telephone
network. We discuss modems in detail in Section 4.1.8.

2.2 Components at Election Headquarters 9

CHAPTER 3

Major Attacks

In the course of our source code review, we identified numerous issues that might allow an attacker
to compromise the integrity, reliability, and secrecy of elections run on Diebold systems. These
problems are compounded since attackers can exploit multiple vulnerabilities in combination to
carry out more powerful attacks. In this chapter, we discuss two kinds of combination attacks
that we believe are among the most serious that we have identified. The first attack could allow
a single technically sophisticated person with limited access to election equipment to spread a
voting machine virus to all machines within a county. A virus could subtly switch votes from
one candidate to another, or cause widespread disenfranchisement by overwriting the machines’
firmware. The second attack could enable election officials or other insiders to violate ballot secrecy
and discover how voters voted.

3.1 Voting Machine Viruses

Like desktop PCs, computer voting machines are vulnerable to viruses. Viruses are malicious
software programs that spread automatically from machine to machine. Viruses pose a particularly
severe threat to voting security because they can spread invisibly in the background, even when
procedural safeguards that limit physical access to the machines are followed. We believe it
would be possible for a sophisticated attacker, by exploiting several of the vulnerabilities that
we discovered, to launch a powerful virus that would spread from even a single infected voting
machine to all the AV-OS and AV-TSX machines within a county.

In prior work, Feldman, et al. [14] demonstrated a working voting machine virus that could
spread automatically between AccuVote-TS units if the machines were booted with infected
memory cards inserted. From our review of the source code, it appears plausible that the attacks
Feldman, et al. identified remain feasible on the AccuVote-TSX. Other vulnerabilities that we
identify in this report create further avenues for spreading viruses that are potentially more
dangerous than previously known mechanisms.

Creating a voting machine virus like the one we describe below would require moderate to
sophisticated programming skills and access to voting equipment, but both are likely available on
the black market. A single person with these capabilities could create a virus. An AccuVote-TS
was recently listed on eBay, and an attacker unable to purchase one could attempt to steal one
instead. Machines purchased or stolen from other states could be just as useful to attackers as ones
from California (if the machines had the same software version), so improving physical safeguards
within the state will only have limited benefit.

We now describe one scenario where a voting machine virus could spread throughout a
county’s election system (see Figure 3.1). Many variations on this scenario are possible, so attempts
to fix this problem must not focus exclusively on the specifics of this attack.

1. Initial infection of an AV-TSX

10

3. Major Attacks

Memory
Card

AV -TSX Memory
Card AV -TSX

Modem

GEMS

1a.

2. 3.

1b.

Polling Place Election HQ

AV -TSX

AV -TSX

AV -OS

AV -OS

Memory
Card

Memory
Card

AV -TSX

GEMS

AV -OS

4.5.

Polling Place Election HQ

Figure 3.1: Propagation of a virus over the course of two election cycles. During the first election:
(1a) An attacker temporarily inserts a memory card containing a voting machine virus into an AV-
TSX, infecting the machine. (2) After the election, poll workers remove the memory card containing
ballot results from the infected machine and send it to election headquarters for tabulation; the
virus has corrupted the files on the card, so inserting it into a central-office TSX infects that machine.
(3) The infected central-office TSX attacks the GEMS PC over the Ethernet network by using known
vulnerabilities in Windows; when the attack succeeds, the virus infects the GEMS server. (1b)
Alternatively, if the county uses modems to return unofficial election results, an attacker can target
the GEMS server directly over the modem connection, infecting it directly.

During the next election cycle: (4) The virus running on the GEMS server infects memory cards
when officials download the new ballots; these cards are placed in voting machines throughout the
county. (5) On election day, the virus executes its payload, which may involve altering votes or
otherwise disrupting the election.

3.1 Voting Machine Viruses 11

3. Major Attacks

The attacker, after developing the virus in advance of the election, needs only momentary
physical access to an AV-TSX or memory card in order to initiate the infection.

One way to infect the initial machine would be to exploit the insecure software update
mechanism described in Issue 5.2.1 or Issue 5.2.2.1 If memory cards ship separately from
machines, the attacker could intercept a memory card en route and copy the virus onto the
card. The virus would be installed on the AV-TSX when the machine boots with the card in
place. AV-TSX memory cards are commodity PCMCIA cards that can be bought on the open
market and read and written using any laptop, so no special equipment is required to mount
this attack. If, instead, machines ship with memory cards sealed in place, the attacker would
need to gain physical access to a machine, break the seal and unlock the lock, replace the
memory card with one containing the virus, reboot the machine to install the virus, reinsert
the original memory card, and relock the enclosure. Though this may sound complicated,
the Red Team has told us that software updates can be installed with less than one minute
of physical access in a manner that would likely raise minimal suspicion from poll workers.
The only physical evidence would be the single broken seal.

Some counties use modems to transmit unofficial election results back to election headquar-
ters after polls close. In this case, an attacker could attempt to infect the GEMS server directly
by connecting to it over the modem. As discussed in Section 4.1.8, this would allow the
attacker to skip directly to step 4 below.

2. Viral spread to the central-office AV-TSX

After the election, officials remove the memory cards from each machine and take them to the
election headquarters, where a small number of AV-TSX machines are networked to a GEMS
server. The next step in the virus’s lifecycle is to infect these central-office AV-TSX units.

On the initially infected AV-TSX, the virus can manipulate the election database file stored
on the removable memory card by exploiting Issue 5.2.6. The attacker could design the
virus to corrupt the file to exploit problems, such as Issue 5.2.16, that allow the execution
of arbitrary code during the result upload stage. Later, officials take the memory card with
the manipulated election description and place it into a central-office AV-TSX. When officials
initiate the upload function, the attacker’s code executes and infects the central AV-TSX
machine with the virus. A well-crafted virus might be able to do this without causing any
visible signs of foul play.

3. Attacking the GEMS machine

As soon as the virus infects the central-office AV-TSX, it can begin attacking the GEMS
machine. In a typical deployment, as described by Diebold, the GEMS machine and
the central-office AV-TSX machines attach to a single Ethernet switch and communicate
using TCP/IP. This means that the GEMS PC exposes a large attack surface to the AV-
TSX. Vulnerabilities in the PC’s operating system (Windows), network drivers, and network
services could all be attacked. The hacker community is already aware of exploitable flaws in
some of these components. Even if automatic patches exist for these commodity components,
the PC’s software may not be up-to-date.

The Red Team’s report describes how they were able to use widely available exploit tools to
exploit holes in Windows and take control of the GEMS PC from another PC on the same
subnet [3]. A virus running on the central AV-TSX could be programmed to perform a similar
attack. After gaining control of the GEMS PC, the virus would install itself and proceed to the
next phase of its lifecycle. It could hide itself from system administrators and from common
security tools2 using rootkit techniques [16].

1For example, the initial infection might replace the machine’s bootloader software. This bootloader could then install
high-level infection software [14].

2Standard anti-virus software would be unlikely to detect a special-purpose voting machine virus that had infected the
GEMS server. Such software does not exist for the AV-TSX and AV-OS.

3.1 Voting Machine Viruses 12

3. Major Attacks

4. Spreading back to the field

At the beginning of the next election cycle, the infected GEMS system can spread the virus
to the voting machines used in the field. It might spread to AV-TSX systems by tampering
with the election data files as they are downloaded to memory cards that will be distributed
to polling places. By introducing deliberate errors into these files, the virus could exploit
vulnerabilities (e. g., Issue 5.2.13, Issue 5.2.15) that will allow virus code to execute on the
systems during voting. The virus could also spread to AV-OS Precinct Count machines in a
similar manner by exploiting Issue 5.1.2. Since typical procedures call for every memory card
used in the county to be created using the GEMS server, this step would allow the virus to
infect every AV-OS and AV-TSX machine used by voters.

3.2 Virus Payloads

What harm can a voting machine virus or other wide-scale compromises do? Among the most
dangerous payloads would be an attempt to shift a close race by subtly stealing votes and an
attempt to disrupt an election by launching a large scale denial-of-service attack. Procedural
countermeasures might not be sufficient to defend against these attacks, as discussed in Chapter 6.

1. Subtle vote stealing

An attacker could use a voting machine virus to reprogram a large number of AV-TSX or
AV-OS machines to steal votes. When programming the attack, the attacker could decide
which votes to steal (e. g., from particular candidates, races, or parties), how to steal them
(e. g., by adding, deleting, or switching votes from one candidate to another), and when
to execute the attack (e. g., only in closely contested races, or only in precincts with certain
voting patterns). California’s mandatory voter-verifiable paper audit trail (VVPAT) provides
a valuable defense against electronic vote stealing, but it will not necessarily be able to detect
and correct every kind of attack — particularly in races with a narrow margin of victory.

In a close election, one particularly dangerous scenario would be a widely-spread virus that
subtly shifts votes between candidates on both the paper and electronic records. Suppose
the candidates are named Alice and Bob. A Bob supporter could reprogram the machines to
look for voters who select Alice. One percent of the time, after the voter has selected Alice,
they machines could behave as if the voter had picked Bob, displaying a vote for Bob on the
confirmation screen and on the printed paper record. A cleverly designed virus wouldn’t
interfere with an attempt to correct the problem, so voters who notice the error could cancel
the printed VVPAT record and change the selection back to Alice.

An attack like this might shift enough votes to cause the wrong result in a close election,
but could it really be done without being detected? Several factors favor the attacker. First,
assuming that only a small fraction of voters would carefully review the paper VVPAT record,
many voters would overlook the problem and allow incorrect votes to be recorded in both
the electronic and paper records. Second, while a few voters might report the problem to poll
workers, election officials would have difficulty determining whether the cause was voter
error or a problem with the machines. This is similar to problems that Sarasota County,
Florida experienced with its DRE voting machines in the November 2006 election [11]. In
one race during that election, hundreds of voters reported that the machines displayed the
wrong selection on the summary screen, or that they failed to show the race on the summary
screen at all. Some observers eventually concluded that the cause was voter error due to a
poorly designed ballot layout.

Even if officials suspect an electronic attack, the virus author could take countermeasures to
thwart later investigation. The attacker could tamper with the system logs to remove traces
of the virus’s activity, and remove the virus after the election when the machine powers on
again. By the time an investigation is commenced, most of the evidence of the problem could
be destroyed.

3.2 Virus Payloads 13

3. Major Attacks

Finally, even in the best case when officials do detect the virus, they might have difficulty
undoing its effects without holding a new election — thus, the vote stealing attack becomes,
at best, a massive denial of service attack. It would probably be impossible to tell how many
votes had been shifted as a result of the attack, since the electronic and paper records would
both reflect the fraudulent result.

A virus could also shift vote totals in the reports produced by AccuVote-OS Precinct Count
machines. Conceivably, this would need to be paired with a corresponding attack that alters
the paper ballots. This attack is considerably more difficult to accomplish on a large scale
since the AV-OS scanner is unable to alter ballots.

Another notable but less-damaging attack by a virus author would be to re-program the
AV-OS to selectively allow overvotes for a disfavored candidate. A voter who accidentally
overvotes would not be notified by the AV-OS of her mistake and would not be given a chance
to fix her ballot. After the election, if an overvoted ballot is rescanned, the overvote would
likely be deemed invalid by officials. This attack might raise suspicion since AV-OS-scanned
ballots should have been previously checked for overvotes, but the damage would be done
by the time the attack was detected.

Other means of attacking the VVPAT are discussed in Section 3.3.

2. Massive denial of service

Rather than stealing votes directly, attackers might choose a more passive strategy and
attempt to disrupt the election process itself by disabling machines, destroying vote records,
or slowing down voting. These attacks could be targeted at precincts that are likely to support
an opposing candidate (or even triggered only after the virus detects that the opposing
candidate has won a certain portion of the votes on a machine). Alternatively, the attack
could be carried out indiscriminately in hopes of causing such widespread disruption that
the election would be postponed.

What kinds of disruption could a virus cause? The AccuVote-TSX memory architecture
exposes important system code, including the bootloader, operating system kernel, and
voting software, to tampering by other software running on the machine. Malicious software
on the machine could overwrite the bootloader or other parts of the software, rendering the
machine inoperable. Repairing this damage would require a visit from a service technician
and possibly even a return to the factory. Feldman, et al. demonstrated how such a denial of
service attack was possible with the AccuVote-TS [14].

An attacker would have many choices about when and where to trigger an attack and what
kind of damage to do. Some attacks might be very difficult to distinguish from non-malicious
hardware and software malfunctions.

Denial-of-service attacks on the AccuVote-OS machines would be slightly less damaging. If
an attack causes the AV-OS machines to break down, only voters who invalidly fill out their
paper ballot (e. g., overvote) will be affected, since they will not be warned or given the chance
to correct their mistakes.

3.3 Attacking the VVPAT

The design of the VVPAT mechanism used by the AV-TSX poses a threat to the secrecy of voter
ballots and places a limit on its ability to detect malicious software. Two aspects of the design are
especially problematic:

• The AV-TSX contains a movable flap over the VVPAT window and can be open or closed.
When it is closed, the voter cannot see the VVPAT record and is unlikely to know in advance
that the flap needs to be opened. If the flap is closed when the voter walks up to the machine,
they may cast their ballot without checking the VVPAT record and without even being aware

3.3 Attacking the VVPAT 14

3. Major Attacks

that they could have checked the VVPAT record. The flap closes easily, and once it closes, it
might stay closed for many voters.

Consequently, the presence of this flap may reduce the number of voters who check the
VVPAT record. This makes audits less effective because it undermines the presumption that
the VVPAT record accurately represents the voter’s intent. This flap may also heighten the
damage done by paper jams and printer failures: if the flap is closed when the printer jams,
then several voters may continue voting before anyone notices that multiple VVPAT records
have been destroyed and rendered unreadable by the unnoticed printer jam.

• The AV-TSX VVPAT uses a reel-to-reel printer mechanism. The system contains a spool of
blank thermal paper which feeds through the printer mechanism, then past the window
where it is visible to the voter, and then winds onto a second take-up spool. The machine
records votes continuously on the spool of paper without cutting it in between voters.
Consequently, election workers have an opportunity to associate voters with the paper
records by matching the order in which voters used the machine to the order of the records
on the paper.

Most voters only vote at a polling place once or twice every two years. Consequently, each time
they use the equipment, they will effectively be learning for the first time how to use it. Voters
cannot be expected to know in advance the intricacies of how the machines work: instead, they
will likely be learning this as they go along. This creates the possibility that malicious software
on an AV-TSX could trick voters by subtly deviating from the normal protocol for printing VVPAT
records.

To illustrate the risks, we list four hypothetical attacks that an attacker who has subverted the
software on the AV-TSX could mount. This list of example attacks is not intended to be exhaustive
or comprehensive.

1. In our first attack, the malicious AV-TSX behaves honestly for 90% of the voters, and
randomly selects 10% of the voters to cheat. For those unlucky voters, it behaves legitimately
except that it always prints candidate X on the VVPAT record, whether the voter selected
candidate X or his rival. If the voter notices the error and spoils her ballot, the machine
allows her to go back and change her selection, and it behaves honestly for the remainder of
that voter’s session. If the voter does not notice, the machine casts the ballot. The machine
records an electronic vote record matching whatever is printed on the VVPAT record.

If we assume that perhaps 50% of voters will not bother to check what is on the VVPAT record,
the machine will succeed in stealing up to 5% of the votes, which may be enough to overturn
the outcome of a close race if every machine in the county contains this malicious software.
Moreover, this attack leaves no permanent evidence that would be detected during the 1%
manual tally or the official canvass. In principle, an election official who counted the number
of spoiled VVPAT records might notice the increase in spoiled VVPAT records [4], but we are
not aware of any county that currently performs this check as part of the official canvass.

We are not convinced that increasing the number of spoiled VVPAT records by an amount
equal to 5% of the total number of ballots would be enough to provide a clear indication
of fraud. Even if suspicions were raised, the evidence might still admit multiple possible
interpretations and thus, there might be no indisputable evidence of fraud that a court could
use to throw out the election results. Furthermore, even if the attack is detected and a court is
persuaded to order a new election, the controversy could undermine voter confidence. This
is an example of an attack that cannot be mounted against manually-marked paper ballots.

2. In our second attack, a malicious AV-TSX unit cheats 5% of the voters by deviating from the
normal desired operation in only one small way. When the unlucky voter casts her ballot,
the machine does not scroll the VVPAT record up into the security canister. It simply leaves
the VVPAT record showing in the glass window and prints a message on the screen saying
“Your vote was recorded. Thank you for voting.” Shortly after the voter walks away, the

3.3 Attacking the VVPAT 15

3. Major Attacks

machine prints “CANCELLED” under the VVPAT record to spoil it, scrolls it up into the
security canister, prints a new VVPAT record containing votes for the attacker’s preferred
candidates, and scrolls that into the security canister. This might be difficult to detect.

3. Alternatively, one can imagine that when the unlucky voter casts her ballot, the AV-TSX
machine immediately prints “CANCELLED,” then prints a new VVPAT record, and scrolls
that up into the security canister, all in one action. If the printer scrolls the paper fast enough,
it might be difficult for a first-time voter to notice what went wrong. If an occasional unlucky
voter does happen to notice the misbehavior, she cannot demonstrate to anyone else that the
machine cheated her: by the time she can call over a poll worker or another witness, the
evidence is gone and it is too late. Even if a poll worker peers over the shoulder of the next
few voters (violating their ballot secrecy) to see if the problem recurs, it is unlikely that the
poll worker will notice any further problem due to the small number of voters targeted. We
fear that even if a few voters do notice the issue and complain, their complaints might be
discounted or there might be little that poll workers can do about it.

4. Yet another possible attack applies to counties that use DREs for provisional voting. Suppose
that the attacker wants to favor candidate X over candidate Y and is able to introduce
malicious software onto the county’s AV-TSX units. When a provisional voter steps up to
use the machine, the malicious software observes which candidate the voter selects. If the
voter selects candidate Y, the machine behaves honestly and prints a VVPAT record that is
correctly marked as provisional, prints the challenge code associated with this provisional
voter, and correctly records the vote electronically as a provisional vote. However, if the
provisional voter selects candidate X, then the machine prints a VVPAT record and makes
an electronic record as though this were a non-provisional voter. Later, when a subsequent
non-provisional voter tries to vote for candidate Y, the machine prints a VVPAT record and
makes an electronic record as though that subsequent voter were a provisional voter (using
the challenge code associated with the earlier provisional voter). In effect, each provisional
voter who votes for candidate X is matched up with a non-provisional voter who votes for
candidate Y, and the provisional status is swapped. Later, during the resolution of provisional
voters, if some provisional votes are discarded because the voter was not eligible to vote, then
officials will be discarding votes for candidate Y that should have counted and retaining votes
for candidate X that should have been discarded. The number of votes that can be stolen in
this way is governed by the number of provisional voters whose votes are ultimately rejected.
If this number exceeds the margin of victory, this attack strategy can change the outcome of
the election. This kind of attack would not be detected by the 1% manual tally or during
the official canvass because the electronic records do match the VVPAT records exactly and
because the number of voters and provisional voters are not affected by the attack. The only
chance to detect this attack is for voters to notice the provisional status of their votes, but it
is not clear whether voters would notice this or would understand the consequences if they
did.

Malicious software might also try to increase the odds of avoiding detection by targeting its
attacks towards voters who are less likely to notice the fraud. For instance, instead of picking
voters to cheat at random, the malicious software might watch for voters who appear to be having
trouble (as evidenced, for instance, by their use of the “Help” button, by slow progress through the
ballot, or by multiple attempts to change their selections) and selectively defraud these voters.

Would these attacks succeed in avoiding detection? We do not know. To the best of our
knowledge, it is an open question whether voters would notice. We are not aware of any studies
that have tested these attacks, but there are reasons to be concerned [13]. It is possible that none of
these attack strategies would succeed. We would like to believe that these kinds of attacks would
be detected. However, it is also possible that an attacker who studied human behavior could come
up with methods to steal elections without detection. The point is that we do not know whether
malicious software could fool voters into accepting fraudulent VVPAT records. Given that the
security of the AV-TSX relies upon the assumption that the VVPAT record will accurately represent

3.3 Attacking the VVPAT 16

3. Major Attacks

voter intent, this uncertainty surrounding VVPATs and voter behavior may be of concern. It seems
to cast some doubt on how much we can rely upon the VVPATs.

Of course, these kinds of attacks are only possible if the attacker can find a way to replace
the software on the AV-TSX. However, the VVPAT was intended as an independent check upon
the operation of the machines, and these risks undermine the independence of the VVPAT records.
These attacks are possible because the VVPAT printer and spool are entirely under software control,
so if the software is subverted, it can control how the VVPAT record is printed. This architectural
feature of the AV-TSX is unfortunate. It might be better to have an architecture that left no plausible
avenue for an attacker to subvert the paper trail.

Manually-marked paper ballots scanned with the AV-OS are not subject to these kinds of human
factors risks. Because the process of marking the ballot does not involve any interaction with
complex technology, there is no opportunity for corrupted devices to try to influence the voter
ballot marks. The marks on the paper ballot record the voter’s intent unmediated by technology.
This may make manual recounts and the 1% manual tally of the AV-OS more effective and less
susceptible to subversion by malicious software. Consequently, it seems plausible that voting
systems based upon the AV-OS may prove to be more resilient to technical attack than voting
systems based upon the AV-TSX.

3.4 Attacking Ballot Secrecy

In addition to threats to the accuracy of election results, we are charged with identifying problems
that could threaten the secrecy of voter selections. Secrecy makes it difficult for voters to sell their
votes, since they can’t prove to anybody else how they voted. Ballot secrecy also helps voters stand
up to intimidation by those who threaten to harm them if they do not vote a certain way. We found
a variety of issues with the AV-TSX that pose significant threats in this area.

As we describe in detail in later sections, the machine stores votes in the order in which they
were cast (Issue 5.2.19); it stores them together with a record of the time they were cast and,
if a specific configuration option is enabled, prints this time in a barcode on the paper VVPAT
record (Issue 5.2.20); and it assigns them each an encrypted serial number that can be decrypted
to discover the order of voting (Issue 5.2.21). Any one of these problems could leak enough
information about the votes to reveal how individuals voted.

Exploiting these problems would require three resources. First, an attacker would need access to
the voting data — either the barcoded VVPAT records or the election results file from the memory
card or voting machine. Second, if attacking the election results file, the attacker would need to
know the data key used to encrypt the results file and generate ballot serial numbers; Issue 5.2.5
explains how an attacker with access to a single voting machine can determine this county-wide
key. Third, an attacker would need to know on which machines target individuals cast their votes,
as well as the time of their votes or their positions in the sequence of votes cast. For example, in a
targeted attack, a human observer or hidden camera could observe how many people voted on a
machine before the targeted individual. In a broader breach of privacy, the attacker could learn the
order of voters from the polling place sign-in list, if that list records the order in which voters sign
in. There are several ways that an attacker could obtain this information, but we are particularly
concerned that all of the necessary items could be obtained with relative ease by corrupt poll
workers or election officials.

Of course, most poll workers and election officials are honest. Poll workers volunteer their time
for what is a critical but largely thankless job. What concerns us is that a malicious person who
wants to attack the election can purposely volunteer as a poll worker in order to obtain access to
sensitive data. Regardless of whether or not any poll workers actually are malicious, the fact that
the AV-TSX makes it possible for malicious officials to determine how individuals voted may be
detrimental to voter confidence and participation.

3.4 Attacking Ballot Secrecy 17

CHAPTER 4

Systemic and Architectural Issues

Given the consequences of election fraud and the importance of public confidence in elections,
voting systems and software must be designed from the ground up to be secure. Building a secure
system involves identifying the threats that it could face and producing a design that not only
counters those threats but employs defense-in-depth to limit the damage that any undiscovered
vulnerabilities could cause. It also requires the use of defensive programming techniques to
minimize software defects and the use of sound software engineering practices to ensure that
software developers are properly trained and that source code is properly reviewed before release.

In our analysis of the Diebold system, we found significant systemic weaknesses in its design
and implementation as well as in the engineering practices used to develop it. Our analysis is based
both on our direct examination of the system’s source code and on an interview that we conducted
with Talbot Iredale, Software Development Manager, Diebold Election Systems [1].1

4.1 Design

4.1.1 Large Attack Surface
Experienced security practitioners often also recommend analysis of the “attack surface” of a
software system. The attack surface is the interface that is exposed to the attacker. This includes
all operations that the attacker can invoke, any data that the attacker can control, protocols that the
attacker can participate in, and so forth. The larger the attack surface, the more degrees of freedom
the attacker has in crafting attack strategies. A bug in any code that is exposed to an attacker may
lead to an exploitable vulnerability, so a large attack surface also means that a large volume of
code is security-critical. Consequently, systems with a large attack surface tend to be more prone
to security vulnerabilities.

The Diebold voting system has a large attack surface. Exposed interfaces include:

1. The user interface on the AV-TSX.

2. The protocol spoken between the AV-TSX and the smart card.

3. The content of election database and other files on the AV-TSX memory card, as read by
AV-TSX units in the field.

4. The content of the ballot results files on the AV-TSX memory card, as read by other AV-TSX
units.

5. The data transmitted between GEMS and a central-office AV-TSX, when the two are connected
by Ethernet or a serial link or modem.

6. The protocol spoken between the smart card and the Voter Card Encoder.

1We wish to thank Mr. Iredale for his time and his useful insights.

18

4. Systemic and Architectural Issues

7. The marks on the paper ballot, as scanned by the AV-OS.2

8. The election configuration and other data on the AV-OS memory card, as read by AV-OS units
in the field.

9. The election results data on the AV-OS memory card, as read by central-office AV-OS units.

10. The data transmitted between GEMS and a central-office AV-OS, when the two are connected
by a serial link or by modem.

11. The interface between multiple GEMS installations during regional processing.

Some of these interfaces are complex and present many opportunities for attack. All of them could
potentially be manipulated by an attacker. Given this, one would expect that the risk of exploitable
vulnerabilities is high. That expectation was borne out during our examination of the source code.

Our analysis of the risks associated with each of these exposed interfaces is as follows:

1. The user interface on the AV-TSX is complex. It seems to have been implemented carefully
for the most part, although we did find one buffer overflow that appeared to be possible to
exploit (see Issue 5.2.17).

2. The protocol spoken between the AV-TSX and the smart card is fairly simple. The code
was not written defensively (see Section 4.2.2 for a definition of defensive programming)
but appears to be free of noticeable security vulnerabilities. However, at the protocol level,
the design does not appear to have been as successful (see, e. g., Issue 5.2.7, Issue 5.2.8, and
Issue 5.2.9).

3. The content of election database and other files on the AV-TSX memory card, as read by AV-
TSX units in the field: The format of these files is complex and rich in features, so this is
an especially dangerous area for vulnerabilities. The election database contains a marshaled
version of a complex data structure, leaving many opportunities for vulnerabilities in the de-
marshaling code and in malicious election database files that violate expected invariants. The
code that reads these files was not written defensively and we suspect that developers may
have failed to consider the possibility that the memory card could contain malicious data. We
found many design- and implementation-level defects in the code that reads these files. See,
e. g., Issue 5.2.1, Issue 5.2.2, Issue 5.2.3, Issue 5.2.13, Issue 5.2.15, and Issue 5.2.14.

4. The content of the election results files on the AV-TSX memory card, as read by other
AV-TSX units: The format of these files is of medium complexity. The code involved in
reading these files was not consistently written using defensive programming and we found
implementation-level defects with serious consequences in this portion of the file. See, e. g.,
Issue 5.2.16.

5. The data transmitted between GEMS and a central-office AV-TSX, when the two are connected
by Ethernet or a serial link or modem, involves a complex protocol. The code involved in
interpreting it appears to validate most inputs, but there were some exceptions: we did find
several implementation-level defects that would allow an attacker to mount attacks across
this interface. See, e. g., Issue 5.2.18.

6. The protocol spoken between the smart card and the Voter Card Encoder appears to be fairly
simple.

7. The marks on the paper ballot, as scanned by the AV-OS, present a fairly simple interface
and we did not see much opportunity for malicious manipulation of this data to subvert the
security of the AV-OS.

2In this section, AV-OS refers to the AV-OS Precinct Count machine, not the AV-OS Central Count machine.

4.1 Design 19

4. Systemic and Architectural Issues

8. The election configuration and other data on the AV-OS memory card, as read by AV-OS
units in the field: The format of these files is of medium complexity. The code was not written
defensively and we found several design- and implementation-level defects in the code that
reads these files. See, e. g., Issue 5.1.3, Issue 5.1.5, Issue 5.1.9, Issue 5.1.10, and Issue 5.1.11.

9. The election results data on the AV-OS memory card, as read by central-office AV-OS units:
The format of these files is fairly simple, but the code was not entirely free of vulnerabilities.
See Issue 5.1.6.

10. The data transmitted between GEMS and a central-office AV-OS, when the two are connected
by a serial link or by modem, involves a communications protocol that is of medium
complexity. We did not study this code in any depth.

11. The interface between multiple GEMS installations during regional processing: We did not
study this code in any depth.

It is interesting to note that the attack surface of the AV-TSX appears to be larger than that of the
AV-OS. This is partially a consequence of the fact that the AV-TSX provides more functionality, but
it is also a consequence of the way that users interact with these devices. One might predict, based
on this analysis, that the AV-TSX would be at greater risk of attack than the AV-OS.

4.1.2 Complexity
The Diebold system is a complex computing system. Complexity is the enemy of security. All
code has bugs; the only way to be sure that software will be secure is to arrange for its design and
implementation to be so simple and so small that one can inspect all of it and be confident that all of
the bugs and defects in the code are found. By that criterion, the Diebold software is too complex to
secure. Put another way: If the Diebold system were secure, it would be the first computing system
of this complexity that is fully secure.

One crude measure of software complexity involves counting lines of source code. As may be
seen from Table 1.1, the AV-TSX (with 136K SLOC, not counting the COTS OS) is a more complex
codebase than the AV-OS (with 20K SLOC, and no OS). This provides a second reason why one
might expect the AV-TSX to be at a greater risk of security vulnerabilities than the AV-OS. This was
at least partially borne out by our analysis of the source code, as mentioned above.

One principle of secure design is to architect the software so that it has a small Trusted
Computing Base (TCB). The TCB is that portion of the software whose correctness suffices to ensure
that the system security requirements will be met. The system must be designed to ensure that the
TCB cannot be bypassed or subverted. That is, the TCB must be protected from attack and must be
written to ensure that the rest of the system cannot violate the security policy even if the rest of the
system is compromised or malicious.

The Diebold software not appear to have any clearly defined TCB. It is a monolithic system,
with no clear trust boundaries. It does not use compartmentalization. Similarly, we found little
evidence of any attempt to apply defense in depth or to follow the principle of least privilege, two
standard principles of secure system engineering.

Due to this architecture, a breach of any part of the software may lead to security violations
and breaches of the rest of the software. In this sense, the system is fragile. It is like an oceanliner
built without watertight doors: a hole anywhere below the waterline is liable to sink the entire
ship. Because code of any significant complexity or scale inevitably has bugs, defects, and flaws,
this architecture makes it all but inevitable that the Diebold voting software will have exploitable
security vulnerabilities.

4.1.3 Misplaced Trust
In our judgment, the Diebold software places too much trust in people and other components of
the system. For instance, the software trusts — relies upon — the memory card to contain files from
a legitimate, authorized source. In other words, the software is written with the expectation that

4.1 Design 20

4. Systemic and Architectural Issues

the contents of the memory card come from a benign source, and the software does not effectively
defend itself against malicious files on the memory card. That trust seems misplaced: it is too easy
for an attacker to tamper with the contents of a memory card. When that expectation is violated,
the integrity of the software can be breached.

This theme appears throughout the voting system. In many places where two components
communicate, both components rely on each other to be benign, which renders them vulnerable
to attack if the security of the component happens to be breached. For instance, the GEMS server
trusts the central-office AV-OS and AV-TSX units and everything else that is connected to its own
Ethernet network. This trust is dangerous. While those devices might be protected against physical
tampering, they must handle data that comes from the field and thus might be malicious. Those
devices are at heightened risk of subversion, and it would be safer if GEMS and other system
components were written to defend against subversion by malicious devices on the same network.

This risk is especially pronounced if county practices involve taking AV-OS or AV-TSX units
that were used in the field in a prior election and connecting them to GEMS in a future election. We
cannot realistically protect units in the field from physical tampering. Therefore, we must assume
that any unit that has spent time overnight at a polling location could have been tampered with
by an attacker and its firmware corrupted. If a compromised AV-TSX unit were later plugged into
the GEMS Ethernet network and repurposed as a central-office AV-TSX, at that point a malicious
device would be plugged into the GEMS Ethernet network. While GEMS could have been written
to protect itself from attack by other devices on the same network, it was not. Once any malicious
device is allowed to connect to the central-office Ethernet network, there are no effective technical
barriers preventing all other devices on the network from being penetrated.

As another example, all AV-OS and AV-TSX units rely upon — are vulnerable to attack by —
the central-office GEMS election management system. GEMS can silently program memory cards
so that they contain firmware update files or malicious election database files that will replace
the running software on every unit in the field with malicious, corrupted software.3 This means
that the consequences of a breach of GEMS security are more severe than they need to be. For
instance, while we might be prepared to entrust the GEMS operator not to manually adjust vote
tallies (provided that such actions would be logged and could be detected), there is no reason why
a rogue GEMS operator should be granted the power to undetectably replace the software on every
AV-OS and AV-TSX unit in the county. Yet this is effectively what the Diebold voting system allows.

This type of pervasive trust makes the Diebold system brittle: a small security breach can have
large consequences out of proportion to the initial breach. That, in turn, places an unnecessary
burden on procedural protections, because even a brief violation of procedure or a small, seemingly
negligible breach of the chain of custody can have disproportionately harmful effects.

4.1.4 Bidirectional Information Flow
The Diebold voting system includes a bidirectional flow of data. Information flows from GEMS to
every unit in the field (via memory cards), and from all units in the field back to GEMS (again, via
memory cards). This poses some risk of viral spread of infection. In particular, if (1) a memory card
or unit in the field can be corrupted and (2) there are any exploitable flaws in the handling of data
on the memory card, then a virus may be able to spread from one unit in the field to GEMS and
then back to every unit in the field. In practice, we found that both prerequisites are met. Due to
the complexity of the data on the memory card, any system of this architecture seems to be at high
risk of viral spread. The bidirectional flow of data heightens the impact of these vulnerabilities by
allowing viruses to spread throughout the system.

This is not a necessary property of a voting system. For instance, it would be possible to have
one central-office application for programming memory cards for distribution to the field and a
second application for reading memory cards from the field and tabulating results, with firewalls
to ensure that any penetration of the second application cannot affect the first application. See

3GEMS can permanently replace the firmware stored on every AV-TSX in the field. In the case of the AV-OS, GEMS
cannot replace the stored AV-OS firmware, but GEMS can cause the running software to be altered. That alteration will
persist until the AV-OS unit is powered down and the memory card removed, but it is not permanent.

4.1 Design 21

4. Systemic and Architectural Issues

Section 6.10. However, the Diebold voting system was not designed with those kinds of firewalls
in place, and it was not constructed in a way that would provide inherent resistance against the
spread of virally propagating malicious code.

4.1.5 Insufficient Controls on Code Integrity
The Diebold devices do not contain strong controls to protect the integrity of their software. For
instance, the AV-TSX can be upgraded in any of several ways simply by placing unauthenticated
files on a memory card. The GEMS application can be upgraded simply by installing new software
on the GEMS PC. All of the software on the AV-TSX and GEMS PC is installed on writable storage
(either non-volatile flash memory or a magnetic hard disk). For instance, the bootloader, WinCE
operating system, and BallotStation are all stored on writable storage on the AV-TSX and can all be
upgraded using authorized channels. The consequence is that if an attacker can ever run malicious
code on any of these machines, even once, the attacker can permanently replace all of the software
stored on the machines. Moreover, because the upgrade process is under software control, there is
no easy way to reset a machine and restore it to a safe state once its software has been corrupted.
An AV-TSX or GEMS server, once infected, is very difficult to disinfect with confidence.

This is an architecture that is also shared by commodity PCs. However, it is not an inevitable
or necessary property of a computing system. The AV-TSX could have been constructed so that
its software was stored on write-once storage (e. g., using PROM or EPROM technology). Such a
design would greatly improve the integrity of the machine’s code, because a virus or malicious
code would have no way to permanently overwrite the device firmware (or at least, the part that
is stored on write-once storage). Under such an architecture, the effects of a virus could not persist
across reboots, and in particular, the act of powering down a machine between elections would
eliminate the virus. An even more aggressive architecture might involve rebooting the machine
after every voter, so that any malicious code that made its way into memory while one voter was
voting would not be able to persist in memory to affect the next voter. The AV-TSX unit and GEMS
application were not constructed in this way, and as a result a virus or security breach in one
election can affect every subsequent voter who uses that machine in every subsequent election.

In contrast, the AV-OS provides significantly better controls to protect the integrity of its
firmware. The Red Team has informed us that the firmware on the AV-OS is stored on an internal
EPROM chip. When the AV-OS is powered up, it loads its software from the internal EPROM
chip. While an individual with physical access to the AV-OS unit could overwrite or modify the
firmware stored on that chip, malicious software cannot. Consequently, if the running software on
AV-OS becomes corrupted with malicious software at any point, rebooting the AV-OS will reload
the software from its internal EPROM chip and thus (in the absence of physical tampering) will
clear out any malicious software. In other words, even if the AV-OS becomes infected by a virus,
the virus cannot install itself permanently on the AV-OS. This is a significant security advantage for
the AV-OS.

4.1.6 No Way to Verify Code Integrity
The Diebold AV-TSX and GEMS machines do not provide any secure way for an election official to
verify whether the software resident on the machine has been modified. For instance, a cautious
election official might wish to occasionally spot-check a random sample of machines to confirm
that they have the correct software installed. Unfortunately, GEMS and the AV-TSX provide no
way to do that securely.

The AV-TSX does report its version number when it is powered up. However, this version
number cannot be trusted. If the device software had been corrupted and overwritten with a
malicious replacement, the replacement could simply lie about its version number and report
exactly what the legitimate software would report.

Version numbers can be helpful for detecting accidental failures to install the correct version of
the software. For instance, if the certified version of the software is version 4.6.4 but the machine
reports version 4.5 or 4.7, then one can be certain that the machine is running the wrong version

4.1 Design 22

4. Systemic and Architectural Issues

of software (or, alternatively, that the certified version is so buggy that it fails to report its own
version number accurately). However, if the machine reports version 4.6.4, all we know is that
either the machine is running the proper software or else it is running improper software that was
programmed to misreport its version number. To use an analogy credited to Dan Wallach, if the
airport police walk up to a stranger at an airport and ask him “Are you a terrorist?” and he replies
“No”, have we really learned anything? Similarly, if we ask a voting machine “Are you running
malicious software?” and the voting machine’s software reports that it is not, there is no reason to
trust it. Consequently, while self-reported version numbers may be helpful at detecting accidental
misconfiguration or inadvertent error, they are not useful at detecting security breaches [22].

Voting machines can be built that do not have this flaw. For instance, the voting machine
could be designed so that its bootloader is stored on write-once storage (PROM or EPROM). The
bootloader could make a record of the cryptographic hash of the software that it loads and print
that record on the zero tape4 before the election. Or, the bootloader could contain a public key and
could check that the software is properly signed before loading it. Or, the device could use a Trusted
Platform Module or other secure hardware technology, such as that standardized by the Trusted
Computing Group (TCG). Such a design would allow the operator to verify that the machine’s
software has not been modified or altered. Neither GEMS nor the AV-TSX has this capability.

The inability to detect malicious software, or verify its absence, makes devising effective
defenses against virally propagating malicious code and other kinds of attacks more difficult.
Formulating mitigation strategies to detect viruses would be easier if the AV-TSX provided a way
to securely verify that the software resident on the machine has not been altered. The absence of
this detection capability makes it harder to be fully confident that the voting system has not been
subverted and heightens the impact of vulnerabilities that can be used to propagate malicious code
virally.

This criticism does not apply to the AV-OS. The AV-OS does not need a way to detect whether its
firmware has been corrupted by virally propagating malicious software, because its design already
prevents this from happening in the first place, as explained in Section 4.1.5.

4.1.7 Reliance on COTS Software
In several places, the Diebold system relies on commercial off-the-shelf (COTS) software written
by third parties. The use of COTS software has significant cost and efficiency advantages for the
voting system vendor, as it allows the vendor to reuse existing code and avoid reinventing the
wheel. However, this reliance on third-party COTS software also has security disadvantages.

First, GEMS runs on Microsoft Windows and relies on the security of the Windows operating
system. Unfortunately, the version of Windows used in the Diebold system has a number of
security vulnerabilities. In addition, securing Windows requires keeping the system fully up-
to-date on all security patches. Unfortunately, the special circumstances associated with voting
systems make it difficult to keep the Windows operating system patched and up-to-date. The
Diebold system is tested and certified with a specific version of Windows; changing or upgrading
that version might invalidate the certification and may not be permissible. Also, the most common
way of keeping Windows machines up-to-date is to connect them to the Internet and have them
regularly poll the Microsoft website to see whether there are any security patches to be installed.
That approach cannot be applied here: it is not safe to connect the GEMS PC to the Internet at any
time. Connecting the GEMS machine to the Internet, even just for a moment to download patches,
creates a security exposure.

For all of these reasons, it is likely that the GEMS machine will be running a version of Windows
that does not have the latest security patches applied and that is vulnerable to known, published
attack methods. This prediction was confirmed by the Red Team’s experiments [3]. When the Red
Team downloaded a standard attack tool widely available on the Internet and pointed it at the
GEMS machine, it immediately identified and exploited a known vulnerability in the Windows
installation on the machine. As a consequence, if any malicious or compromised device were ever

4When the AV-OS and AV-TSX are powered up on the morning of election day, they print a zero tape on their thermal
printer. The zero tape is intended to provide evidence that no votes are currently stored on the machine.

4.1 Design 23

4. Systemic and Architectural Issues

connected to the same network as the GEMS machine, then we expect that the device would be able
to subvert the GEMS PC. We consider it unlikely that even a careful county system administrator
would be able to configure the GEMS PC in a way to prevent such attacks from being successful.
This is a risk with relying on commodity software that relies on frequent patching for its security.

Also, the security of GEMS against insider attacks and manipulation by a rogue GEMS operator
relies on the security of Windows. Microsoft Windows was not designed with this threat model
in mind. First, Windows treats the user (the human operator) as trusted. For instance, Windows
does not attempt to prevent the user from executing any program of the user’s choice or modifying
any file to which the user has access, while GEMS security relies on preventing precisely this type
of execution and modification. In particular, GEMS includes access controls as part of the GEMS
application, but it does not control what the user can do by interacting directly with Windows
or with other Windows applications. This design effectively allows a human operator intent on
wrongdoing to bypass GEMS and tamper with the vote tallies in the election database, the election
definition files, the GEMS application itself, and other data on the GEMS PC. Put another way, the
security properties of Microsoft Windows do not seem in line with the security requirements of
GEMS.

Other COTS software used is better aligned with the security goals of the Diebold system. For
instance, both the AV-TSX and GEMS use the OpenSSL library for communication security. The
OpenSSL library is a de facto industry standard and was an excellent choice for that purpose, as the
threat model that OpenSSL was designed to withstand matches precisely what the Diebold voting
system needs. However, even OpenSSL has bugs. Hursti [19] notes that security vulnerabilities
have been reported in the version of OpenSSL used by the AV-TSX, 0.9.7e. We do not know whether
these bugs can be exploited in the context of the Diebold system, but they illustrate the need to keep
COTS software up to date.

A second disadvantage of reliance on COTS software is that the use of COTS software makes
analyzing and gaining full confidence in the security of the voting software more difficult. Both
GEMS and the AV-TSX rely heavily on third-party COTS software: for instance, the AV-TSX uses
Windows CE. Diebold did not provide us with the source code to any of this third-party COTS
software, presumably because its licenses forbade it. This prevented us from analyzing the COTS
software to determine whether it contains any material security risks or whether there may be any
deleterious interactions between the COTS software and the vendor-written software. Because the
security of the Diebold voting system relies on the security properties of this COTS software, and
because we were not provided with the access required to analyze the COTS software, we may not
have identified all vulnerabilities related to its use.

4.1.8 Modems and Other Networks
Background: Regional processing The Diebold system supports a configuration, known as
regional processing, where the county central location is augmented with several regional return
centers distributed around the county. After the close of polls on election night, poll workers
transport memory cards, paper ballots, and other election supplies to the nearest regional return
center rather than to county headquarters. In counties with many precincts, this reduces the traffic
and congestion at any one return center and enables the county to scale its processing of unofficial
results on election night. In counties with polling places dispersed over a broad geographical
region, regional processing makes it easier for poll workers to return materials without having
to drive large distances.

Regional processing allows for hierarchical processing of election returns. At county headquar-
ters, there is a master GEMS machine that is used to coordinate the entire election. Each regional
return center has a “client GEMS” installation that is used to read memory cards, accumulate votes
from the memory cards, and upload them to the master GEMS machine at county headquarters.
Thus, each regional return center would have a GEMS PC as well as one or more AV-TSX machines
(used for reading AV-TSX memory cards) and one or more AV-OS machines (used for reading
AV-OS memory cards). The master GEMS machine performs the final tabulation, manages the
authoritative election data for the entire county, and produces reports and final election results.

4.1 Design 24

4. Systemic and Architectural Issues

The client GEMS installation at each regional return center needs a way to upload data to the
master GEMS. How that is accomplished appears to be dependent upon county practices. One
supported method is to use a private network (e. g., a dedicated T-1 line or a county intranet).
Another possibility is to use modems to communicate over the public telephone network. It
appears to be technically possible to use the public Internet or to use virtual private network (VPN)
software to establish a communication channel over the public Internet; we did not attempt to
determine whether this is permitted by California law. The specific configuration is apparently left
to the county’s discretion: the system documentation does not appear to contain any prohibitions
or limitations on which configurations are supported or allowed. It is our understanding that
California election code may restrict which types of connections are permitted.5

Background: Modems The Diebold system can be configured to use modems for several
purposes:

• AV-OS units contain an internal modem that can be used on election night to transmit election
results to GEMS after the polls close. The GEMS server at county headquarters can be
connected to a modem bank to receive election results, and the AV-OS memory card can be
configured with the telephone number and other information needed for the AV-OS to dial
the phone number of the modems at county headquarters. At that point the poll worker is
prompted to confirm the uploading of vote tallies, and then they are transmitted over the
phone. There appears to be no authentication or encryption of this phone call.

• Similarly, AV-TSX units contain an internal modem that can be used to upload election results
to GEMS on election night. The AV-TSX can be configured with the telephone number,
username and password to connect to the GEMS server. In contrast to the AV-OS, the AV-
TSX software optionally uses SSL to encrypt and authenticate the call. SSL is a standard
protocol for secure communications, and it is widely believed to be secure if used properly.
The GEMS server is loaded with a public/private key pair as well as a certificate signed by
Diebold. The GEMS server provides the certificate to the AV-TSX, and the AV-TSX validates
that it is talking to a party with a public key that has been signed by Diebold before allowing
the communication to proceed.

• In counties that use regional processing, the client GEMS PC at the regional return center
can dial up the master GEMS at county headquarters over the phone and upload election
results to the master GEMS for tabulation. This allows county officials to compile unofficial
election-night results in a timely fashion. This connection also appears to use SSL to encrypt
and authenticate communications between the client GEMS software and the master GEMS.

In all three cases, the GEMS PC must be connected to a modem bank that is connected to the
public telephone network. One way to accept modem connections from AV-TSX machines is to
enable Microsoft Remote Access Server (RAS) on the GEMS PC. RAS provides a way for clients to
dial in and send TCP/IP packets encapsulated using the PPP protocol. It appears that, if modems
are used, the GEMS modems will accept phone calls from anyone who knows the right telephone
number to dial and can supply the correct username and password.

Our understanding is that once the AV-OS successfully connects to the GEMS modem and once
the communication link has been established, the communication protocol between GEMS and the
AV-OS is the same as that used when the AV-OS is connected to GEMS by a serial cable. If a memory
card is inserted in the AV-OS, the poll worker can upload the election results on that memory card.
If a blank memory card is inserted, the poll worker can download election configuration and data
onto the memory card over the phone, just as would be done when writing a memory card via a
central-office AV-OS unit. As far as we know, these transactions can be initiated only upon poll
worker request — GEMS cannot request communication with the AV-OS.

5California Elections Code §19250 (f) states: “A direct recording electronic voting system shall not be connected to the
Internet at any time.” California Elections Code §19250 (h) states: “A direct recording electronic voting system shall not
be permitted to receive or transmit wireless communications or wireless data transfers.” We did not attempt to determine
whether these two provisions would apply to GEMS or to regional processing centers.

4.1 Design 25

4. Systemic and Architectural Issues

Once the AV-TSX successfully connects to the GEMS modem, a TCP/IP session is established
and the communication proceeds following the same protocol that is used when a central-office
AV-TSX is directly connected to GEMS via Ethernet or serial cable. This protocol also allows a poll
worker to download an election database onto the memory card over the phone. As far as we
know, these transactions can be initiated only upon poll worker request — GEMS cannot request
communication with the AV-TSX.

When regional processing is used, our understanding is that the client GEMS dials the master
GEMS, uses PPP to establish a TCP/IP session, and then proceeds to communicate over TCP/IP
using a proprietary protocol designed for this purpose.

This understanding of how modem communication works is based upon our examination of
the source code and an interview with a Diebold software developer [1]. However, we have not
had the opportunity to confirm our understanding by observing the equipment in operation, and
it is difficult to be confident in this description from our examination of the source code. Therefore,
it is possible that our understanding of this subject is incomplete or mistaken.

Our understanding is that modems are intended to be used for unofficial results. Modems can
be used to transfer electronic results, but those electronic results must be checked in some way as
part of post-election procedures. That checking could potentially involve comparing the number
of votes cast against the number of voters who signed in on the roster sheet; comparing the paper
summary tapes printed by the voting machines at the close of polls to the unofficial results in
some or all precincts; and/or discarding the results uploaded by modem after election night and
subsequently reading in the results from memory cards from scratch.

As far we can tell, it appears that it may be left to county discretion whether and how modems
are used. The system documentation does not appear to contain any prohibition on use of modems.
We note that there may be legal restrictions associated with use of modems.6

Analysis The use of modems and other shared communication networks in the Diebold voting
system poses a special risk to security. The system documentation emphasizes that modems
should only be used to transmit unofficial results, and implies that this addresses the security risks
associated with these forms of networking. However, the situation is more complex than that.

There are two broad categories of risk associated with any kind of networking of voting
equipment:

• Communication security: Transmitting information over a shared network opens the potential
for an attacker to eavesdrop on, tamper with, or disrupt data while in transit. The Diebold
system provides appropriate controls to either prevent or detect and recover from these types
of threats. Transmitting only unofficial vote results, and only doing so after the polls have
closed, ensures that eavesdropping is harmless, as that data will soon be made public in any
event. This also ensures that tampering with that data can be detected during the official
canvass. Detection does require that election officials diligently compare every vote total
printed on every summary tape against the unofficial results or compare every vote total
stored on every memory card against the unofficial results, which places an extra requirement
on the official canvass, but this burden is manageable. By ensuring that the system has
multiple fallback methods for transferring vote totals in case the network is unavailable or has
been disrupted by an attacker, the system provides a way to recover from denial-of-service
attacks and network failures. Consequently, we agree that the design of the voting system
does address this class of risks in a responsible and effective way.

However, this is not the only risk associated with networking voting systems:

• Endpoint security: Connecting a device to a communication network may introduce the
potential for an attacker to attack that device and try to subvert or compromise its integrity.

6California Elections Code §19250 (g) states: “A direct recording electronic voting system shall not be permitted to receive
or transmit official election results through an exterior communication network, including the public telephone system.” It
is our understanding that the election results transmitted from the regional results center to county headquarters would
normally be considered unofficial election results, not official election results.

4.1 Design 26

4. Systemic and Architectural Issues

Whether such attacks are possible depends upon whether the software that interacts with
the network contains any exploitable vulnerabilities. However, history has taught us that
connecting software of any significant complexity to a network poses a non-negligible risk.
The restriction to transmitting only unofficial election results does not help against this class
of threats. For instance, when GEMS is set up to receive unofficial election results by modem
on election night, this poses a substantial risk that an attacker might be able to dial in, pretend
to be a unit in the field, and exploit some vulnerability or configuration error in GEMS or in
the modem server or RAS server.

Similarly, in counties that use regional processing, the client GEMS at the regional return
center connects to the host GEMS at county headquarters using some unspecified commu-
nication link, which could be a modem, a dedicated point-to-point link (e. g., a private T1
line), a connection to the county intranet, a VPN over the public Internet, or even a public
Internet connection. Depending on how this is implemented, this may create a possibility for
an attacker to subvert this communication link (perhaps as a man-in-the-middle, or perhaps
by spoofing one party to the other) and try to compromise one of the two endpoints.

One of the greatest reasons to be concerned about these kinds of attacks is the size of the
population of potential attackers who might have the opportunity to mount modem- or
network-based attacks. When a voting system is connected to the public telephone network
or to any shared network, there is a risk that a hacker anywhere in the world, not necessarily
on U.S. soil and not necessarily subject to U.S. law, could attack the voting system from afar.
Given the current state of computer security, such attacks might be essentially untraceable: it
is often effectively infeasible to trace network-based attacks back to their source. There are
many parties who might have both the motive and the opportunity to attack voting systems
remotely, and there are few effective deterrents against such attacks.

We can see three strategies for defending against attacks on endpoint security. The first
and most natural strategy is to completely avoid use of shared or public networks. This
risk avoidance strategy is effective but it denies officials the ability to benefit from the
administrative and efficiency advantages of telecommunication networks, so it may or may
not be satisfactory. The second strategy is to design software that is impervious to attack.
Unfortunately, this is difficult to achieve, and it is difficult to know when you have succeeded.
As our analysis of the code illustrates (see Chapter 5), other parts of the code are not
vulnerability-free, so there is no particular reason to expect that the code exposed to remote
attack is necessarily vulnerability-free. The third strategy is to restrict the adversary’s access
to the communication link, to make it harder for an attacker to inject malicious data onto
the communication channel. For instance, one might use a dedicated point-to-point link or a
VPN or use cryptography to authenticate all traffic sent across the communication channel.
This is a wise risk reduction strategy. In the case of the Diebold voting system, there are
limits to how much one can restrict the attacker’s access to these communication channels:
because AV-OS and AV-TSX units are sent out to the field and are left unattended without
strong physical security, an attacker who is capable of tampering with them while they are left
unattended could obtain all of the cryptographic secrets needed to communicate with GEMS.
The safest approach is probably to apply all three strategies to the best of one’s abilities,
including limiting communication over shared networks to the minimum necessary.

A thorough analysis of the risks requires access to working equipment configured in a way
that is representative of how counties use the system in practice. We neither had access
to working equipment nor information about how communication equipment is normally
configured in practice, and the Diebold system documentation provided little guidance on
how to configure modems or externally accessible networks to be secure.

Ultimately, we were not able to gain confidence in the security of the Diebold software if it
is connected to modems or shared communication networks. The voting system seemed to rely
primarily on the unofficial nature of results transmitted over modems for security, but as discussed
above, that alone is not sufficient to prevent or detect subversion of the voting system.

4.1 Design 27

4. Systemic and Architectural Issues

4.2 Implementation

4.2.1 Input Validation
Input validation is one of the most important practices that developers of security-critical software
must follow. Some experts estimate that approximately half of all software vulnerabilities can be
attributed to failure to properly validate inputs from untrusted sources. The best practice is to
establish a discipline to ensure that all inputs are validated, for instance, by checking all inputs
against a template or whitelist as soon as they are read from any untrusted source and before they
are used for any purpose.

We did not find a consistent pattern or discipline of input validation in the source code.
Untrusted inputs are occasionally compared against a whitelist or template describing expected
values but are more frequently not checked at all. Integers read from untrusted sources are
sometimes bounds-checked immediately after being read but sometimes not. Strings are not
usually checked for null-termination and are rarely matched against a whitelist or regular
expression.

4.2.2 Defensive Programming
Defensive programming is another recommended practice. It involves checking all data provided
by other software components just before using the data. Even if one expects that the source of
the data has already verified the correctness of the data, each recipient also redundantly checks
the data. For instance, pointers are verified to be non-null before being dereferenced, indices are
confirmed to be within bounds before being used, and so on. The philosophy is that the program
should be constructed to be robust against unexpected inputs and should fail gracefully even if
other components contain unexpected bugs.

The use of defensive programming in the Diebold source code was variable. In a few places, the
source code was written defensively, carefully checked all inputs, and appeared to be reasonably
robust. In other places, the code made unchecked assumptions about the data it used, was not
written defensively, and did not appear to be as robust as it could have been. We noticed that the
latter appeared more frequently in places where the programmer might not have been expecting
malicious or erroneous inputs (e. g., some of the code that handles data read from the election
database or other files on the memory card) and in non-core code (e. g., debugging or logging
code, code that is used only to print reports, or code for system administration tasks). In some
cases, the absence of defensive checks did not lead to any bugs: even though the callee failed to
defensively check all necessary preconditions on the inputs, all of the callers happened to establish
those preconditions anyway. In other cases, the absence of defensive checks led immediately to
security vulnerabilities. In all cases, the absence of local defense against buffer overflows and other
error conditions creates a software maintenance hazard: as the code evolves there is a risk that a
developer might, without realizing it, add a new call site that violates the implicit preconditions
and thereby creates a serious vulnerability.

In many places, the failure to program defensively appeared to be of no particular import.
However, in some cases, the failure to program defensively led to serious, exploitable security
vulnerabilities. The reason that security engineers often recommend applying defensive program-
ming to all code, not just code that is known to be exposed to an attacker, is that programmers often
make unjustified assumptions and fail to anticipate the ways that attackers might be able to provide
unexpected inputs. The failure to consistently apply defensive programming techniques probably
contributed to the number of exploitable implementation-level vulnerabilities that we found.

4.2.3 Choice of Programming Languages and Libraries
The choice of programming language can have an influence on the frequency of implementation-
level vulnerabilities. The Diebold system uses assembly languages, C, and C++. These pro-
gramming languages are known to be prone to several common types of security vulnerabilities,

4.2 Implementation 28

4. Systemic and Architectural Issues

including buffer overflows, format string vulnerabilities, and integer overflows. We found
instances of all these vulnerabilities in the source code we analyzed.

Many security engineers recommend use of memory-safe, type-safe programming languages,
because those languages have inherent resistance to several of the most common types of security
vulnerabilities. For instance, until recently, buffer overflows were consistently the number one
publicly reported vulnerability [6]. Memory-safe languages, like Java or C#, effectively eliminate
buffer overflow vulnerabilities, while programs written in older languages like assembly, C
and C++ are known to be at risk for these vulnerabilities. Because it is so easy to make a
catastrophic mistake in these older languages without realizing it, many security practitioners
recommend that, all else being equal, projects where security is critical should consider using a
more modern, memory-safe programming language. We do not mean to suggest that systems
written in languages like C or C++ are necessarily insecure. However, programming securely in
those languages requires more attention to detail and more experience with secure programming.
It appears that the necessary level of care was not taken in the construction of the Diebold voting
system.

The use of older programming languages can be partly mitigated by appropriate selection of
libraries and other programming platforms. In this respect the AV-TSX and GEMS code can be
credited with frequently using safer libraries, which partially reduces the risk associated with their
use of the C++ programming language.

For instance, the AV-TSX and GEMS source code often uses the Microsoft Foundation Class
(MFC) CString class to manipulate strings. This C++ idiom is inherently safer than using C-style
strings, because CString was designed to avoid many of the common pitfalls associated with
C-style strings (e. g., CString performs its own memory management and thus tends to prevent
buffer overflows). However, the AV-TSX and GEMS code is not consistent in its use of these safer
libraries. For instance, it also frequently uses C-style strings, and occasionally uses them incorrectly
in a way that creates security vulnerabilities.

The MFC class CString provides the function Format which works similarly to sprintf .
Unlike sprintf , however, CString::Format always ensures it has allocated the memory it
needs before writing to its internal buffer. This makes CString::Format safe from buffer over-
flow vulnerabilities and much safer to use than character buffers (however, CString::Format
does not prevent format string vulnerabilities).

Comments in Diebold’s code indicate that developers were aware of the benefits of CString
over character buffers:

uploaddlg.cpp:340

340 Assumes buf is large enough for a token
341 This would be better if it delt[sic] with CStrings
342 rather than with fixed buffers. Gems implemented
343 this improvement at one point.

Had the safer CString functions been consistently used, nearly all buffer overflow vulnerabil-
ities would have been prevented. For example, in one particular function, both a CString and a
character buffer are used. The character buffer usage leads to a vulnerability while the CString
usage does not. See private appendix Issue 4.1 for more information.

In contrast, the AV-OS uses the standard C libraries and so remains susceptible to all of the risks
associated with the C programming language.

4.3 Engineering Practices

Our interview with Talbot Iredale [1] provided useful insight into Diebold’s general software
engineering practices. Overall, Diebold’s practices seem to be similar to those of most small-
to medium-sized software development firms. These practices may be sufficient for ordinary
commercial software, but they are inadequate for meeting the rigorous security requirements of
voting software.

4.3 Engineering Practices 29

4. Systemic and Architectural Issues

No Formal Threat Model or Security Plan The first step in designing a secure system is to write a
formal threat model, a document which clearly identifies the assets that the system must protect and
the threats that the system could face. A threat model also attempts to catalog the potential types
of attackers, their capabilities, and their likely motivations. The goal of a threat model is clarify the
system’s security requirements so that there will be a basis for evaluating the security of potential
designs of the system. We present a generic threat model for large electronic voting systems such
as the Diebold system in Appendix A.

Once a threat model has been devised, the next step is to design a security plan aimed at
countering the potential threats to the system and to evaluate its strengths and weaknesses in light
of the threat model. The security plan should be a formal document and should clearly state how
it deals with each of the threats that have been identified.

In our interview, Mr. Iredale stated that Diebold has neither a formal written threat model nor
a formal security plan for its voting systems. Indeed, we found no evidence in the source code
that systematic analysis of threats had been performed. Instead, the security measures that are in
place appeared to be ad hoc. For example, the same threat often receives inconsistent treatment:
the AV-TSX uses cryptography to protect some of the data on its memory cards, but the AV-OS
does not — even though the threats to both types of memory cards are largely the same. Similarly,
GEMS restricts what an operator can do through the GEMS user interface, but the system does not
effectively control what an operator can do using the underlying Windows interface.

No Formal Security Training Diebold has about 25 developers that work on electronic voting
systems, including those who focus on documentation, testing, and hardware. When new
developers arrive at the company, they do not receive any kind of formal security training. Mr.
Iredale states that some developers have security backgrounds but no one is dedicated to handling
security issues. They have two small groups of quality assurance testers of approximately four
people each, but none of them are dedicated specifically to security or red-team testing.

Weak Source Code Review Process Diebold uses standard versioning software (CVS) to manage
the development of their source code. Any developer can check code into CVS and the code is not
reviewed by other developers before it is committed into the repository. Mr. Iredale states that
every CVS check-in causes an e-mail to be sent to developers who are responsible for reviewing
the code. Initially, they do “random checks” on most of the code and do a “closer review” of the
more critical portions. Although Mr. Iredale claims that 100% of the code is reviewed by another
Diebold employee within a few weeks, there seems to be no formal procedure for assigning code to
other employees for review. It seems possible that, without formal procedures, some source code
could remain unreviewed before release. Issue 5.2.24 suggests that this is the case.

No Unit Testing or Red Team Testing There is no formal requirement to develop a set of unit
tests that correspond to each piece of code checked into CVS — the option of doing this is strictly
up to individual developers. The testing group will later check for correctness based on standard
test plans.

This manual testing methodology seems fragile and inappropriate for security-critical software.
Often, a developer who modifies one part of the code will inadvertently break another part of the
code. It would be very difficult for individual manual reviewers and testers to reliably notice these
latent errors. Unit tests written concurrently with the actual source code by the initial developer
would be a more thorough strategy. The developer can better construct a set of unit tests that check
boundary conditions, pre-conditions and post-conditions of each block of code she writes. These
unit tests can then be run systematically at any time by anyone to check for errors. Unit tests should
be combined with other automatic systems-level tests that are run regularly when code is checked
in.

Diebold also lacks any formal procedures for “red team” testing, where the testers play the role
of attackers and attempt to break into the system. This type of testing can detect different types
of bugs that “white box” unit and system tests might not catch, such as illegal input handling and
failure recovery.

4.3 Engineering Practices 30

4. Systemic and Architectural Issues

Our analysis has led us to conclude that the design and implementation of the Diebold software
does not meet the requirements for a security-critical system. We identified a number of systemic
issues that were pervasive throughout the source code or that reflected flaws in the design of the
voting system. We also found that the Diebold system’s code fails to consistently follow sound,
generally accepted engineering practices for secure software. Moreover, we have determined that
these systemic weaknesses led to specific flaws that can be exploited by attackers (see Chapter 5).

Fixing these specific flaws without addressing the underlying systemic weaknesses that caused
them is unlikely to render the systems secure. Systems that are architecturally unsound tend
to exhibit “weakness-in-depth” — even as known flaws in them are fixed, new ones tend to be
discovered. As a result, we must conclude that without sweeping changes to its architecture and to
the practices under which it is developed, the Diebold system will likely continue to pose a risk to
election integrity.

4.3 Engineering Practices 31

CHAPTER 5

Selected Specific Issues

In this chapter, we detail specific weaknesses we found in the AccuVote-OS, the AccuVote-TSX,
and the GEMS election management systems. We discuss the issues, the requirements to exploit
the issues, their implications on system security, and the observations that led us to our findings.
This chapter is by no means a complete catalog of issues that might exist on these systems. Exact
references to specific problems, such as source code excerpts and line numbers, are included in the
private appendix.

5.1 AccuVote-OS

There are two types of Diebold AccuVote-OS machines: the AV-OS Precinct Count and the AV-
OS Central Count. Since the AV-OS Central Count machine is not used in the field, the attack
surface for the Central Count machine is significantly smaller than that of the AV-OS Precinct Count
machine. The risk of attack for the AV-OS Central Count is diminished because it is physically
located at the county headquarters and not used to process memory cards from the field. Therefore,
we focused our efforts on the AV-OS Precinct Count machine. The following comments about the
AV-OS machine pertain only to the AV-OS Precinct Count machine.

Three published reports previously exposed serious security vulnerabilities in the AV-OS:

1. Hursti first described critical AV-OS vulnerabilities in his July 2005 report, “Critical Security
Issues with Diebold Optical Scan Design” [17]. He analyzed an earlier version of the AV-OS
(1.94w) than we studied in this report (1.96.6).

2. A study entitled “Security Analysis of the Diebold AccuBasic Interpreter” [33] was published
in February 2006 by Wagner, et al. The authors were charged by the California Secretary of
State with reviewing the security implications of the AccuBasic subsystem of the AV-OS and
AV-TSX in response to Hursti’s findings. The study covers the same version of the source
code that we were provided for this study.

3. Kiayias, et al. discovered new vulnerabilities in the AV-OS in October 2006 and reported their
findings in “Security Assessment of the Diebold Optical Scan Voting Terminal” [23]. The
study was supported by the Office of the Connecticut Secretary of the State. They were able
to find these security holes solely by experimenting with the machine and without any access
to the AV-OS source code.

The combination of security vulnerabilities in these three reports provides an attacker with
numerous vectors to breach the integrity of an election run on AV-OS machines. We confirmed that
many of these previously reported holes still exist in the current version of the AV-OS source code.
Because of the highly exploitable nature of these bugs already found and the short time frame of
this study, we spent less time looking for new attacks on the AV-OS itself and instead concentrated
our efforts on other areas of the system. Our other findings, especially those concerning the

32

5. Selected Specific Issues

GEMS server, present additional vectors for attacking the AV-OS that build on these existing
vulnerabilities.

In this section, we describe the problems we confirmed about the AV-OS Precinct Count
machine.

Issue 5.1.1: Data on the AV-OS memory cards is unauthenticated.

The AV-OS does not use any strong authentication mechanisms to confirm that the data on
the inserted memory card originates from a legitimate source. The machine always assumes
that the memory card data is trustworthy and does not sufficiently validate the data before
use. Thus, an attacker who can arbitrarily write to the memory card can easily modify its
entire contents without being detected.

Each memory card contains the full state of the current election for that machine. All data on
the memory card is stored in unencrypted form (other than the supervisor PIN1, which while
obfuscated, can easily be deciphered — see Issue 5.1.8). The memory card contents include:

• Memory card header: firmware revision number, card size, election status, counting
mode (absentee or not), master card copy password, global counters (number of total
ballots counted, number of election uploads, number of ballot tests, etc.)

• Election header: voting center name and number, download version number, obfus-
cated supervisor PIN, election title and date, election type, party code table, election
configuration flags, and data checksums

• Election definition and data: lists of precincts, ballot cards, races, candidates and voting
positions; race counters and candidate counters

• Audit log

• Compiled AccuBasic scripts

• Memory card heap

In order to take advantage of this vulnerability, an attacker would need to have write access
to the memory card. One way to gain write access is to have temporary physical control
of the card. According to the Diebold AccuVote-OS Hardware Guide documentation [9],
the AV-OS memory card is stored behind a locked retaining door. The lock can easily be
picked in a short time using paperclips [23]. The memory card is sealed in the machine by
procedure, but attacks may be able to bypass the seal to access the card without detection.
Once past the seal, the memory card can be removed from the machine and modified. To
modify the card, the attacker needs an Epson RBC compatible memory card reader-writer
device, which is publicly available for purchase [17]. Another possibility is for the attacker to
bring a new Epson smart card from home that contains his arbitrarily-chosen election data.
The attacker-controlled card can be inserted into the machine.

An election insider or an intruder who gains temporary access to the machine before or after
the election could exploit this vulnerability. A well-prepared attacker would probably need
only a minute or two to swap the AV-OS memory card. It is unlikely that this attack could
be conducted by a voter on election day. This particular avenue of memory card access takes
time, would look suspicious, and would be easily visible to others, since the AV-OS has no
physical privacy screens and is often in plain view of both poll workers and other voters.

Another way to obtain write access to the memory card is through GEMS or a GEMS-
impersonator. This avenue would not require physical access to the memory card. See Issue
5.1.2 for the details of this attack.

Three implemented mechanisms attempt to detect tampering of the memory card data:
memory card checksums, the internal audit log, and the memory card signature. None of
these mechanisms provide adequate protection and are easily be subverted by an attacker.

1The supervisor PIN is used by election officials to access machine setup functionality.

5.1 AccuVote-OS 33

5. Selected Specific Issues

The primary problem is that all of these mechanisms store their values on the memory card,
but an attacker can modify these values to conceal the attack. Each mechanism is described
in further detail below in Issue 5.1.3, Issue 5.1.4, and Issue 5.1.5.

The lack of authentication on the AV-OS memory card data is a fundamental security flaw
that cannot be overstated. This vulnerability is a stepping stone to highly exploitable attacks
that make it much easier for an attacker to compromise the integrity of the election. See Issue
5.1.6, Issue 5.1.7, Issue 5.1.9, Issue 5.1.10, and Issue 5.1.11.

Issue 5.1.2: The connection between the GEMS server and the AV-OS is unauthenticated.

When the AV-OS is booted with an empty memory card inserted, the machine will prompt
the user to initialize the card by downloading data from the GEMS server. The connection
channel between GEMS and the AV-OS, which can be established over either a serial link
or a modem line, is neither encrypted nor authenticated. An attacker can learn or reverse
engineer the protocol that GEMS uses to communicate with the AV-OS. He can subsequently
impersonate a GEMS server to the AV-OS to write into important memory card data fields.

If the memory card is not initially empty, the attacker can first use Issue 5.1.8 to learn the
supervisor PIN to reach the option of clearing the existing memory card. A subsequent reboot
will prompt the attacker to connect to GEMS.

Neither the AV-OS nor the GEMS server requires any form of authentication token (e. g.,
a password) in order to connect. An attacker can connect a GEMS clone (e. g., a laptop
implementing the reverse-engineered protocol) directly using either a serial cable or a
modem. The attacker can also arbitrarily change the phone number that the AV-OS uses
to connect to GEMS again using Issue 5.1.8. Once connected, the attacker can control:

• The entire election header
• The entire election definition and initial data
• The compiled AccuBasic script

Writing to the memory card by impersonating GEMS is slightly weaker for the attacker than
exploiting Issue 5.1.1. Whereas the previous vulnerability allows writing to any bit of the
memory card, the attacker here cannot write to the memory card header, the audit log or
the card’s memory heap section. Still, it is possible for the attacker to use this exploit to
compromise the entire machine. See Issue 5.1.9, Issue 5.1.10 and Issue 5.1.11.

Even if the connection between GEMS and the AV-OS were securely authenticated, it would
still be possible for an attacker with access to GEMS to compromise the AV-OS. No longer
would the attacker be able to impersonate the GEMS server, but vulnerabilities we found in
GEMS could allow an attacker to modify the originating memory card data. See Issue 5.3.2,
Issue 5.3.4 and [3].

After the election, the AV-OS connects again to the GEMS server to upload the results of the
election. Again, no encryption or secure authentication is used. This allows an attacker to
impersonate a legitimate AV-OS to the GEMS server. An imitation AV-OS would be able to
upload bogus results to the GEMS server if the legitimate AV-OS had not already uploaded
results. When the legitimate AV-OS attempts to upload, the GEMS server will reject the results
as already uploaded.

Issue 5.1.3: The memory card checksums do not adequately detect malicious tampering.

The AV-OS uses non-cryptographic checksums to detect errors in the memory card, but the
checksums are weak and do not protect against malicious tampering. The checksums are
stored on the memory card with the data. The checksum mechanism does not provide a
cryptographic guarantee of either data integrity or authenticity. It is only effective to detect
non-adversarial changes to the card contents, such as transmission errors or hardware faults.
A malicious attacker who modifies data on the card can easily calculate a new valid checksum
to avoid detection.

5.1 AccuVote-OS 34

5. Selected Specific Issues

In the election header of the memory card, there are eleven different 16-bit checksums values
that cover most, but not all, of the data fields on the card. The checksums are checked
immediately when the machine is turned on, when the machine enters pre-election mode,
and when the machine enters post-election mode. During the election, the checksums are
updated as ballots are processed, but the checksums are not checked.

The eleven checksums are divided into three categories:

• Header checksums covering: the election header, precinct headers, precinct cards, ballot
card headers, contest (race) headers, candidate headers, and ballot card voting positions

• Counter checksums covering: contest (race) counters, candidate counters, and ballot
card counters

• A text checksum covering (most) strings on the memory card, such as the name of the
voting center, the election date, and the names of races and candidates. This does not
include the compiled AccuBasic script or the audit log.

Although there is an allocated slot in the election header for a twelfth checksum named
auditLogChecksum , it is never assigned or accessed. We assume the audit log checksum
was planned for but never implemented.

The header and counter checksum algorithms are very primitive. For each checksum, the
machine calculates the arithmetic sum of the corresponding data members on the memory
card. For example, the candidate counter checksum is the arithmetic sum of the values of each
candidate’s total number of votes. If Alice has 36 votes and Bob has 23 votes, the candidate
counter checksum is 59.

The text checksum algorithm is slightly more complex but still insecure. An integer counter is
first initialized to zero. For each character of each string covered, the counter is incremented
and the bits of the character are XORed with the integer counter. These XORed values are then
arithmetically added together to create the text checksum. We can more precisely express this
algorithm using the following pseudocode. (Note: This is not an except from the actual source
code, but rather a simplified description of what it does written in an imaginary programming
language.)

def text_checksum():
int checksum = 0;
int counter = 0;
for each string s:

for each char c in s:
checksum += c ˆ counter;
counter++;

return checksum;

The checksums are only effective for detecting accidental errors in the memory card data. The
checksums are completely ineffective against a malicious attacker attempting to tamper with
the card data fields. An attacker can easily change the checksum stored on the card to reflect
the changes made to the data. Moreover, an attacker can simply ignore the checksum if he
makes two or more changes that offset one another. See Issue 5.1.9 for an example of this.

The checksums are all generated locally by the AV-OS machine. Initial checksum generation
happens after the memory card contents are downloaded from GEMS — the checksum is not
sent with the data by GEMS. If there are transmission errors between GEMS and the AV-OS,
the checksum will be calculated on the erroneous memory card data. Similarly, if a man-
in-the-middle attacker tampers with the link between GEMS and the AV-OS, the checksum
provides no defense.

5.1 AccuVote-OS 35

5. Selected Specific Issues

Issue 5.1.4: The audit log does not adequately detect malicious tampering.

The audit log is another security measure that the AV-OS uses to try to detect machine
abnormalities. Under normal operation, all major events that occur on the machine are
recorded in the audit log. Each event transaction records the event type and the event time.
Only two types of events, audit log initialization and memory card insertion, record the date
as well. In all, there are 30 different types of log transaction events. The log has capacity for
512 transaction entries and wraps around to overwrite the first entry when the log reaches
capacity. It is stored in plaintext on the memory card.

Like the checksums, the audit log is stored on the memory card and can be modified if the
attacker has control of the card (see Issue 5.1.1). The attacker can arbitrarily add, modify, or
remove log transactions so that the log will be consistent with the other data on the memory
card after an attack. Thus, the audit log is completely insecure and should not be trusted by
election authorities as evidence that no attack has occurred.

Issue 5.1.5: The memory card “signature” does not adequately detect malicious tampering.

The AV-OS uses a struct called MemCardSignature to check whether the memory card was
switched while a ballot card was being scanned. The MemCardSignature is not a signature
in the cryptographic sense, but rather a weak check on the consistency of three counters on
the memory card. It consists of three integer counter values: the total number of ballots, the
number of absentee ballots, and the number of non-absentee ballots counted so far. The sum
of the latter two values should equal the first value. The signature covers no other parts
of the memory card. The signature is read from the memory card immediately before a
ballot is scanned and the saved signature is checked against the signature of the memory
card immediately after the scanning is complete. If the signatures differ, counting is aborted
and the machine halts.

Since all three counters are stored on the memory card, this vulnerability allows an attacker
to swap the memory card in the AV-OS with his own malicious memory card as a ballot is
being scanned. For example, if the attacker is the first voter of the day, the three counters
would all be zero. As long as the new memory card has the same signature (i. e., counter)
values, the attacker can modify other parts of the memory card (e. g. the number of votes for
each candidate) without detection.

Issue 5.1.6: Buffer overflows in unchecked string operations allow arbitrary code execution.

There are at least four buffer overflow vulnerabilities in the code used to upload election
results to the GEMS server. When the machine prepares the memory card data to be sent
to GEMS, it uses the unsafe sprintf function to write data to a buffer string buf . When
one element of the format string argument to sprintf is a string that comes from the
memory card, an attacker may be able to overflow buf on the stack. If the attacker controls
the memory card (see Issue 5.1.1), he can delete the null-termination character of the string
element to extend its length to be larger than the size of buf . The code here is not defensively-
programmed and incorrectly assumes that the strings on the card are never longer than
expected.

We believe that each of these vulnerabilities can be used by an attacker who controls the
contents of the memory card to execute arbitrary code on the AV-OS. One of the four
overflows occurs in the code immediately before uploading the memory card’s election
header to GEMS. If the attacker overflows buf and takes control of the machine at this point,
he can modify both the election results on the card and the results to be uploaded to GEMS.

See private appendix Issue 5.1.6 for more information.

Issue 5.1.7: Integer overflows in the vote counters are unchecked.

The AV-OS does not check for integer overflow in the counters that keep track of candidate
votes. Each candidate vote counter is a 16-bit unsigned integer, which can hold up to 65,535
votes. If the vote counter reaches its maximum value and more votes are added, the counter

5.1 AccuVote-OS 36

5. Selected Specific Issues

will wrap around to zero and continue counting. The counter will overflow without warning.
Because of the unchecked overflow, a large counter value is equivalent to a small negative
counter value. For example, a counter value of 65,526 is equivalent to a counter value of −10
because adding 10 votes to either value results in a counter value of 0.

This vulnerability could allow an attacker to undetectably switch a predetermined number of
votes from one candidate to another. This attack was first demonstrated by Hursti [17], and
we confirm that the AV-OS remains vulnerable. To see an example of this attack, see Issue
5.1.11.

Issue 5.1.8: The machine does not adequately protect the supervisor PIN.

The PIN used by election supervisors to administer an election is stored in obfuscated form on
the memory card. The obfuscation procedure is a linear function that can easily be reversed
without special knowledge. This was first shown by Kiayias et al. [23], who had physical
access to an AV-OS but no access to the source code. The obfuscated form obf of a supervisor
PIN pin is as follows:

obf = encode(pin, key) = pin + (key × MAGIC1) + MAGIC2

where MAGIC1 and MAGIC2 are hard-coded 20-bit magic constants. The value key2 is stored
in cleartext at a fixed location on the memory card adjacent to obf. To recover pin, an attacker
could compute:

pin = decode(obf, key) = obf − (key × MAGIC1)− MAGIC2

Anyone with access to the machine for a few minutes can reverse-engineer both the magic
constants and the formulas used to encode and decode the PIN [23]. The same magic
constants are apparently used on every AV-OS machine.

This privilege escalation vulnerability allows anyone with read access to the memory card to
learn the supervisor PIN. An attacker can use the PIN to access supervisor functions, such as
changing system setup parameters (the GEMS dial-up phone number, feeding options, etc.),
duplicating the memory card, or clearing the memory card.

See private appendix Issue 5.1.8 for more information.

Issue 5.1.9: Votes can be swapped or neutralized by modifying the defined candidate voting coordinates
stored on the memory card.

The Kiayias report identified an attack against the AV-OS that can be mounted by anyone who
can tamper with the AV-OS memory card [23]. The memory card contains a map of the layout
of the paper ballot, listing for each candidate the location where that candidate’s bubble can
be found. A mark in that location will be counted as a vote for that candidate. Locations are
identified by (row, column).

The report points out that it is possible to modify those locations on the memory card to
ensure that marks for a candidate will not be counted. For instance, if the attacker modifies
the voting coordinates for a particular candidate to point to some other location on the ballot
where no marks are likely to occur, then it is likely that the machine will never detect any
votes for that candidate.

As the Kiayias team discovered, the checksum on the contents of the memory card does not
prevent this attack. For example, if the attacker modifies a candidate’s voting coordinates
from (row, column) to (row − 1, column + 1), the ballot card voting position checksum stays
constant. Their report also reveals that it is possible to swap two candidates, so that a mark

2As an aside about code quality, the key used in the above pseudocode is actually named publicKey in the source code.
It is a 16-bit unsigned integer stored in the election header. It is clear that publicKey does not refer to a cryptographic
public key as computer security experts would use the term. Rather, it is just a random nonce used in the obfuscation code
that resides on the memory card. The terminology used is non-standard and can be confusing or misleading.

5.1 AccuVote-OS 37

5. Selected Specific Issues

for Smith is counted as a vote for Jones and vice versa. In general, an attacker who can tamper
with the contents of the memory card can rewrite the map of the ballot and cause ballots to
be miscounted by the AV-OS in a controllable way.

We confirmed that this vulnerability is present in the version of the AV-OS source code that
we examined. The Red Team has also confirmed this attack [3].

Issue 5.1.10: Multiple vulnerabilities in the AccuBasic interpreter allow arbitrary code execution.

Diebold uses a scripting language called AccuBasic to customize the format of reports printed
on the AV-OS, such as the Election Zero report (printed before the election) or the Election
Results report (printed after the election). An AccuBasic script is stored on the memory card,
and the AV-OS software interprets the script from the card. An earlier study commissioned by
the California Secretary of State revealed that the AccuBasic interpreter software on the AV-
OS contains security vulnerabilities that allow a malicious AccuBasic script to compromise
the integrity of the AV-OS [33]. In particular, a carefully crafted AccuBasic script can, when it
is executed, exploit bugs in the AccuBasic interpreter to inject malicious code into the AV-OS
and then begin executing that malicious code. Consequently, an attacker who can tamper
with the AccuBasic script can take control of the AV-OS machine and cause it to misbehave in
any way that the attacker chooses (e. g., misrecording votes).

We confirmed that the flaws discovered earlier exist in the AV-OS (we examined the
same software that was examined earlier). We summarize briefly the impact of these
vulnerabilities. See the earlier report for full details [33].

The AccuBasic script on the memory card is written by GEMS. If an insider with access to
GEMS is malicious, he could replace the legitimate AccuBasic script with a malicious script
to take over the machine. This means that the security of GEMS is critical: any compromise
of its security could affect every AV-OS machine in the field.

Also, it would be possible for an individual with unsupervised access to the memory card
to tamper with its contents and introduce a malicious AccuBasic script. Because the data on
the memory card is not cryptographically protected (see Issue 5.1.1), anyone who has access
to the memory card can modify its contents or swap it for a prepared “evil twin” card. That
could allow someone who had unsupervised access to the memory card to compromise the
software on the AV-OS machine that it is inserted into.

This vulnerability could help a virus to spread. If GEMS is infected, it can infect every AV-OS
memory card that is written. Inserting an infected memory card into an AV-OS machine will
allow execution of malicious code on the AV-OS once the operator prints any report. Also,
any individual who has physical access to a memory card can infect it. This vulnerability
alone is not enough to create a virus that spreads from AV-OS to AV-OS, but it could be one
building block that a virus writer might use, in conjunction with other vulnerabilities. See
Section 3.1 for further details.

Issue 5.1.11: A malicious AccuBasic script can be used to hide attacks against the AV-OS and defeat the
integrity of zero and summary tapes printed on the AV-OS.

We confirmed that many of the vulnerabilities identified by Hursti in his July 2005 report [17]
remain present in the current version of the AV-OS.

For instance, Hursti identified an attack that combines integer overflows (Issue 5.1.7),
memory card tampering (Issue 5.1.1), and a malicious AccuBasic script to cause the AV-OS
to transfer votes from one candidate to another. We briefly outline the attack here. Suppose
that the attacker wants to fraudulently transfer ten votes from Brown to Smith. The attack
proceeds as follows:

1. The attacker sets all the vote counters on the memory card to zero, except that Brown’s
counter is set to 65, 526 (namely, −10) and Smith’s is set to 10. The ballot box has
now been pre-stuffed: Brown starts out at a disadvantage, and Smith starts out at an
advantage.

5.1 AccuVote-OS 38

5. Selected Specific Issues

2. The attacker writes a malicious AccuBasic script onto the memory card. This script
provides a custom format for the Election Zero report so that the tape will show zero
votes for Brown and Smith even though the vote counters on the memory card are non-
zero. However, the script for printing the Election Result report is left unmodified, so
that the report accurately prints the values of the vote counters on the memory card.

3. When the AV-OS is powered up on election morning with this memory card inserted, it
will print a fraudulent Election Zero report showing all zeros (even though the memory
card’s electronic ballot box has been pre-stuffed).

4. As voters vote, the vote counters will be incremented accordingly. On the 10th vote for
Brown, the vote counter for Brown will overflow and wrap around and become zero,
though there will be no way for anyone to notice that this has happened.

5. When the polls are closed at the end of the day, the AV-OS will print a Election Result
report showing the contents of the vote counters on the memory card. If voters cast 56
true votes for Brown and 44 votes for Smith, the memory card will show 46 votes for
Brown (because it was pre-loaded with -10 votes for Brown) and 54 votes for Smith,
so the report will incorrectly show that Smith is leading Brown 54 to 46. When poll
workers compare the number of voters who signed in against the total number of voters
in that contest, they will not find any discrepancies, since this attack did not alter the
total number of votes cast: it only shifted votes from Brown to Smith.

6. When the memory card is returned to county headquarters, GEMS will read the
(fraudulent) tallies on the memory card, namely, Smith: 54, Brown: 46. When county
officials perform the official canvass, there will be no discrepancies between the Election
Zero report, Election Result report, and unofficial electronic tallies.

7. If the paper ballots in this precinct are selected to be manually counted during the 1%
manual tally or during a 100% manual recount, the fraud will be revealed. However, this
is the primary way that the attack can be discovered. If attackers try to tamper with the
results in hundreds of precincts, it is likely that the 1% manual tally will detect the fraud
in at least one precinct. However, if attackers only tamper with a few polling places, the
attack is unlikely to be detected.

This attack requires the ability to make unauthorized changes to the contents of the memory
card. Anyone with unsupervised physical access to an AV-OS memory card could attack the
machine in this way (see Issue 5.1.1). A malicious GEMS operator could make these changes.
Likewise, a security breach/infection of the GEMS PC could allow someone to mount this
kind of attack (see Issue 5.1.2).

Hursti also identified the possibility for malicious AccuBasic scripts to print malicious
messages to the LCD display or cause the machine to crash under certain circumstances.
Those attacks remain possible but appear to have less severe consequences.

Issue 5.1.12: The physical paper ballot box deflector is under software control.

The Diebold AV-OS Hardware Guide documentation [9] states that the physical ballot box
has two compartments: a primary compartment and a secondary compartment. There
is a physical ballot card deflector that determines into which compartment a ballot card
is deposited after it is scanned. The direction of the deflector changes depending on
programmable sort conditions that are set for each election. For example, ballots with write-
in candidates can be deflected into the secondary compartment so election officials can tally
these manually after the election closes.

An attacker who controls the machine (see Issue 5.1.1 and Issue 5.1.2) can arbitrarily move
the deflector for each ballot card. This can potentially disenfranchise voters if, for example,
ballots with write-in candidates are not deflected to the secondary compartment for manual
review. Voter privacy can also be affected by using the secondary bin to single out ballots of
interest.

5.1 AccuVote-OS 39

5. Selected Specific Issues

5.2 AccuVote-TSX

These are some of the specific issues we identified in the AccuVote-TSX system:

Issue 5.2.1: The AV-TSX automatically installs bootloader and operating system updates from the memory
card without verifying the authenticity of the updates.

The AV-TSX includes a software update mechanism that allows new bootloader and operat-
ing system software to be installed from a memory card inserted into the machine. When the
machine boots, it searches the memory card for specially named files. If it finds files named
eboot.nb0 or nk.bin , it replaces the bootloader software or Windows CE operating system
image, respectively, stored in its internal flash memory with the contents of the files. These
filenames have been previously published on the Internet [18].

Hursti was the first to discover that the AV-TSX has no mechanism for checking the
authenticity of these software updates [18]. While the machine does employ a simple
checksum to make sure the files have not been garbled in transmission, it fails to utilize a
digital signature or other mechanism that would prevent an attacker from using the software
update feature to install malicious code.

This means that an attacker can create malicious software updates containing arbitrary code,
and the software update mechanism will not be able to distinguish these from legitimate
upgrades. An attacker who has temporary physical access to a memory card — or control of
any machine into which a memory card is inserted — can place his own malicious software
update files on the card, and this software will be installed on any AV-TSX machine that is
booted with that card in place.

Alternately, an attacker with unsupervised physical access to the machine for as little as a
minute could replace the installed memory card with one containing a malicious software
update prepared earlier, boot the machine to install the update, and then reinsert the original
memory card. This attacker would need to bypass the lock on the memory card door, but we
were notified by the Red Team that this can be accomplished quickly using only a ball-point
pen. Tamper-evident seals might be used to deter attacks, but creating a seal that requires a
sophisticated attack to defeat remains beyond the state of the art [20].

Furthermore, the AV-TSX machine installs bootloader and operating system updates without
asking the local user for confirmation. While it does display a message indicating that
an update is taking place, this message is displayed in a small font and could easily be
overlooked by poll workers. The lack of confirmation increases the odds that this issue could
be used to spread voting machine viruses, which we discuss in Section 3.1. The machine does
not maintain a log of software updates installed via this mechanism.

Feldman, et al. demonstrate how an identical update mechanism used by the AccuVote-TS
model DRE could be used to spread malicious software that would alter the electronic vote
records and totals [14]. We believe that similar attacks are possible on the AV-TSX.3

One mitigation strategy that has been suggested in the past is to seal the memory card inside
the voting machine before the machine is delivered to the polling place. This might make it
more difficult for an attacker to access the memory card without being detected. However, it
also ensures that the memory card will be installed in the machine when the machine boots.
As a result, if the central office AV-TSX that initializes the memory card is compromised
so that it stores a malicious software update on each card while initializing it, the AV-TSX
machines in the polling places will automatically install the malicious update when they boot
on election day.

3Diebold has removed another service feature that has been criticized by previous reports [18, 14]. In older versions
of the AV-TSX, the system would boot into Windows Explorer instead of the BallotStation application if a file named
explorer.glb was present on the memory card. This would allow an attacker with physical access to the machine to
install malicious software manually. Since this feature has been disabled, attackers would need to exploit issues such as
Issue 5.2.1 or Issue 5.2.2 to access Windows Explorer.

5.2 AccuVote-TSX 40

5. Selected Specific Issues

Issue 5.2.2: The AV-TSX automatically installs application updates from the memory card without
verifying the authenticity of the updates.
A second software update mechanism operates after the AV-TSX boots into Windows CE.
The Windows kernel launches a program called taskman.exe , which eventually starts the
BallotStation application. Before running BallotStation, taskman.exe searches the memory
card for files with the extension .ins . These are software update packages in a Diebold
proprietary format. Each .ins file contains instructions for installing one or more files onto
the machine’s file system, along with the data to be placed in those files. (The machine’s
root file system, \, is backed by RAM, so its contents disappear when the machine reboots.
The internal flash memory is mounted in a subdirectory called \FFX, and removable memory
cards are mounted in a subdirectory called \Storage Card .)

Like the bootloader-based update mechanisms described above, the .ins update mechanism
does not attempt to verify the authenticity of the updates, and it does not maintain a log of
software updates that have been performed [18]. Unlike the other mechanisms, it does ask
the user to confirm each update by touching a button on the screen. However, the system
trusts update files to accurately describe their contents. Malicious updates could inaccurately
describe their purpose, possibly fooling operators into consenting to their installation.

Attackers could use this mechanism to install arbitrary code onto the voting machine, such
as by replacing the BallotStation executable file with an altered version. They could also
replace other files on the system or destroy data by replacing it with garbage. Conducting
such attacks would require the ability to write the update file onto a memory card as well as
the operator’s consent; however, Issue 5.2.3 describes a way to avoid the need for consent.

Issue 5.2.3: Multiple buffer overflows in .ins file handling allow arbitrary code execution on startup.
This issue was first reported by Feldman, et al. in their study of the AccuVote-TS [14]. The
code in taskman.exe responsible for installing the application updates described in Issue
5.2.2 contains multiple buffer overflows in the way it parses .ins files that could allow an
attacker to execute arbitrary code. For example, a malicious .ins file could modify files in
the machine’s filesystem or launch programs, and it could do these whether or not the user
consented to its installation.

To exploit these previously-known vulnerabilities, an attacker would need the ability to write
files onto the memory card. Since the machine does not verify the authenticity of .ins files,
no secret keys would be required.

See private appendix Issue 5.2.3 for more information.

Issue 5.2.4: Setting a jumper on the motherboard enables a bootloader menu that allows the user to extract
or tamper with the contents of the internal flash memory.
As previously disclosed by Hursti, the motherboard inside the AV-TSX contains a jumper
header marked “Debug” [18]. When a jumper is installed here, the machine’s bootloader
displays a service menu over its serial port when the machine boots. A feature of the service
menu called the “mini monitor” allows arbitrary memory locations to be read or written
over the serial port. Since the system maps its internal flash memory into the address range
0xA0000000–0xA4000000, the mini monitor can be used to extract or alter the data stored
there.

To access this feature, an attacker would need physical access to the inside of the voting
machine. The plastic case of the AV-TSX can be removed by unscrewing a small number of
screws. After opening the case, an attacker would need to close the jumper circuit by placing
a paperclip or small wire against the marked terminals on the motherboard while booting the
machine [3]. To interact with the menu, the attacker would need to attach another computer
to the machine by connecting a serial cable to the “VIBS Keypad” port (in the rear of the
machine). Broken security seals might provide some evidence of the attack, but the machine
does not maintain any log files that would show that the service menu was accessed or which
commands were issued.

5.2 AccuVote-TSX 41

5. Selected Specific Issues

An attacker could use the mini monitor to alter any part of the voting machine’s software,
including the bootloader, operating system, and BallotStation application. The mini monitor
can also be used to create a perfect copy of the internal flash memory, including the software
that runs the machine, records retained from past elections, and cryptographic keys stored
there. This would be useful in constructing future attacks. Reading or writing the entire flash
memory using this method would require several hours of continuous access to the machine,
but an attacker could install small software changes or read short memory items like keys in
seconds. This method could be used to extract the secret keys from the machine, facilitating
other attacks that rely on modifying signed or encrypted files.4

Issue 5.2.5: Keys used to secure smart cards and election data are not adequately protected.

The AV-TSX uses security keys for various security purposes, including authenticating
election definition files, encrypting and authenticating ballot result files, validating voter
smart cards, and generating ballot serial numbers. Older Diebold machines used hardcoded
keys set when the software was compiled. The version of the AV-TSX that we studied retains
those hardcoded keys but also allows county election officials to change the keys that the
machine uses. Officials can set three keys, the 64-bit Smart Card Key, the 16-bit Smart Card
Magic Number, and the 128-bit Data Key. (Internally, these are labeled SCKey, SCMagic , and
and DESKey, respectively, though the system no longer uses the DES cipher.)

The machine stores the Smart Card Key, Smart Card Magic Number, and Data Key in
a file in its internal flash memory. This file, bs-security.cf , resides in the same
directory as BallotStation.exe . BallotStation encrypts the contents of the file (using
AES128-CBC) with a third key called the System Key. However, the value of the Sys-
tem Key is not a secret — rather, it is the hash of the machine’s serial number. The
serial number is stored in the machine’s registry (HKLM\Software \Global Election
Systems \AccuVote-TS4 \MachineSN), displayed in the user interface (the parameter
“SN” at the bottom of every screen), and printed on the Results Report and other printouts.

As a result, any party with the ability to read data from the machine’s internal flash memory
can learn the values of Smart Card Key and Data Key. For example, an attacker with
temporary physical access to the inside of the machine’s case could exploit Issue 5.2.4 to read
the contents of the bs-security.cf file and the registry key containing the machine serial
number. The attacker could compute the System Key from the serial number then use it to
decrypt the other keys.

Furthermore, malicious code running on a machine can automatically obtain the System
Key, Smart Card Key, Smart Card Magic Number, and Security Key using this method. An
attacker who can inject malicious code into the machine can use it to discover the keys without
opening the machine’s case. Alternatively, the attacker could program his malicious code to
obtain the keys and use them directly to carry out another attack.

This attack may be particularly damaging because the design of the Diebold system makes it
difficult to use different keys on different machines. Consequentially, all machines within a
particular county most likely share the same Smart Card Key and Data Key. An attacker who
can extract the keys from a single machine can therefore use them to attack all of the machines
and memory cards in the county.

A malicious party who obtains these cryptographic keys can perform a number of attacks,
which are described in detail later in this section. These attacks include:

• Tampering with election data files, and viewing or tampering with the electronic records
of election results and system logs (Issue 5.2.6)

• Creating voter cards, supervisor cards, and election administrator smart cards (Issue
5.2.7)

4It is possible that an attacker with access to the inside of the machine’s case could also read and write the internal flash
memory using the motherboard’s JTAG interface.

5.2 AccuVote-TSX 42

5. Selected Specific Issues

• Determining the order in which ballots were cast based on their serial numbers (Issue
5.2.21)

Issue 5.2.6: Malicious code running on the machine could manipulate election databases, election resources,
ballot results, and audit logs.
Four types of data files are used in elections: election databases, election resource files, ballot
results files, and audit logs. These files are stored on the removable memory cards, with
backups stored in the machine’s internal flash memory.
Election database files (.edb files) contain information about races and candidates as well
as other ballot text. They are not encrypted, but they are authenticated using a kind of
message authentication code (MAC). The MD5 hash of the body of the file is encrypted with
the AES128-ECB algorithm using the Data Key (see Issue 5.2.5).5 The machine requires this
encrypted hash to match a value in the header of the ballot definition.
Election resource files (.xtr files) contain RTF strings, AccuBasic scripts, audio, images,
and other data used during the election. The resources in these files are not encrypted, but
each resource is individually authenticated using a MAC like the one used for the election
database.
Ballot results files (.brs files) contain a record of the votes for each ballot cast in the election.
The record of each vote is individually authenticated as in the election resource files. Each
vote record is also encrypted with the AES128 algorithm6 in CBC mode using the same Data
Key.
Audit logs (.adt files) store a partial record of BallotStation’s operation. They are authen-
ticated and encrypted using a similar format as ballot results files, except that they use the
System Key (see Issue 5.2.5) in place of the Data Key.
An adversary who obtained access to the Data Key as described in Issue 5.2.5 could carry
out various attacks on these files. If the attacker had access to the memory card prior to the
election, he could tamper with election files and election resource files in order to exploit
other security vulnerabilities in BallotStation. Some vulnerabilities, such as Issue 5.2.15 and
Issue 5.2.13 below, could allow the attacker to execute arbitrary code on the voting machine
during the election. The attacker could also attempt to alter the ballots in subtle ways that
would confuse voters or otherwise disrupt the election.
An adversary who knows the Data Key and has access to the memory card after the election
can carry out other attacks by defeating the encryption and authentication of the ballot result
files. If the attacker accesses the memory card before the votes on it are loaded into GEMS,
then he can tamper with the ballot results file in order to exploit security vulnerabilities in the
BallotStation terminal connected to the GEMS server (see Issue 5.2.16). Using this technique,
he might be able to infect a large number of voting machines with a voting machine virus, as
described in Section 3.1.
An adversary with knowledge of the Data Key and access to the memory card or voting
machine after the election could defeat the encryption on the ballot result files to discover the
time at which each vote was cast, potentially compromising voter privacy (see Issue 5.2.20).
An adversary with only access to the memory card or the files on the voting machine during
or after the election could decrypt or tamper with audit logs that are secured with the System
Key, which is not a closely guarded secret (see Issue 5.2.5). By tampering with the logs,
the attacker could remove evidence of his activities. The audit logs also contain sensitive
debugging information, such as stack traces recorded during errors in the software, that could
help a malicious party develop further attacks.
Attacks like the ones described above could be carried out automatically by malicious code
installed on the voting machine. In that case, the attacker would not need to have physical
access to each machine or memory card being attacked.

5This non-standard MAC construction was first disclosed publicly in [33].
6This is consistent with Diebold’s public statements (see [8]).

5.2 AccuVote-TSX 43

5. Selected Specific Issues

In the final days of this study, we learned of a recent security analysis of the AV-TSX
conducted by Kiayias, et al. [24]. They found several cryptographic-related vulnerabilities
in the AV-TSX that we overlooked. For instance, they found that incorrect MAC values on a
record cause the record to be silently ignored but processing continues, rather than halting
operation with an error message, allowing an adversary to effectively remove candidates
from the ballot. Also, they found that, if a pair of candidates have names of the same length,
an attacker with access to the memory card can swap the candidates by swapping their
corresponding RTF-string resources, causing votes for Smith to accrue to Jones and vice versa.
Due to flaws in the cryptography, these attacks do not require knowledge of the cryptographic
keys. They were able to find these security holes solely by experimenting with the machine
and without any access to the AV-TSX source code.

Issue 5.2.7: The smart card authentication protocol can be broken, providing access to administrator
functions and the ability to cast multiple votes.

The AV-TSX authenticates smart cards using a two step protocol involving two secrets: the
64-bit Smart Card Key and the 16-bit Smart Card Magic Number. (Both can be set by election
officials using Security Key Cards, as described in Issue 5.2.5.) When a smart card is inserted
into the machine, the machine issues the ISO 7816-4 SELECT command with file ID 0x3D40
as data, then it issues the VERIFY command with the Smart Card Key as data. Conceptually,
the file ID and key act like a username and password, which the voting machine uses to prove
its identity to the smart card. The smart card will not allow the machine to read it unless the
key the machine provides matches a key programmed into the card earlier.

If the voting machine provides the correct file ID and key, the smart card allows the machine
to read the data stored on it, which vary depending on the type of card being used. Smart
cards used by the AV-TSX include voter cards (which may be enabled or disabled depending
on whether they have been used to cast a vote), central administrator cards, and supervisor
cards. The latter two kinds of smart cards enable various supervisory functions. Part of
the data stored on these smart cards is a field called the magic number. The voting machine
requires the magic number in the smart card data to match the Smart Card Magic Number
programmed into the AV-TSX machine by election officials. Thus, the magic number acts like
a password that the smart card uses to authenticate itself to the voting machine.

This architecture allows a malicious voter who is given an authorized voter card and allowed
to vote on an AV-TSX to steal the Smart Card Key and Smart Card Magic Number. To carry
out the attack, the attacker would use a commercial programmable smart card such as a Java
Card [32] to create a smart card that logs all commands sent to it. When the logging card
was placed in a AV-TSX, the machine would attempt to authenticate itself to the card, and the
card would record the file ID and Smart Card Key sent by the machine. Next, the attacker
would place the authorized smart card in his own smart card reader and send it the file
ID and Smart Card Key captured by the logging card. The authorized card would respond
by granting access to its data, including the Smart Card Magic Number. This attack could
plausibly be carried out by a voter on election day, since the voter will receive a legitimate
voter card from poll workers and would be able to insert a logging card into the AV-TSX.7

With knowledge of the Smart Card Key and Smart Card Magic Number, a malicious party
could carry out a variety of attacks involving counterfeit smart cards. Kohno, et al. [26]
first described variations on these attacks in 2003, and they still appear to be feasible despite
modifications to the smart card protocol.

For example, an attacker could use the Smart Card Key to reactivate voter cards that had
already been used. Or, with slightly more information, the attacker could create new voter
cards from blank Java Cards. The necessary data, which includes the election and polling
place IDs, could be extracted from the voting machine by various methods, read from the

7Alternatively, an attacker could learn the Smart Card Key and Smart Card Magic Number using the attacks discussed
in Issue 5.2.5.

5.2 AccuVote-TSX 44

5. Selected Specific Issues

election database on the removable memory card if the attacker had temporary access to it,
or copied from a stolen legitimate voter card.

Furthermore, an attacker could construct a forged voter card that refuses to deactivate itself.
Such a card could be used to cast multiple votes. Normally, the AV-TSX deactivates the voter
card when the voter casts their ballot. This process involves rewriting the data on the card
using standard ISO commands. A voter card created using a programmable Java Card could
be designed to ignore those commands, or to report to the machine that the commands had
succeeded while actually doing nothing. While each voter card contains a voter serial number
that is supposed to be unique, the machine does not record this serial number for normal
votes, so the duplicate votes would not be automatically discarded.

Finally, an attacker could use a variant of this attack to create counterfeit supervisor cards. To
access supervisory functions, a poll worker needs to insert a supervisor card into the machine
and key in a PIN associated with the card. Creating a forged supervisor card would require
even less information than creating a forged voter card, since supervisor cards are not tied to
a particular machine serial number or election ID. The PIN presents no additional challenge
to the attacker. The system stores the PIN on the smart card itself, so the attacker can set it to
a known value when he constructs the card.

Issue 5.2.8: Security key cards can be forged and used to change system keys.

Election officials use a specially formatted smart card called a Security Key Card to update the
Data Key, Smart Card Key, and Smart Card Magic Number used by the AV-TSX. The ability
to change these keys is a substantial improvement over earlier Diebold designs, which were
criticized for using hardcoded security keys [26]. Standard procedures call for the keys to be
changed frequently. Normally, Security Key Cards would be safeguarded by election officials
and used only within the central election facility. However, a flaw in the way these cards are
processed leaves them vulnerable to forgery.

Unlike other smart cards, which are authenticated with the Smart Card Key and Smart Card
Magic Number set by election officials, Security Key Cards use a hardcoded key and magic
number for authentication. All such smart cards apparently use the same hardcoded key,
which is labeled in the source code as the “manufacturer’s factory default” key. This key is the
easily guessable sequence of bytes 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08. The cards also
use a hardcoded 16-bit magic number to authenticate themselves to the machine. Elections
officials do not have the ability to change this key or magic number.

The key and magic number are hardcoded in the source code and are apparently the same for
every AV-TSX machine in the nation. An attacker who has been given unsupervised access
to an AV-TSX machine could easily extract these values from the machine. Alternatively, an
attacker with prolonged physical access to a voting machine might be able to guess these
values.

With these values, an attacker can use a programmable smart card to create a fake Security
Key Card with arbitrary Data Key, Smart Card Key, and Smart Card Magic Number values.
These values are stored on the smart card in plaintext form, so no additional secrets would be
needed to construct a valid Security Key Card.

Before a Security Key Card can be loaded into the AV-TSX, the machine must be placed
into supervisor mode. Normally this would require a supervisor smart card, but several
attacks (see, e. g., Issue 5.2.7 and Issue 5.2.9) could allow an attacker to access supervisor
mode without a legitimate supervisor card.

An attacker who is able to forge Security Key Cards and load them into the voting machines
could use this attack to disrupt the election. By setting the security keys in a machine to
random values, the attacker could prevent the machine from loading and saving election
data (if the Data Key were changed) or from accepting supervisor and voter smart cards (if
the Smart Card Key or Smart Card Magic Number were changed). At that point, the machine
would be effectively non-functional: it could not be used to accept votes. A group of attackers

5.2 AccuVote-TSX 45

5. Selected Specific Issues

with forged cards could possibly reprogram the security keys on a large number of machines
immediately before the election or even with voter access to the machine. Diagnosing these
problems on election day might be difficult and lead to lengthy delays for voters [2].

To fix these problems, county officials would need to visit each affected machine and
reprogram it with a legitimate Security Key Card. However, this would require the valid
Security Key Card to be taken out of the secure central election facility, exposing it to a greater
risk of theft or copying. An attacker who had momentary access to the legitimate Security Key
Card could use a smart card reader and knowledge of the hardcoded “factory default” key to
learn the security keys stored on the card.

See private appendix Issue 5.2.8 for more information.

Issue 5.2.9: A local user can get to the Main Menu/System Setup menu without a smart card or key.

Normally, the AV-TSX requires the insertion of a supervisor card or central administrator card
before granting access to certain program menus. These include the “Main Menu” and the
“System Setup” menu, from which the user can change hardware settings, reset the system
clock, and perform other administrative functions. When the machine boots, if it detects a
hardware failure in the smart card reader or the printer, it enters a fail-safe mode that allows
the user to access these menus without a smart card.

The Red Team notified us that they discovered a way for a voter in the voting booth, using
only a paperclip, to trick the machine into sensing a smart card reader hardware failure. This
method could be used by a malicious party to access sensitive menus as part of other attacks.

Issue 5.2.10: The protective counter is subject to tampering.

For security purposes, BallotStation maintains a “protective counter” that is intended to
reflect the total number of votes ever cast on the machine. However, as reported by Feldman,
et al. [14], the counter is just a 32-bit binary value written to a unprotected file in the machine’s
internal flash memory (the filename is \FFX\AccuVote-TS \system.bin).

Attackers could change the value of the protective counter using a variety of methods. With
access to the inside of the voting machine, they could alter the internal flash memory using
the methods described in Issue 5.2.6. Or, by using any of malicious code injection methods
described in this section, an attacker could install software on the machine to manipulate the
counter. For these reasons, the protective counter is not a reliable defense against electronic
attacks.

Issue 5.2.11: SSL certificates used to authenticate to GEMS can be stolen and have an obvious password.

Some counties use modems or other network connections to transmit unofficial election
results from AV-TSX machines in polling places to the GEMS server. Optionally, these
connections can be protected using the SSL protocol. In the Diebold system, the AV-TSX
machines and the GEMS server have cryptographic certificates that include private and
public keys, which are intended to provide strong encryption and authentication of the SSL
connection.

On the AV-TSX, the certificate is stored in a file called client.pem , and in GEMS it is
stored in a file called server.pem . Default certificate files ship with both systems, and it
is unclear whether counties have procedures for changing them. It is likely that the same
default certificates ship with most or all Diebold systems, so counties should not depend on
them as a security measure. An attacker could steal the certificate file by exploiting problems
like Issue 5.2.4 or by installing malicious code onto the machine.

Furthermore, while the default certificate files do use passwords to protect their private keys,
both files use an obvious password—“diebold”. Given that Diebold has used other obvious
default passwords in the past [26], this likely would be among an attacker’s first few guesses.
Even without guessing, an attacker could learn this password by examining the Windows
registry of a GEMS server or the application software of an AV-TSX, since the password is

5.2 AccuVote-TSX 46

5. Selected Specific Issues

stored without encryption in both places. (Access to the data on a GEMS server or an AV-TSX
would usually be required to obtain the password-protected certificate file in the first place.)

Though this default password provides no meaningful security, there does not appear to
be an easy mechanism for officials to change it to a secure value, since it is hardcoded into
BallotStation (though not into GEMS). Thus, even if counties did replace the default SSL
certificates with secure ones, they would be unable to switch to a secure password without
upgrading to a new version of the Diebold software.

These problems limit the usefulness of SSL for protecting election transfers.

Issue 5.2.12: OpenSSL is not initialized with adequate entropy.

BallotStation uses the OpenSSL library to establish SSL connections. To operate securely,
OpenSSL needs to be initialized with unpredictable data, which it later uses to generate
pseudorandom numbers for use in security protocols.

When the AV-TSX boots, it initializes OpenSSL using two values — the current contents of
the screen, and a deterministic function of the number of milliseconds since Windows CE
started.8 Both of these would be easy for an attacker to guess, especially if the attacker
had access to machine. The contents of the screen will almost always be the same during
this part of the startup process, and the time since startup should not vary by more than
a small number of milliseconds. Consequently, the seed that is provided to OpenSSL’s
pseudorandom generator is likely to be guessable.

In a normal SSL connection, the client provides all of the secret entropy used to protect the
data. Since the entropy provided by the AV-TSX is easy to guess, an attacker who can intercept
the encrypted SSL traffic can use an off-line attack to decrypt it. If an attacker used this
technique to obtain the ballot results file as it is uploaded to GEMS, he could try to discover
how individual voters voted using the techniques discussed in Section 3.4.

More powerful attacks might also be possible. An attacker who can interpose himself
between the AV-TSX and the GEMS server (for instance, by splicing into the telephone line),
might be able to launch a man-in-the-middle attack in real time. With a modern computer, an
attacker could guess about 1,000 possibilities for the initialization data every second. The seed
provided to OpenSSL has so little entropy that an attack like this appears likely to succeed
before the transmission would time out. This would give the attacker the ability to change
the contents of the ballot results file in transit to GEMS and to exploit any vulnerabilities in
the way GEMS processes that data.

In both these cases, attacking the SSL transmission is an alternative to obtaining access to the
memory card. For further discussion of attacks on modem transmissions, see Section 4.1.8.

The GEMS application contains almost identical source code for seeding OpenSSL’s pseu-
dorandom number generator. The difference is that GEMS invokes the Microsoft Windows
CryptGenRandom() function to generate the seed that is provided to OpenSSL. This is an
excellent approach. The source code in the AV-TSX is an almost-identical copy of the source
code in GEMS, except that in the AV-TSX source code the call to CryptGenRandom() (which
is not available on Windows CE, the operating system used by the AV-TSX) is commented out
and replaced by an insecure seeding process that operates as described above. In both cases,
the code is immediately preceded by a comment that identifies this code as critical and warns
that the OpenSSL pseudorandom number generator must be seeded properly.

Issue 5.2.13: Multiple vulnerabilities in the AccuBasic interpreter allow arbitrary code execution.

An earlier report revealed flaws in the AccuBasic interpreter in the AV-TSX [33]. We
confirmed that those flaws remain present in the AV-TSX. This is to be expected, as we
examined the same software that was examined earlier. The AV-OS contains similar

8The function is a kind of linear congruential pseudorandom number generator, the purpose of which might be to fool
OpenSSL’s entropy estimation system.

5.2 AccuVote-TSX 47

5. Selected Specific Issues

vulnerabilities, with a similar impact. See Issue 5.1.10 for more details about these flaws
and their impact.

Issue 5.2.14: Tampering with the memory card can result in code execution during voting.

BallotStation reads the file assure.ini when it loads. The current election database is
defined by whatever database is specified as “current” in the assure.ini configuration
file. BallotStation assumes no line in the assure.ini file is longer than a fixed number of
characters. If a line is longer than the relatively short buffer BallotStation has allocated for it,
excess characters will be written past the end of the buffer. This would allow an attacker to
crash the machine and (most likely) execute arbitrary code.

This attack is especially serious because assure.ini is neither encrypted nor authenticated.
An attacker could modify this file without knowledge of the Data Key. An attacker only
needs to be able to insert a malicious memory card into a machine, or modify a legitimate
memory card that will later be inserted into a machine, to successfully compromise an AV-TSX
machine.

See private appendix Issue 5.2.14 for more information.

Issue 5.2.15: A malicious election resource file on the memory card could exploit multiple vulnerabilities to
run arbitrary code.

1. The AV-TSX displays text in the election resource file on the memory card at various
stages of the election. This text is stored in language-specific RTF files. One such file
contains the text used to show the current page number at the bottom of every ballot
page (excluding the “cast ballot” screen). This text includes two %dcharacters which
are replaced with the current page number and the total number of pages in the current
ballot using sprintf . For example, the text “Page %d of %d” would be replaced with
“Page 5 of 10” on page five of a ten-page ballot. The adversary could instead provide a
string like “Page %d of %d%s%s%s%s%s%s%s%s%s%s”, which would very likely crash
the machine, or other strings to potentially run malicious code.
See private appendix Issue 5.2.15 for more information.

2. The AV-TSX uses bitmap images to display information to the voter in a number of
places. One such image is displayed to the voter before he inserts his card to vote.
Since the image contains the language-specific message “Please Insert Your Card”, it
is included with other language files on GEMS and sent to the AV-TSX as part of the
election database file. This vulnerability exists in this code and also in other places
bitmaps are displayed to the user.
A bitmap file begins with header structures describing its data. These headers contain
a variety of information, including the size of the bitmap file and the size of the bitmap
data. The AV-TSX, assuming these values will be equivalent, creates a buffer large
enough to hold the bitmap data and then reads the entire bitmap file into that buffer.
A malicious bitmap file could be constructed that would lie about its size, claiming to be
smaller than it is. The AV-TSX’s buffer would be too small to hold the data in the bitmap
file, and a buffer overflow would occur.
See private appendix Issue 5.2.15 for more information.

To exploit this vulnerability, an attacker would need either control of GEMS, control over the
relevant RTF or bitmap files stored on GEMS, or access to the memory card. In the latter case,
the attacker would need to know the Data Key. See Issue 5.2.5 for more information.

Issue 5.2.16: Malicious election database files can cause arbitrary code execution on the AV-TSX when
uploading elections to GEMS.

When an AV-TSX uploads election information to GEMS, it calls a function that prints out an
“election ticket” containing information drawn from the election database. There are three

5.2 AccuVote-TSX 48

5. Selected Specific Issues

separate vulnerabilities in this ticket-printing function that allow an attacker who is able to
modify the election database to crash the machine and possibly to execute malicious code.

1. The variables containing election attributes are combined using sprintf into a buffer
buf that is 512 bytes long. An attacker able to modify either of these variables could
overrun buf .

2. The very next statement uses buf as an argument to an sprintf -style formatting
function belonging to BallotStation’s printer class. This formatting function contains
a format string vulnerability that can be exploited by an attacker who is able to modify
either election attribute.

3. Later in the ticket-printing function, a similar formatting function is called every time a
file is uploaded. This formatting function contains a format string vulnerability that can
be exploited by an attacker who is able to modify the a different election attribute.

See private appendix Issue 5.2.16 for more information.

An attacker able to compromise an AV-TSX machine could use this vulnerability to spread a
virus to the central office AV-TSX when election results are uploaded to GEMS.

See Section 3.1 for more information on virus propagation.

Issue 5.2.17: A buffer overflow in the handling of IP addresses might be exploitable by voters.

A voter can potentially gain access to a screen used to set an IP address used by the AV-
TSX machine. This address is copied to a fixed-size stack-allocated buffer (256 characters)
and then stored in the registry using the Windows API function RegSetValueEx . If the
IP address is longer than 256 characters, this results in a buffer overflow. The IP address is
validated, but the validation function only checks that each segment of the IP address is not
greater than 255 when interpreted as a 32-bit signed integer. Therefore, entering a string such
as 000...0001.0.0.1 where the first segment of the IP address is more than 255 characters
will crash the AV-TSX.

We do not know if it is possible to exploit this problem to execute malicious code. The input
validation of the IP address entered into the system setup screen severely limits the degrees
of freedom available to the attacker, so we suspect this vulnerability may not allow execution
of malicious code.

To exploit this vulnerability, a malicious user needs access to the system setup screen. Issue
5.2.9 illustrates one way of obtaining this access.

See private appendix Issue 5.2.17 for more information.

Issue 5.2.18: A malicious GEMS server can cause a crash on election download.

When an election is downloaded from GEMS, the AV-TSX prints a label to be attached to the
memory card. The fields printed on the label are treated improperly, resulting in format string
vulnerabilities. An attacker with control of GEMS could place printf format specifiers (e. g.,
“%s%s%s%s%s%s%s%s%s%s%s. . . ”) in those fields to crash the AV-TSX machine. We do not
know if it is possible to exploit this problem to execute malicious code.

See private appendix Issue 5.2.18 for more information.

Issue 5.2.19: Ballot results files store votes in the order in which they are cast.

The AV-TSX records votes in an encrypted ballot results file (.brs) stored on the removable
memory card with an identical backup held in internal flash memory. The ballot results
file consists of a series of records, one for each ballot cast. Each record includes a 32-bit
ballot serial number, a 32-bit timestamp (in UNIX format), and a representation of the voter’s
selections. After each vote is cast, the machine simply appends another record to the end of
the ballot results file.

5.2 AccuVote-TSX 49

5. Selected Specific Issues

This design potentially threatens the secrecy of voters’ ballot selections, as first noted by
Kohno, et al. [26]. An attacker with access to the removable memory card containing the
ballot result files (or with access to the voting machine before the backup of the ballot results
file is removed) could potentially decrypt the file to learn the exact sequence of votes cast. The
attacker would need to know the Data Key used to encrypt the file, which could be obtained
by exploiting the problems discussed in Issue 5.2.5, for example.

See Chapter 3 for a more complete discussion of attacks on ballot secrecy.

Issue 5.2.20: Stored votes and VVPAT barcodes include a timestamp.

As mentioned in Issue 5.2.19, ballot results files include a 32-bit UNIX-style timestamp with
the record of each cast ballot. This information could allow an attacker who can access the
ballot results file and who knows the Data Key to compromise ballot secrecy. For example, if
the time when each voter checks in is recorded in the poll log book, an attacker with access
to the log book could correlate this data with the timestamps to determine how voters voted.
Alternatively, observers in the polling place could note the time when target voters cast their
votes and find the corresponding vote records in the ballot results file.

The machine also encodes the time when each vote was cast as part of the barcode that
is optionally printed on each VVPAT record. If election officials have enabled printing of
barcodes, this design provides another opportunity for attackers with insider access to match
votes with voters’ identities. Procedures for handling and auditing the ballots could mitigate
or exacerbate this vulnerability. In particular, if the ballot barcodes are scanned as part of the
audit process, access to the resulting data must be carefully safeguarded. Fortunately, GEMS
provides a configuration option to disable printing of barcodes on VVPAT records, in which
case the timestamp will not be included on VVPAT records but will still be included in the
ballot results file records.

Issue 5.2.21: Ballot serial numbers are chosen using an insecure method, which may allow attackers to
discover the order in which ballots were cast.

The AV-TSX assigns a serial number to each ballot cast. The serial number is recorded as
part of the election results file, optionally printed on the paper ballots in barcode form, and
displayed in various parts of the AV-TSX user interface. To protect voter privacy, the AV-TSX
attempts to hide the order in which ballots are cast by assigning ballot serial numbers using
a cryptographic pseudorandom function.

Kohno, et al. [26], in their study of an earlier version of Diebold’s software, discovered that the
mechanism used to assign these pseudorandom serial numbers was insecure and could allow
an attacker to recover the true order of the votes. Diebold has since updated the software to
use a different method, but attacks are still possible in spite of the changes.

Today, BallotStation assigns serial numbers by (essentially) running a custom 20-bit block
cipher in counter mode. The block cipher is based on a Feistel network, using AES as the
round function. (Comments in the source code refer to section 14.10 of Bruce Schneier’s
Applied Cryptography.) The network consists of 8 rounds, where the ith round computes,
for a 10-bit half xi, c = AES(xi) and extracts the 10-bit substring beginning at bit 16 · i.
Serial numbers are encrypting a 20-bit counter using this block cipher. The software requires
serial numbers to be no greater than 1,000,000, and it skips over ones that do not satisfy this
constraint.

For this scheme to be secure, the encryption key for the AES cipher must remain secret.
BallotStation generates this key by taking a value called the BRS Signature and encrypting
it with the Data Key. It generates the BRS Signature when the ballot results file is created by
taking the MD5 hash of several values from the results file header, such as the machine serial
number, plus the system’s tick count (the number of milliseconds since the machine booted).

Most of the values from the election header are printed in election logs or displayed in the
voting machine user interface, so an attacker could launch a brute force attack to guess the

5.2 AccuVote-TSX 50

5. Selected Specific Issues

system tick count. However, an easier attack may be possible, since BallotStation uses the BRS
signature value as part of the filename for the ballot results files. This means that an attacker
who could obtain the Data Key (see Issue 5.2.5) and determine the name of the ballot results
file could quickly calculate the list of ballot serial number in the order in which they were
cast. With this information, an election insider might be able to match the VVPAT records
to individual voters, or an attacker with a copy of the ballot results file could determine the
order in which all votes were cast, even if Issue 5.2.19 and Issue 5.2.20 were fixed.

Issue 5.2.22: Files on the voting machine are not securely erased when they are deleted.

BallotStation deletes files from the memory card or the machine’s internal flash memory at
various times during the election process. For instance, it allows election officials to delete the
backup copies of old ballot results and audit logs that are stored on the machine. Deleting old
these files is important for safeguarding the secrecy of the ballot, since, as described above,
the contents of the files may reveal how voters voted.

However, when BallotStation delete files, it does so using the standard Windows
DeleteFile() API. This function removes the file from directory listings, but it does not
securely erase the contents from the memory card. Even after being deleted, the data will
remain in the memory card until it are overwritten with other data, which may take multiple
election cycles. An attacker with access to the memory card, unsupervised physical access to
the machine, or the ability to run malicious software on the voting machine might be able to
recover the contents of these files even after BallotStation deletes them.

Issue 5.2.23: Logic errors may create a vulnerability when displaying bootloader bitmap images.

When the machine boots, it uses incorrect code to display a bitmap image. Since this code
only loads images from the bootloader memory, an attacker would need to be able to modify
the bootloader (for instance, using Issue 5.2.1) in order to exploit this issue. However, an
attacker with the ability to modify the bootloader could simply insert malicious code directly,
without having to exploit the bitmap display error. Therefore, the impact of this vulnerability
is low, but we describe it in detail as an example of code quality problems in the bootloader
and because it underscores the challenges of thorough code review and testing.

The following is a short except of the bootloader bitmap display code:

graphics.c:253

253 void GlibPutPixel(UINT xx, UINT yy, Pixel_t Color)
254 {
255 // Check for library not initialized or (x,y) out of range
256 if(FrameBuffer != FALSE || (xx < USER_X) || (yy < USER_Y))
257 {
258 // Compute the frame buffer offset and write the pixel
259 FrameBuffer[FB_OFFSET(xx,yy)] = Color;
260 }
261 }

The GlibPutPixel function is used to write pixels from a bitmap into a buffer. Line 256
was intended to check that the data being written lies within the boundaries of the buffer.
However, the programmer mistakenly employed logical “or” operations where logical “and”
operations are required. The correct code differs in a subtle but crucial way:

if(FrameBuffer != FALSE && (xx < USER X) && (yy < USER Y))

The result is that the boundary checks have no effect. As long as the FrameBuffer condition
holds, the if statement will succeed. As constructed, GlibPutPixel would allow a
specially crafted bitmap file (embedded into the bootloader by an attacker) to overwrite
portions of memory, possibly leading to the execution of malicious code.

Issue 5.2.24: AV-TSX startup code contains blatant errors.

startup.cpp:287

5.2 AccuVote-TSX 51

5. Selected Specific Issues

287 TCHAR name;
288 _stprintf(&name, _T(‘‘\\Storage Card\\%s’’), findData.cFileName);
289 Install(&name, hInstance);

Here, name is not a character array but a single character in memory. The stprintf function
expects its first parameter to be a character array, so the programmer had to use the & operator
to get the address of name, rather than its value. The result is an obvious buffer overflow. A
string that includes the filename, which could be under an attacker’s control, gets copied over
whatever data resides in the memory region following name.

That this code works at all seems purely accidental. Memory corruption occurs even when
legitimate .ins files are used. An attacker who included a file with a long name or a name
containing particular characters might be able to crash the program or, possibly, execute
malicious code.

This bug sheds light on the vendor’s software engineering practices, because it is a very
unusual error for an experienced C++ programmer to make. Characters and character arrays
are very different constructs in C++. Students using the language for the first time might
confuse the two, but experienced programmers who understand basic concepts like pointers
would be unlikely to confuse them. The probability that an experienced C++ programmer
would make such a mistake or overlook it during even a cursory review of the code is
exceptionally low. This suggests to us that after this code was written it was not reviewed
by any other engineers at Diebold.

5.3 GEMS

In analyzing GEMS, we focused on several interfaces that serve as points of entry for external data.
These interfaces allow for:

• Communication with AccuVote-TSX machines via TCP connections

• Communication with AccuVote-OS machines via raw byte streams

• User input via the graphical user interface

• Interaction with the database

There are other interfaces, such as data importation, that we were unable to examine within the
limited time of our review. Therefore, other problems may exist.

Many of the most dangerous vulnerabilities that we found in GEMS relate to its use of and
interactions with the database. In general, data from the database is fully trusted by GEMS. The
developers apparently made an implicit assumption that malicious parties would be unable to
subvert GEMS itself or to modify the database outside of GEMS. On the GEMS server that the
Red Team received from Diebold, such trust does not appear to be warranted. According to the
Red Team, Diebold representatives indicated that the configuration of the GEMS server that we
received matches what a county typically would receive [3].

We identified the following specific issues with GEMS:

Issue 5.3.1: GEMS uses the Microsoft Jet data layer.

Essentially, a data layer is the component that directly modifies the underlying data store of a
database. A data layer may be combined with an application layer, such as Microsoft Access,
that allows users to more easily interact with that data layer. In practice, the term “Access”
typically refers to the combination of the Access application layer with the Jet data layer [7].

Microsoft offers two popular data layers, Jet and SQL Server, to meet the varied needs
of diverse users and organizations. According to Microsoft documentation “The strength
of Access [Access/Jet] is its ease of use, rapid application development environment,
and simplistic distribution. . . The strength of SQL Server is its more robust data integrity,

5.3 GEMS 52

5. Selected Specific Issues

scalability, security, and manageability.” [7] While Jet may be appropriate and even desirable
in a wide variety of cases, other options seem more appropriate for a critical election scenario.
For example, Microsoft recommended against the use of Jet in Cuyahoga County, Ohio due
to the large scale of the county’s election [12]. Ryan and Hoke [30] discuss additional issues
with the use of Jet.

Even if GEMS used Jet with extreme caution and implemented any additional necessary
features above the data layer, Diebold’s choice of Jet is questionable when alternative
solutions exist that seem more appropriate. Barring a compelling reason, Diebold should
switch to SQL Server or another appropriate alternative.

Issue 5.3.2: Anyone with access to the GEMS server’s local disk can modify the GEMS database.

Anyone with access to the database files could use Microsoft Access to modify them, even
while GEMS is running. GEMS does not lock the entire database while it runs, so modification
of any value in the database seems possible at nearly any time. This allows malicious insiders
to bypass the access control and other restrictions in GEMS.

We have successfully modified a database using a hex editor, so Access is not even necessary.9

Given access to the disk, a malicious user could create custom software to carry out elaborate
attacks against the database automatically (e. g., see Issue 5.3.7). Using exploits discussed in
the Red Team report, an attacker may even be able to hack into the GEMS server over the
local area network and modify the database [3].

We have tested modification of election results, audit logs, candidate names, user names,
user passwords (in combination with Issue 5.3.8), user access levels, and a variety of other
data using programs other than GEMS.

Issue 5.3.3: GEMS trusts the graphical user interface (GUI) to safeguard data and enforce security
constraints.

In a number of cases, GEMS relies on the state of widgets to enforce when and how users
may modify data in the underlying database. For example, if a user without administrator
access attempts to edit her user options, she will see a window in which the “Administrator”
checkbox is blank and disabled. The disabled checkbox is the only safeguard that prevents
the user from giving herself administrator access. Using a small, freely available program,
we successfully enabled disabled widgets, and GEMS automatically updated the database to
match those changes.

Were users without administrator access able to install similar code on a GEMS server (for
example, by installing a CD), they could give themselves administrator access. Through a
series of steps, a malicious user without administrator access would even be able to delete
the primary administrator account.

The ability to subvert GUI-enforced controls in GEMS allows for a variety of other attacks.
For example, vote totals are reported based on numeric identifiers that map to candidates.
An attacker could change the mappings even after the election has begun, meaning that
the GEMS server would have different mappings than the voting machines. While we have
not tested this attack, we believe that it would cause vote totals to be reported for incorrect
candidates (the Red Team has tested a similar attack for us — see Issue 5.3.5).10

Since this attack subverts the GEMS application’s own user interface to modify election data,
it is simpler than other ways of tampering with data in memory, and it could be carried out
by an attacker with relatively little technical skill.

Issue 5.3.4: Procedures described in Diebold system documentation place too much trust in third-party
transcription and translation services.

9For our tests, we needed to close GEMS prior to modification, but it may be possible to modify the database while
GEMS is running using programs other than Access.

10Changing identifiers can change the order in which candidates appear on results reports, but election officials would
need to know that the order is incorrect to catch this.

5.3 GEMS 53

5. Selected Specific Issues

GEMS and the AV-TSX support multiple languages through language-specific text (RTF)
files. Chapters 5.4.2.2 and 5.4.2.3 in the GEMS Election Administrator’s Guide [10] describe
the process of translating ballot information from English into a foreign language using a
third-party translation agency. These processes appear to place inappropriate trust in the
translation agency.

Two processes are documented:

1. (5.4.2.3) Send the entire GEMS database to the translation agency. The translation agency
modifies the database directly using its own copy of GEMS. The agency then returns the
modified GEMS database, which is considered to be the official election database.
If the translation agency is malicious, it could embed malicious data into the database
that will compromise GEMS (Issue 5.3.7), all AV-TSXs, and all AV-OSs in the county. The
Election Administrator’s Guide does state that this option “requires that the translation
agency. . .not compromise the integrity of the database and the election.” The guide does
not note, however, that a malicious translation agency can subvert all GEMS and AV-TSX
software in the county. This level of trust in translation agencies is dangerous.

2. (5.4.2.2) Send the RTF files to a translation agency by invoking the GEMS “Export
RTF” function. The translation agency edits the RTF files and returns files containing
translations. Officials can use the GEMS “Import RTF” function to load the translated
files into GEMS.
The Election Administrator’s Guide says nothing about trust in the translation agency
when following this process. This could lead a security-conscious election administrator
to believe that sending only RTF files to a translation agency would result in no security
problems. Unfortunately, a malicious translation agency with access to only the RTF
files could crash or possibly run malicious code on the AV-TSXs used for voting (see
Issue 5.2.15).

Similar issues apply to the use of third-party audio recording agencies.

Issue 5.3.5: Race and candidate labels may be changed after GEMS has been “set-for-election.”

GEMS allows election officials to change race and candidate labels after the election data has
been transferred to the voting machines. Comments in the code indicate that this feature is
desired to allow for correction of spelling errors, but the comments acknowledge that this
raises a “big security issue.” Results from voting machines are reported by numbers mapped
to candidates and race names, not by the names themselves. Thus, swapping the names of
two candidates or races will cause votes to be attributed to the wrong candidates or races in
GEMS.

An attacker would have to solve several challenges to exploit this weakness. The attack
would need to occur on the master GEMS server — otherwise, the candidate numbers would
map to the correct names on the machine that compiles results. Also, party labels cannot
be swapped (we ignore the possibility of changing party affiliations using Issue 5.3.3).
Since swapping names could therefore cause mismatched party affiliations, swapping two
candidate names alone might arouse suspicion if results include both candidate name and
party. In addition, swapping yes/no answers for ballot issues would result in a no/yes
ordering that might look suspicious.

Some of these challenges do not apply in certain cases, such as party primaries, and others
can be overcome. For example, by changing both candidate and race names, an adversary
could cause the results:

Mayor
Candidate A (Rep) 550
Candidate B (Dem) 450

5.3 GEMS 54

5. Selected Specific Issues

District Attorney
Candidate C (Rep) 400
Candidate D (Dem) 600

to instead be reported as:

District Attorney
Candidate C (Rep) 550
Candidate D (Dem) 450

Mayor
Candidate A (Rep) 400
Candidate B (Dem) 600

Candidate A should have won the mayoral race, and Candidate D should have won the
district attorney race. Based on these values, however, Candidate B would win the mayoral
race, and Candidate C would win the district attorney race.

These attacks can be easily detected during the official canvass by comparing summary tapes
printed at the polling place against the official results produced by GEMS.

A better solution for spelling errors might be to allow officials to append notes to reports
rather than allowing officials to change actual labels. This would also keep officials from
using this flaw to accidentally or purposely cover up spelling or labeling errors that could
have confused voters during the election.

Although this vulnerability is unfortunate, honest documentation of potentially dangerous
design decisions and the corresponding rationale is tremendously useful for both reviewers
and future developers and should be encouraged. We emphasize that the problem here is
not the presence of the source code comment quoted earlier, and the solution is not to delete
that comment from the code. Difficult design decisions are sometimes necessary and always
warrant justification. The problem here is that, even when potential issues were documented,
quality assurance processes failed to produce less dangerous alternatives.

Issue 5.3.6: GEMS fails to filter some user input before using it in SQL statements.

When requesting log-in credentials from a user, GEMS places the username input string
directly into a SQL statement without filtering that string. This would allow an attacker
to conduct a minor SQL injection attack against the database. A carefully crafted username
string would allow a malicious user to gain additional database information. For example,
assume that GEMS executes the query:

SELECT password FROM users WHERE username=’ username’ ;

(where username is the user input) and compares the user’s password (from the database)
to the typed-in password to determine whether the user should receive access.11 If the user
already has an account, the user is able to ask true/false questions about the contents of any
table in the database. For example, suppose that a malicious user mallory wishes to learn
whether alice has administrator access to GEMS. Rather than entering mallory as her
username, she could enter:

mallory’ AND (SELECT COUNT(*) FROM users WHERE
username=’alice’ AND access=’admin’)=1 AND
’1’=’1

This would cause GEMS to execute the SQL statement:
11This is a simplified version of the GEMS login process.

5.3 GEMS 55

5. Selected Specific Issues

SELECT password FROM users WHERE username=’
mallory’ AND (SELECT COUNT(*) FROM users WHERE
username=’alice’ AND access=’admin’)=1 AND
’1’=’1 ’;

If mallory enters her correct password and can log in, she learns that alice must be a user
with administrator access. Otherwise, she learns that alice does not have administrator
access.

While this particular vulnerability does not appear to allow modification, addition, or
removal of data, this is only due to the apparent constraints of Jet. Based on our tests, Jet
does not allow statements that can modify the database to appear inside SELECTqueries,
and it does not allow multiple SQL statements to be sent in one SQL query. However, relying
on these limitations of the database engine is bad practice, as they may change in future
versions.

Issue 5.3.7: In several cases, GEMS trusts data from the database not to be malformed.

Multiple buffer overflows are possible if an adversary is able to modify data in the GEMS
database. Data including text preferences and district information is trusted to be less than
a given length. All identified buffer overflows appear to impact data on the stack, meaning
that a straightforward “stack smashing” attack would be possible.

In one case, GEMS copies data pertaining to election districts from the database into a
CString , resulting in a CString that may be arbitrarily long.12 GEMS then creates a
constant-sized buffer on the stack and copies a slightly modified version of the CString
character-by-character into the buffer — and, if the string is too long, beyond the end of the
buffer. In our tests, we are able to crash GEMS by changing text in the relevant field of the
database. We expect that an adversary with access to the database could use the vulnerability
to execute arbitrary code on the GEMS server.

In another case, GEMS copies a table entry relating to various formatting preferences from
the database to a CString . It then parses that string, copying an arbitrary-length substring
pertaining to text formatting into a constant-sized buffer. More than one problematic path
to the flawed code exists, but we believe that the buffer is on the stack in all known cases.
We were able to crash GEMS by modifying any one of multiple entries in the database and
believe that an adversary could exploit the flaw to execute arbitrary code.

See private appendix Issue 5.3.7 for more information.

Issue 5.3.8: Attackers can create a valid “encrypted” password from any desired user password, without
needing to know any cryptographic keys.

To encrypt user passwords for storage in the database, GEMS calls the OpenSSL function
DEScrypt with the plaintext password and a two character salt as parameters. To generate
the salt, the program relies on the rand function, seeded by the present time. DEScrypt
uses the salt to introduce disorder in the DES encryption algorithm, and it uses content from
the first eight characters of the password as a key. The algorithm uses the key to encrypt a
static string, and DEScrypt returns a string containing the two-character salt followed by
the algorithm result [34, 5]. GEMS writes the returned string to the database. While GEMS
calls this “encryption”, it would be more accurate to describe this as hashing the password
and salt using a deterministic hash function.

This process is problematic for several reasons. First, any user with access to the database can
choose a secret password and salt, create an encrypted password, and replace the password
in the database with the new value known. If this new password is known only to the user,
this could be used to take control of other users’ GEMS accounts.

12While Access/Jet has length limits depending on the field type, the attacker can simply change the field type to permit
arbitrary-length values. This attack does not rely on changing the field type, however, as the present field type allows
sufficiently long values.

5.3 GEMS 56

5. Selected Specific Issues

Second, a user with a valid GEMS account but without access to the database could use Issue
5.3.6 to rapidly learn the salt of another user. Even a naı̈ve approach of guessing the first
character then the second character would require 128 or fewer tries, and a user could cut
this to twelve or fewer using binary-search techniques. The expected number of guesses
grows linearly with the length of the salt. The same techniques could be used to learn the
other user’s encrypted password. Given the salt and encrypted password, a malicious user
would have everything necessary to guess the corresponding password without additional
interaction with GEMS or modification of the database. If the password is relatively weak,
this process may be almost trivial with an off-line dictionary attack [25]. If not, the process
would be far more difficult: an attacker could be reduced to brute-force guessing eight
random characters. Nevertheless, such attacks are not unprecedented [27], and an adversary
able to obtain special-purpose hardware could conceivably learn the password in time for
an election within months or fewer after learning the salt.13 Changing passwords regularly
or using both longer passwords and an encryption function utilizing longer keys might help
mitigate any potential for password cracking. That said, the impact of this weakness appears
to be relatively minor, compared to other issues described here (e. g., Issue 5.3.2, Issue 5.3.7).

Issue 5.3.9: In several cases where GEMS converts signed integer values to strings, GEMS writes them
into buffers that are too short.

In several cases, GEMS copies signed integer values into ten-byte character buffers. In
addition to the ten digits that a 32-bit signed integer may contain, its string representation
requires a terminating character and may require a negative sign, making a buffer of twelve
bytes necessary. While an attack could potentially overwrite the buffer by up to two bytes,
the executable is compiled with DWORD alignment and, consequently, the data following
the buffer will start at least two bytes past its end in each of these cases. This means that the
flaw probably is not exploitable. Nevertheless, as pieces of code tend to migrate elsewhere in
a project, these errors should be corrected. In addition, this code may eventually be used in
an application without DWORD alignment.

We have not confirmed that making the integer value negative or large enough to cause
a buffer overflow is possible in every one of these cases but we still consider this code
dangerous.

See private appendix Issue 5.3.9 for more information.

13The COPACOBANA system, utilizing approximately $10,000 of special-purpose hardware, reportedly is capable of
cracking DES in under nine days on average [27].

5.3 GEMS 57

CHAPTER 6

Procedural Safeguards and their
Limitations

In this chapter, we discuss the extent to which changes in election procedures can compensate
for the security shortcomings of the Diebold software. Although we believe that some of the
procedures that we describe below may help reduce the risk posed by these vulnerabilities, we
stop short of endorsing any of them because we are not confident that anything short of a redesign
of the Diebold system can provide an acceptable level of security.

6.1 Logic and Accuracy Testing

Logic and accuracy testing provides little defense against software-based attacks. Malicious
software running on the machines can detect whether officials are performing logic and accuracy
tests and can force the machine to behave normally until the testing completes.

6.2 Commercial Virus Scanners

Commercially available virus scanners provide little defense against the kinds of attacks described
in this report. They normally are only able to recognize PC viruses that have been observed in the
wild on many computers. However, they cannot detect new attacks never seen before, and they
are not designed to detect virally propagating malicious code that targets voting equipment and
voting software.

6.3 Stricter Chain of Custody Measures

We are not optimistic that stricter chain-of-custody controls will prove effective in addressing the
vulnerabilities identified in this report. We were not able to identify any realistic procedures
that would ensure that voting equipment and memory cards remain under two-person control
at all times. Leaving voting machines unattended overnight in a polling place breaks the chain
of custody and creates an opportunity for an attacker to tamper with the machines. Sending
voting equipment home with the chief poll worker allows that person unsupervised access to the
equipment; since in many counties essentially any registered voter who volunteers can become a
poll worker, it is difficult to prevent an attacker from becoming a poll worker. Since it might take
only one compromised machine to spread a virus to all the county’s voting machines, the prospects
for devising chain-of-custody rules that will meet the necessary level of perfection in practice seem
dim.

58

6. Procedural Safeguards and their Limitations

6.4 Tamper-Evident Seals

We do not expect that tamper-evident seals will be effective at detecting tampering with voting
equipment while it has been left unattended. First, the Diebold polling place equipment does not
appear to have been designed to meet this threat model. We understand that the Red Team has
identified several ways that a voter might be able to tamper with an AV-TSX machine while in the
process of voting [3]. Second, most, if not all, tamper-evident seals have known vulnerabilities that
could allow an attacker to break them and then replace them or restore them to a condition where
the tampering is unlikely to be detected [21]. Third, it is challenging to devise protocols that make it
likely that poll workers will detect and respond appropriately to tampering; few poll workers have
prior training as a seal inspector, and it is not practical to provide the kind of training that would be
needed in the already-rushed training that poll workers receive. Fourth, the false alarm rate (where
seals are broken or unverifiable for innocuous, ordinary reasons) is so high that election workers
may become inured to these issues; it may be difficult to ensure that broken seals are consistently
taken seriously enough. Since it only takes one compromised machine to infect the entire county’s
voting machines, we do not believe that tamper-evident seals can prevent introduction of virally
propagating malicious code. See Section A.5 for a further discussion of tamper-evident seals.

6.5 Forensics

Forensics performed after election day may be helpful to determine the cause and nature of
attacks. However, procedures to govern forensic analysis should be in place before any problems
are detected. Viruses and other malicious software could be designed to remove traces of their
activities from the voting machines at the end of the election, so workers need to collect and
preserve evidence even before they suspect an attack. Ideally, some number of voting machines
and memory cards should be randomly selected and set aside, unused, so that any attack software
present will be preserved for analysis.

6.6 Parallel Testing

Parallel testing is another partial mitigation to consider. Parallel testing involves selecting a random
sample of DRE machines, taking them aside, and running a mock election on election day using the
equipment. By preparing a known voting slate, one can compare the results from those machines
against the inputs that mock voters entered. Typically, parallel tests are videotaped so that it is
possible to go back and review any discrepancies. Parallel tests are one way to detect bugs or
malice in DRE software, if the faulty software is widespread enough that the random sample is
likely to pick at least one DRE that exhibits incorrect behavior.

The reliability of parallel testing at detecting malicious code appears to be open to debate. The
effectiveness of parallel testing is heavily dependent upon the details of how the testing is done.
If malicious software can distinguish when it is being tested from normal operations, for instance
by looking for mistakes that inexperienced voters would make but officials performing tests would
not, then the malicious software can evade detection by behaving correctly when it is under test.

Ultimately, parallel testing becomes an arms race between attack designers and officials who
plan realistic parallel tests. The defenders attempt to design testing procedures that mimic real
elections as closely as possible, while we must assume the attackers will try to design methods to
detect when they are being tested. It is not clear who has the advantage in this race. The problem
with this kind of arms race is that it is difficult to know who is winning. Thus, there is a risk that
an attacker might develop a secret way to defeat parallel testing, leaving the defenders with a false
sense of security about election integrity.

Another way to thwart parallel testing would be to use a secret knock (a series of inputs known
only to the attacker that would be unlikely to happen by chance) to control activation of the vote-
stealing code [4]. A secret knock could be used to activate the virus, though this would require the

6.4 Tamper-Evident Seals 59

6. Procedural Safeguards and their Limitations

virus author to have conspirators who could access each of the voting machines where votes would
be stolen. Alternatively, a secret knock might serve to deactivate the vote-stealing code, though this
would require the help of an insider in the parallel testing process.

Parallel testing only defends against malicious software on the AV-TSX DREs. It does not defend
against malicious software at county headquarters, such as malicious software on GEMS or on the
central-office AV-TSX/AV-OS units.

Parallel testing is more effective at detecting attacks than at preventing them from disrupting the
election. Suppose testing reveals that a small number of votes are recorded for the wrong candidate.
If the test is conducted on or close to election day, there may not be enough time to determine the
cause. As described above, it may be difficult or impossible to determine the correct vote totals if
attack code is running on the machines on election day. Denial of service attacks present an even
greater challenge. Officials have few recovery options if they discover shortly before the election
that the machines will fail the next time they are used, and parallel testing on election day provides
no advance warning of such a failure.

Finally, unless parallel testing is performed on a very large number of machines, it will have
a low probability of uncovering attacks that are directed only at specific precincts or election
conditions. Other mitigation strategies must be applied to control these risks.

Despite these limitations, parallel testing may still have value at detecting viral attacks and
human factors attacks on the VVPAT, like those discussed in Section 3.3. We leave it to others to
analyze the cost-effectiveness and appropriateness of parallel testing.

6.7 Voter-Verifiable Paper Records

One of the critical security mechanisms in the Diebold voting system is the voter-verifiable paper
trail, namely, the paper ballots for the AV-OS and the VVPAT records for the AV-TSX. The idea is
that, in case an attacker manages to replace the certified software on the AV-OS or AV-TSX with
malicious software, the paper trail will provide a way to detect misbehavior by the malicious
software. Any strategy to mitigate the Diebold system’s technical problems must take into account
the limitations of the paper trail system. Therefore, we discuss the constraints these limitations
would impose on any solution.

Voter-verifiable paper records (paper ballots and VVPATs) are perhaps the best defense against
vote-stealing attacks; however, as discussed in Chapter 3, they may not be adequate to detect and
recover from attacks that change only a small number of votes. The design of the paper audit trail
greatly influences its effectiveness. Voters should be strongly encouraged to review the contents of
the VVPAT record and to report any discrepancies to poll workers. Discrepancies should be logged
and reported to election officials and centrally tracked on election day to monitor for signs of a
widespread problem.

VVPATs provide little defense against most kinds of denial-of-service attacks, since the
machines cannot print VVPAT records if they are not operational. Attackers may also target the
VVPAT directly, for instance, by programming the machine to exhaust the supply of paper.

6.8 Ballot Secrecy Protections

The ballot secrecy problems identified in this report are difficult to mitigate. After-the-fact pro-
cedural controls seem inherently inferior to technological measures that randomize the electronic
records at the time the vote is cast. We recommend that the AV-TSX software be fixed to ensure that
the electronic records retain no trace of information that might reveal voter identity and to ensure
that the electronic cast vote records are independent of the order in which voters voted.

Until the software can be fixed, there may be no fully satisfactory solution, but we can identify
several stop-gap steps that election officials could consider adopting if they must use the AV-TSX:

• Do not record voter names in the sign-in roster sheet in the order that voters sign in. For
instance, one might use roster sheets that have voter names pre-printed in alphabetical order.

6.7 Voter-Verifiable Paper Records 60

6. Procedural Safeguards and their Limitations

• Do not use e-pollbooks that record or transmit any information about the order in which
voters signed in.

• Consider introducing procedural mechanisms to ensure that county staff who are present at
a polling place are not given access to the electronic or VVPAT records for that polling place.

• Limit the number of individuals with access to the GEMS network to the minimum necessary,
and ensure that they can be trusted. Do not give temporary workers access to GEMS, the
network that GEMS is connected to, or other devices that are connected to GEMS.

• Limit or prohibit access to the raw ballot results files stored on the memory cards.

• Use the Key Card Tool to change the cryptographic key on every AV-TSX machine in the
county to a secret, county-specific, unguessable key, and establish strict two-person control
over all AV-TSX memory cards that contain electronic records of voted ballots. These
measures make it harder for a malicious poll worker, who is entrusted with transporting
the memory card back to county headquarters, to make a copy of the electronic results files
for later analysis.

• Offer every voter the opportunity to vote on a paper ballot. Optically scanned paper ballots
are not subject to the ballot secrecy risks in the AV-TSX. Unfortunately, if the county does
not have an AV-OS scanner in every polling place, voters who vote on paper ballots do not
receive the benefit of overvote notification and thus may suffer from a higher rate of lost votes.
Counties in this position should adopt procedures to minimize the rate of lost votes, such as
screening all centrally counted paper ballots cast at the polls for overvotes or marginal marks
and manually examining those ballots for voter intent.

These mitigations are incomplete. Even if all of them were adopted, they still would not suffice to
completely address the ballot secrecy shortcomings of the AV-TSX.

The risks to ballot secrecy only apply to voters who vote on the AV-TSX. Therefore, voters who
use paper ballots are not subject to these risks. The impact of the AV-TSX ballot secrecy issues will
be proportional to the number of voters who use the AV-TSX; counties who use a hybrid model
and encourage most voters to use paper ballots will be affected less than counties where all voters
vote on the AV-TSX.

6.9 Minimizing Use of Modems and Shared Networks

Modems Modems pose a risk to election integrity. The risk is that someone may be able to
dial into the modems and compromise GEMS. If someone is able to do that, they may be able
to introduce virally propagating malicious code onto the server, which will then be able to infect
all the voting machines in the county in the next election. We are concerned that it would be easy
for software flaws or misconfiguration associated with modems to make it possible for someone to
mount such an attack. See Section 4.1.8 for further analysis.

The safest countermeasure is probably to simply avoid any use of modems. Under this
approach, modems would not be used for any purpose, not even to communicate unofficial
results on election night, and GEMS would never be connected to any modem or to the public
telecommunication system (or to any machine or network that is directly or indirectly connected to
such) at any time. The advantage of this approach is that it eliminates the possibility of a physically
remote attacker dialing in and hacking the voting system. The disadvantage of this approach is
that it may slow down the reporting of election results, particularly for geographically distributed
counties.

Regional processing The use of regional processing also poses similar risks, because it inherently
involves connecting GEMS to modems or shared networks.

Shared networks pose a risk that is analogous to that posed by modems. The degree of risk
may depend upon many factors, such as how many people have authorized access to the network,

6.9 Minimizing Use of Modems and Shared Networks 61

6. Procedural Safeguards and their Limitations

how easy it may be to gain unauthorized access to the network, and what else that network is
used for. At one extreme, connecting any component to the public Internet is very dangerous,
because it creates the opportunity for anyone anywhere in the country to attack the system. At the
other extreme, a physically secured point-to-point communication link may pose little risk. County
intranets and other shared networks may fall somewhere between these extremes and the risk they
pose depends upon the specific circumstances.

We mention several potential responses to this risk, in order of decreasing security:

1. The most secure countermeasure is to avoid any use of modems or other shared networks
and to avoid using regional processing. This eliminates the possibility for a physically remote
attacker to dial in and breach the security of GEMS.

2. A closely related variant is to use regional processing but avoid any use of modems or
networks. Instead, unofficial results could be transported from regional return centers to
county headquarters on write-once media (e. g., CD-R or DVD-R).

3. Another possibility is to use a physically secured point-to-point communication link, such
as a dedicated T1 line leased from the phone company. This may partially reduce but not
eliminate the risk. There remains the risk of configuration errors, attacks by phone company
insiders, breaches of security within the phone company, and breaches of physical security at
either endpoint.

4. A third approach is to use a commercial virtual private network (VPN) product to emulate a
point-to-point link. This carries the risk of configuration errors as well as the risk of software
flaws or cryptographic weaknesses in the VPN product. Unfortunately, configuring VPN
products securely can be tricky, and determining whether a VPN product has software flaws
is difficult. Therefore, this option may not be as safe as a dedicated point-to-point link.

5. Using modems is the riskiest approach. Because of the risk of configuration errors and
software flaws, we would not recommend this option even to expert system administrators.

Counties may wish to re-examine the security risks associated with regional processing and assess
whether the benefits outweigh the risks.

6.10 A Segregated Dual-GEMS Architecture

Another potential approach that is worth investigating involves deploying two separate GEMS
installations at county headquarters, a permanent GEMS and a sacrificial GEMS. The permanent
GEMS installation would be used for laying out the ballot, defining the election, and writing to
memory cards before the election. The sacrificial GEMS installation would be used for reading
memory cards, accumulating and tabulating results, and producing reports. The latter installation
can be reformatted after the election and is never used to write memory cards, so if it is infected by
a virus, at least the virus will not be able to spread to every other voting machine in the county.

This architecture is motivated by the observation that the key step in the propagation of the
virus of Section 3.1 is when an infected central-office unit is used to write many memory cards
destined for the field, infecting all of them. This step is what causes the virus to spread so rapidly.
If we can ensure that no infected central-office machine unit is ever used to write memory cards,
then we can prevent the rapid viral spread of Section 3.1.

The approach In more detail, we would have two entirely separate, isolated installations of
GEMS. Each would be a complete installation of GEMS and accompanying equipment, complete
with its own Ethernet network, port server, and central-office AV-TSX and AV-OS systems. The

6.10 A Segregated Dual-GEMS Architecture 62

6. Procedural Safeguards and their Limitations

AV -TSX

Memory
Card

Memory
Card

Download
AV -TSX GEMS 1

CD-R

Upload
AV -TSX GEMS 2

Air Gap

Polling Place Election HQ

Figure 6.1: Adopting a segregated dual-GEMS architecture would help protect against certain
kinds of viruses. Officials use one GEMS server and set of central-office voting machines to create
memory cards before the election. They use a second, physically separate GEMS server and set of
voting machines after the election to tabulate results. The GEMS database is transferred from the
first GEMS server to the second GEMS server using a write-once medium, such as a CD-R.

two systems would be carefully segregated and air-gapped1 to ensure that there are no cross-
connections. The sacrificial GEMS installation would be treated as presumed-to-be-infected, so
any machine or equipment that is ever connected to the sacrificial GEMS system must never again
be connected to the permanent GEMS installation. Strict procedural controls must be applied to
ensure that any media that has been connected to the sacrificial GEMS installation is securely erased
or reformatted before being used with the permanent GEMS installation.

Before the election, system administrators would reformat and reinstall all the machines and
software on the sacrificial GEMS installation, to bring up a clean sacrificial installation. County
staff would use the permanent GEMS installation to lay out the ballot, define the election, and
program all of the AV-OS and AV-TSX memory cards. Then county staff would write a backup
of the GEMS database from the permanent GEMS installation onto write-once media (e. g., CD-R
or DVD-R), carry the media by hand to the sacrificial GEMS installation, and install that GEMS
database onto the sacrificial GEMS. After this point, the permanent GEMS installation would not
be used for the remainder of the election.

On election night, as memory cards or other equipment are returned from the field, they would
be taken to the sacrificial GEMS installation (not the permanent GEMS installation). Memory cards
would be read using the central-office AV-TSX and AV-OS units that are part of the sacrificial
installation. The sacrificial GEMS would be used to accumulate and tabulate election results,
produce reports, and calculate the official election results.

Finally, after the election is over, all memory cards would be erased and reformatted using a
separate laptop (not connected to either GEMS installation) that is used only for this purpose. This
ensures that if the memory cards were carrying data infected with a virus, they have been returned
to a clean uninfected state. Some mechanism would have to be devised to securely reformat the
AV-OS memory cards.

System administrators could optionally reformat all devices that are part of the sacrificial GEMS
installation, including the GEMS PC. System administrators could then reinstall all of the software
on the sacrificial GEMS installation, in preparation for the next election. This ensures a clean copy
of the GEMS software. Unfortunately, there seems to be no reliable way to clean the sacrificial
AV-TSX machines, so reformatting the sacrificial GEMS PC may not be worth the effort.

1This is a term applied when two networks are kept physically separate to ensure that data cannot flow from one network
to the other. In particular, one ensures that no device attached to the first network is connected (directly or indirectly) to the
second network.

6.10 A Segregated Dual-GEMS Architecture 63

6. Procedural Safeguards and their Limitations

Security analysis This architecture prevents viruses introduced by outsiders or poll workers from
spreading rapidly over the course of two elections, as described in Section 3.1. While every device
in the sacrificial GEMS installation can be easily infected by viruses, this does not help the virus to
spread further. The sacrificial GEMS installation is only used for tabulating votes, an operation that
can be easily cross-checked during the official canvass by reference to the summary tapes printed
in the polling site. The architecture makes it difficult for a virus introduced by an outsider to infect
the permanent GEMS installation.

This architecture does not address viruses introduced by insiders. It also does not address
slowly spreading viruses. The architecture would need to be supplemented with some additional
practices, such as:

• No machine that has ever been used in the field or with the sacrificial GEMS installation
should ever be connected to the permanent GEMS installation. Several AV-TSX and AV-OS
units should be set aside for use as central-office units to be connected to the permanent
GEMS installation, and they should never be used for any other purpose.

• Memory cards and other media would have to be tracked very carefully to ensure that they
were never inadvertently inserted into the permanent GEMS installation, as doing so even
just once could permanently infect the permanent GEMS installation. For instance, one might
institute color-coded labelling and locate the permanent GEMS installation in a physically
remote location to reduce the likelihood of accidental procedural lapses.

• If accumulation within a polling site is used, the assignment of AV-OS and AV-TSX machines
to each polling place should be permanent. If two machines are assigned to the same
polling place in one election, election administrators should avoid assigning them to separate
polling places in another election, as that can enable the spread of viruses. If polling-site
accumulation is used, then the presumption should be that if any machine in the polling site
is infected, malicious code can propagate to infect all of the machines in the polling site. A
static assignment of machines to polling sites limits the spread of viruses.

• If modems are used, they should be connected to the sacrificial GEMS installation. No
component of the permanent GEMS installation should ever be connected to modems or any
other shared network.

6.11 The Alternative: A Voting System that is Secure by Design

Given the costs of designing a new voting system, leaving the Diebold software largely unmodified
and relying on procedural changes to mitigate the threats that we describe may seem attractive to
policymakers. We consider this to be a risky approach, however, because we are not convinced
that it is possible to fully resolve the security problems in the Diebold system through procedural
means. We are concerned that, because the Diebold system is vulnerable in so many ways, the
procedures needed to protect it would be extensive, complex, and hard to follow. We worry that
despite the best efforts and intentions of election officials, the procedures would not be followed
perfectly every time and the system would sometimes be left open to attack. As a result, we believe
that rather than attempting to retrofit security onto a flawed system, it is safer to reengineer the
Diebold system so that it is secure by design.

Building a secure voting system requires making security a central part of the design process
from the start. It also demands the involvement of election administrators, experienced software
architects and developers, and experts in software security and physical security. Such a system
would need to use design techniques appropriate for security-critical systems, such as threat
modeling, attack surface reduction, defense in depth, and privilege separation. It would need
to apply sound, generally accepted engineering practices for secure software, including input
validation, defensive programming, and security testing and assessment. Designing a secure
voting system is an expensive proposition that requires a long-term commitment, but the ultimate
benefit of doing so is increased confidence in the electoral process.

6.11 The Alternative: A Voting System that is Secure by Design 64

CHAPTER 7

Conclusion

Our study of the Diebold source code found that the system does not meet the requirements
for a security-critical system. It is built upon an inherently fragile design and suffers from
implementation flaws that can expose the entire voting system to attacks. These vulnerabilities, if
exploited, could jeopardize voter privacy and the integrity of elections. An attack could plausibly
be accomplished by a single skilled individual with temporary access to a single voting machine.
The damage could be extensive — malicious code could spread to every voting machine in polling
places and to county election servers. Even with a paper trail, malicious code might be able to
subtly influence close elections, and it could disrupt elections by causing widespread equipment
failure on election day.

We conclude that these problems arose because of a failure to design and build the system
with security as a central focus, which led to the inconsistent application of accepted security
engineering practices. For this reason, the safest way to repair the Diebold system is to reengineer
it so that it is secure by design.

We discussed a number of limited solutions and procedural changes that may improve the
security of the system, but we warn that implementing any particular set of technical or procedural
safeguards may still be insufficient. Similarly, fixing individual flaws in the system — even all of the
issues identified in this report — may not yield a secure voting system because of the possibility that
unidentified problems will be exploited. We are also concerned that future updates to the system
may introduce new, unknown vulnerabilities or fail to adequately correct known ones. We urge
the state to conduct further studies to determine whether any new or updated voting systems are
secure.

65

APPENDIX A

Threat Model

The first step in security analysis of a system is to define the threat model. The threat model for a
system is intended to describe the goals an attacker might have (e. g., to manipulate the vote count)
and the types of attackers that might attempt to attack the system (e. g., voters, poll workers, etc.)
as well as the capabilities available to each type of attacker. It is equally important to describe
the threats that are out of scope for the analysis. This study was chartered only to consider the
security of voting systems proper, not that of California’s entire election system, and therefore
many possible attacks are outside the scope of this report.

A.1 Reference Model

In order to simplify our analysis, we assume a common reference model, which distills the essential
features of all the voting systems involved in this study. The reference model consists of the
following components.

In the polling place:

• Management stations (MS)

• Direct recording electronic (DRE) voting machines, attached to Voter-Verifiable Paper Audit
Trail (VVPAT) printers

• Paper ballot optical scanner (optical scan) machines

At Election Central:

• An election management system (EMS)

• High-speed paper ballot optical scanners (e. g., for absentee votes)

The election can be thought of as proceeding in three stages (for simplicity, ignore early voting
centers):

Pre-voting: Before election day, election officials use the EMS to set up the election. They generate
the ballot definition(s) and record them onto media for distribution. During this stage, voting
machines are also prepared and distributed to polling places.

Voting: On election day, voters arrive at the polling place, are verified as being permitted to vote,
and cast their ballots.

Post-voting: After the polls close, the votes are tallied, the official canvass (including the one
percent manual recount) is performed, and the results are certified.

The relationship between these components is shown in Figure A.1.

66

A. Threat Model

EMS

DRE OPSCANMSVVPAT

Poll
Worker

DRE
Voter

Opscan
Voter

Token

Token

Token/
Votes

Ballot

Marked
Ballot

Ba
llo

t d
efi

nit
ion Ballot Definition

Results ResultsResults

Figure A.1: Reference architecture

A.1.1 Pre-Voting
In the pre-voting phase, election officials need to:

• Create the election definition

• Print the paper ballots used for optical scan systems

• Reset the local voting equipment and load the election definitions

• Distribute the local voting equipment to the polling places

Voting systems vary to a degree, but generally an EMS is used to create ballot definition
files. These are then loaded onto some memory cards/cartridges and/or directly onto the voting
machines. The vote counters in the machines are reset and the internal clocks are set to the correct
time before the machines are shipped out to the local polling places or provided directly to poll
workers. To protect ballot definition files from tampering, memory cards/cartridges are generally
distributed with physical security measures. These consist of either sealing them into the local
equipment at the central office or by distributing them in a sealed package. Seals may take the
form of tamper-evident tape or metal or plastic loops which, once installed, can only be removed
by cutting them.

A.1.2 Voting
The exact details of the voting phase differ with each technology and manufacturer, but there are
common aspects of each technology (DRE or optical scan).

Optical scan machines Optical Scan voting can be thought of as machine-counted paper ballots.
When a voter enters the polling place and receives permission to vote, he is given a blank paper
ballot. The voter marks the ballot with a pen or pencil and the ballot is then mechanically counted
with an optical scanner. This can be done either locally at the precinct or centrally at the county

A.1 Reference Model 67

A. Threat Model

election headquarters. When done locally, the precinct has a scanner that counts the ballots as they
are inserted. Generally, the voter inserts the ballot directly into the scanner. Precinct-based optical
scanners can detect “overvoting” and reject such ballots, giving the voter an opportunity to correct
the error. When the election ends, the scanner’s electronic records are sent back to the county for
aggregation with records from other precincts. The paper ballots are also sent back, for auditing
and recounts.

With central counting, untabulated ballots are sent back to the county’s election headquarters in
their original ballot box where they are tabulated with a high-speed scanner under the supervision
of election officials. Central- and precinct-based tabulation may be used together in a variety of
ways. Central tabulation is better suited for absentee ballots but can also be used for audits and
recounts of precinct-cast ballots, whether or not they were originally tabulated in the precinct.

DRE machines DRE voting differs fundamentally from optical scan voting. Instead of entering
their vote on paper, voters use a computer-based graphical user interface (GUI). Once each vote has
been “cast,” an electronic record is stored locally, in the DRE machine and possibly in the memory
card/cartridge or in another attached system. At the end of the day, these electronic records
may either be exported from the DRE machines to memory cards or transmitted via modems.
Alternatively, the DREs themselves may be transported to the county’s election headquarters.
In any case, the EMS will collect the electronic records from each precinct and tabulate them
electronically.

In DRE voting (as with optical scan voting), the voter enters the polling place and establishes
her eligibility to vote. However, because there is no paper given to the voter, authorized voters
must be prevented from casting more than one vote. In every DRE system we analyzed in this
study, the poll worker uses an administrative device to issue the voter some type of token. The
voter takes this token to any voting machine and is allowed to vote only once. The Diebold and
Sequoia systems use a smart card as a token, while the Hart system uses a four-digit “Access Code.”

Once the voting machine is activated, a voter can page through each contest and select her
choices. DRE machines do not allow overvotes (too many votes cast in a contest) but do allow
undervotes (too few choices cast in a contest). The voter is then presented with an opportunity to
review the ballot and then commits to it (“casts” it), at which point it is recorded to local storage.

California requires DREs to use a voter-verifiable paper audit trail (VVPAT). On all the machines
we studied, this takes the form of a sealed printer attached to the DRE that contains a continuous
spool of paper. Before the voter confirms the ballot, the machine prints out a paper ballot record
and displays it to the voter. Once the voter accepts or rejects the ballot, an appropriate indication
is printed on the VVPAT record. When the voter casts his ballot, the record is marked as accepted
and scrolled out of sight. Because the paper is displayed behind a glass panel, a voter cannot easily
“stuff” additional ballots into the machine or take the record of their vote home as a “receipt.”

When the election is over, the local results are transmitted to the county election headquarters,
typically by shipping a removable memory device from the voting machine. The VVPAT paper
rolls, perhaps still sealed in their printers, are also sent to the county for use in audits.

Typical deployments There are two common models for deploying this equipment in the polling
place, DRE-only and a hybrid model. In the DRE-only model, every polling place contains one or
more DRE machine and most or all voters vote on the DREs. The polling place contains no optical
scan machines. In the hybrid model, every polling place contains one optical scan machine and
one or more DREs. Voters either have the option of voting on paper ballots or using the DRE,
or the DRE may be reserved for voters with disabilities while all others vote on paper ballots. In
California, each county determines which model is most appropriate for its needs.

A.1.3 Post-Voting
After the election is over, the election officers need to do (at least) three things:

1. Tabulate the uncounted optical scan and absentee ballots

A.1 Reference Model 68

A. Threat Model

2. Produce combined tallies for each contest based on the records received from the individual
precincts and the tallies of centrally counted ballots

3. Perform the official canvass. This may involve reconciling the number of voters who have
signed in against the number of ballots cast, performing the statutory 1% manual recount,
and other tasks

It’s important to note that the second task is typically performed based on electronic records.
In the most common case, precincts send back memory cards containing election results which are
added directly to the tally without any reference to the paper trail (except, of course, for centrally
tabulated optical scan and absentee ballots).

The 1% manual recount compares the paper records of a given set of votes to the reported vote
totals. In the case of optical scan ballots, this means manually assessing each optical scan ballot. In
the case of DREs, it means manually assessing the votes on the VVPAT records. Note that while
in principle the optical scan tally may differ slightly from the paper ballots due to variation in the
sensitivity of the mark/sense scanner, the VVPAT records should exactly match the DRE records.

A.2 Attacker Goals

At a high level, an attacker might wish to pursue any of the following goals or some combination
thereof:

• Produce incorrect vote counts

• Block some or all voters from voting

• Violate the secrecy of the ballot

An attacker might wish to target specific types of voters or the populace at large. For instance, an
attacker might target voters who are registered to a particular party, or voters who live within a
certain geographic area for attack. The ability to determine how an individual voted also can be
used to enable vote buying or voter coercion, either individually or en masse.

A.2.1 Producing Incorrect Vote Counts
The most obvious attack on a voting system is to produce incorrect vote counts. An attacker who
can cause the votes to be recorded or counted in a way that is different from how people actually
voted can alter the outcome of the election. There are a number of different ways to influence vote
counts, including:

• Confuse voters into voting differently than their intent

• Alter the votes, within the computer, before they are recorded

• Alter votes in the vote storage medium, after they were originally recorded

• Corrupt the vote tabulation process

Whether or not specific attacks are feasible depends on attackers’ capabilities.

A.2.2 Blocking Some or All Voters from Voting
Two classical techniques to influence election outcomes, regardless of the election technologies
in use, are voter education/encouragement (i. e., “get out the vote”) and voter suppression. An
attacker might:

• Arrange for some subset of machines to malfunction

A.2 Attacker Goals 69

A. Threat Model

• Arrange for machines to selectively malfunction when voters attempt to vote in a certain way

• Arrange for all the machines in an election to malfunction

The first two attacks are selectively targeted and could be used to influence the outcome of an
election. The third, more global attack is primarily useful for invalidating an election, but could
also potentially be used for extortion.

A.2.3 Violating Ballot Secrecy
An attacker unable to influence voting directly might still be able to determine how individuals or
groups voted. He might engage in either:

• Vote buying and voter coercion

• Information gathering

In a vote buying attack, the attacker pays (or threatens) individual voters to vote in a specific
way. In order for this attack to be successful, the attacker needs to be able to verify how the voter
voted. Note that the attacker does not need to be absolutely certain how the voter voted—he must
only make the voter believe that the voter’s vote has a good chance of being verified.

Another reason an attacker might violate voter secrecy might be to gather information about
a large group of people. For instance, an attacker might wish to determine which voters were
sympathetic to a particular political party and target them for investigation or surveillance.
Alternately, an attacker might wish to publish a prominent voter’s votes in order to influence public
opinion. In either case, ballot secrecy is required to block this attack.

A.3 Attacker Types

Different kinds of attackers can attack the voting system in different ways. We consider the
following broad classes of attacker, listed roughly in order of increasing capability.

Outsiders: have no special access to any of the voting equipment. To the extent that voting or
tabulation equipment is connected to the Internet, modems, wireless technologies, and so
forth, an attacker can mount network or malware-based attacks. Outsiders may also be able
to break into locations where voting equipment is stored unattended and tamper with the
equipment.

Voters: have limited and partially supervised access to voting systems during the process of
casting their votes.

Poll workers: have extensive access to polling place equipment, including management terminals,
before, during, and after voting.

Election officials: have extensive access both to the back-end election management systems as well
as to the voting equipment that will be sent to each precinct.

Vendor employees: have access to the hardware and source code of the system during develop-
ment and may also be called upon during the election process to assist poll workers and
election officials.

Note that these categories are not intended to be mutually exclusive — an attacker might have
the capabilities of more than one category.

A common focus of security analysis is privilege escalation. In many cases, one participant in the
system is forbidden from performing actions which can be performed by another participant in the
system. A key feature of a secure design is enforcing such restrictions. For instance, a voter should
only be allowed to vote once, but poll workers are able to authorize new voters to access the system.

A.3 Attacker Types 70

A. Threat Model

A voter able to use his access to the voting terminal authorize new voters would be an example of
someone obtaining privilege escalation. Similarly, poll workers are entrusted with maintaining the
integrity of their polling place. If a poll worker were able to use his access to one polling place to
influence or disrupt the voting equipment located in other polling places, that would be another
example of privilege escalation.

A.3.1 Outsiders
An outsider has no authorized access to any piece of voting equipment. He may be physically
separated from the system or present but unable to physically touch the equipment. An outsider
has limited capabilities in the context of this review. They might, for instance, enter the polling
place with guns and forcefully manipulate the voting systems (at least until the police arrive). This
sort of attack is explicitly out of our scope, although the “booth capture” problem is very much a
real concern outside the U.S. [28].

Outsiders may have the power to mount network- or malware-based attacks. Both election
management systems and the development systems used by the voting vendors typically run on
general purpose operating systems (Windows, in the case of all the systems in this review). If those
machines are connected to the Internet, either directly or indirectly, an attacker might manage to
infect the systems and alter the software running on the machines. If so, any individual with an
Internet connection would have the opportunity to attack the voting system.

Outsiders may also have the power to physically tamper with voting equipment. In many
counties, voting equipment is stored unattended at the polling place the night before the election.
While polling places may be locked overnight, most polling places are low-security locations.
For example, they may be located at a school, a church, a public building, or a citizen’s garage.
Consequently, an attacker able to break into the polling place can likely obtain unsupervised
physical access to the voter equipment for several hours.

An outsider may also be able to impersonate other roles in the system, such as a vendor
representative or an election official. For example, an outsider might mail a CD containing a
malicious software upgrade to the election official in packaging closely resembling the official
packaging from the vendor.

A.3.2 Voters
An attacker able to register to vote would be able to launch voter attacks. Unlike an outsider, a
voter has physical access to voting machines for at least a short period of time. Because this access
is partially supervised, we would not expect a voter to be able to completely disassemble the voting
machine. However, in order to preserve the secrecy of the ballot, it is also partially unsupervised.
The details of the level of supervision vary to some extent from machine to machine and from
county to county. In particular, the difference between optical scan machines and DREs is relevant
here.

Optical scan machines In optical scan voting, the voter marks the ballot, which is a special type
of paper, herself. The voter then inserts the ballot into the optical scan machine, typically under
the supervision of a poll worker. Therefore, the voter is likely unable to tamper with the scanner
without being detected. This does not entirely preclude voter access to open I/O ports on the
scanner but does make an attack more difficult. The most likely avenue of voter attack is by the
ballot itself. For instance, a voter might mark malicious patterns on the ballot intended to subvert
the scanner or might attempt to vote multiple times. Such specific patterns could also be used to
trigger a dormant “Trojan horse” to cause a compromised machine to begin cheating.

DRE machines In DRE voting, by contrast, the voter has mostly unsupervised access to the voting
terminal for a short period of time. The front of the terminal is hidden by a privacy screen in order
to protect voters’ secrecy, allowing voters to mount a variety of attacks. Any aspect of the machine
that is accessible to a voter inside the privacy screen, including buttons, card slots and open I/O

A.3 Attacker Types 71

A. Threat Model

ports, must be assumed to be a potential point of attack. The voter also has an opportunity to
input data into the system via the normal user interface. It may be possible to use this interface to
compromise the machine.

In all the systems studied here, the voter is provided with some kind of token used to authorize
access to the DRE terminal to accept the voter’s vote. In the Sequoia and Diebold systems this is
a smart card and in the Hart system it is a four-digit access code. As the voter has access to these
tokens, the tokens are also a potential target of attack as the voter might attempt to substitute a
counterfeit token or subvert the smart card.

A.3.3 Poll Workers
Local poll workers have a significant capability that voters do not: legitimate access to the
management functions of the equipment. For instance, the poll worker has the ability to authorize
voters. Note that although in principle this may give the poll worker opportunities for malfeasance,
this risk may be mitigated by procedural controls. For instance, a poll worker who controls the
management station can in principle authorize a voter to vote an arbitrary number of times simply
by issuing multiple tokens. However, polling places would normally have procedures in place to
block or at least detect such attacks. Poll workers must perform their duties in public view, so any
such malfeasance might be noticed by other poll workers or other voters. Moreover, if at the end of
the day there were more votes cast than registered voters who signed in, officials would investigate
the cause of the discrepancy. Purely technical means may, alone, be insufficient to prevent such
attacks, but procedural mechanisms may be sufficient to address the risks.

Depending upon county practices, poll workers may also have long-term unsupervised access
to voting equipment. In some counties, voting equipment is stored in the houses or cars of
individual poll workers prior to the election. For instance, some counties provide the chief poll
worker at each polling place machines to store and deliver to the polling place. Even counties that
deliver machines by commercial transport may provide the chief poll worker with other equipment
(smart cards, smart card activation devices, management consoles, etc.) before the election. Even if
equipment is stored in a secured polling place, controls may not be in place to prevent individual
poll workers from accessing the area on their own. This provides a number of opportunities for
tampering with equipment. Many pieces of equipment include seals to detect such tampering,
but each system must be individually analyzed to determine whether these seals are effective and
whether they protect all the relevant access points.

It must be noted that poll workers are primarily volunteers and are subject to extremely minimal
security screening, if any is performed at all. In many counties the need for poll workers is so great
that any registered voter who calls and offers to serve sufficiently far in advance is almost sure to
be hired, and poll workers are often allowed to request to serve at a particular precinct. In practice
we must assume that any attacker who wants will be able to be a poll worker.

A.3.4 Election Officials
County election officials and staff have three significant capabilities that poll workers do not:

• Access to functionality of local voting equipment which may be restricted from poll workers

• Access to large amounts of local voting equipment between elections

• Access to the back-end election management system used for equipment management, ballot
creation and tabulation

For reasons of administrative efficiency, this access might be unsupervised or only loosely
supervised, depending upon county practices.

The first two capabilities imply greater ability to mount the kinds of attacks that poll workers
can mount. An election official with access to the warehouse where voting machines are stored
might be able to compromise all the equipment in a county rather than merely all the machines
in a precinct. In addition, the procedures for some equipment require that they be sealed — for

A.3 Attacker Types 72

A. Threat Model

instance, the memory cards or results cartridges may be sealed inside the machine — before they
are sent to the precincts. Because this sealing happens under the supervision of election officials,
those officials might be able to bypass or subvert that process.

The third capability is wholly unavailable to the local poll worker. The back-end election
management systems typically run on general purpose computers which are used by the election
officials. If those systems are subverted they could be used to compromise polling place voting
equipment, create fake or incorrect ballots, and to miscount votes. This subversion could happen in
at least three ways. First, many attacks can be mounted using only the attacker’s authorized access
and within the context of the technical controls which the systems are expected to enforce. For
example, the software may offer an opportunity for election official to make “corrections” to vote
tallies. Such “corrections” might be incorrect. Second, an election official might find a way to defeat
the technical access controls in the election management software and tamper with its vote records.
Third, the official could directly subvert the computers on which the software runs. Experience
with computer security shows that an attacker who has physical access to a general purpose
computer can almost always take control of it. This may be achieved in a number of ways ranging
from software attacks to directly compromising the system hardware. The clear implication of this
fact is that if election officials have unsupervised access to the election management systems, the
integrity of those systems is provided mainly by procedural controls and the honesty of officials,
not by any technical measures.

A.3.5 Vendor Employees
Finally, we consider attackers in the employ of the vendors. Such attackers fall into two categories:
those involved in the production of the hardware and software, prior to the election, and those
present at the polling place or Election Central warehouse during an election. An individual
attacker might of course fall into both categories.

An attacker involved in the development or production of the software and hardware for the
election system has ample opportunities to subvert the system. He might, for instance, insert
malicious code into the election software, insert exploitable vulnerabilities or back doors into the
system, or design the hardware in such a way that it is easily tampered with. Such attacks are
extremely hard to detect, especially when they can be passed off as simple mistakes or bugs as
those are extremely common in large software projects. It may be very difficult to distinguish
good-faith mistakes from deliberate subversion. Note that for such an attack to succeed it is not
necessary for the attacker to arrange for uncertified software or hardware to be accepted by election
officials or poll workers. Rather, the vulnerabilities would be in the certified versions. Neither the
current certification process nor this review is intended or able to detect all such vulnerabilities.

A vendor employee may also be present in the county to assist election officials or poll workers.
For instance, the employee might be present at Election Central during or after the election to help
election officials, either by answering questions or by helping to fix or work around malfunctioning
equipment. A vendor employee might also be present at Election Central to help install or maintain
the voting system or to train county staff or poll workers. A vendor employee might even be
present at the polling place or available by phone to assist poll workers or answer questions. Such
an attacker would have access to equipment comparable to that of poll workers or election officials,
but would also have substantial freedom of movement. Because they are being asked to correct
malfunctions and install and configure software, activities which are actually intended to subvert
the equipment are much less likely to be noticed. To the extent to which the systems have hidden
administrative interfaces they would presumably have access to those as well. Finally, vendor
employees pose a heightened risk because they may have access to multiple counties which use
the vendor’s equipment, and the ability of one individual to able to tamper with voting equipment
in multiple counties increases the scope of any potential subversion.

A.3 Attacker Types 73

A. Threat Model

A.4 Types of Attacks

We can categorize attacks along several dimensions:

• Detectable vs. undetectable. Some attacks are undetectable: they cannot be detected, no matter
what practices are followed. Others are detectable in principle, but are unlikely to be detected
by the routine practices currently in place; they might be detected by an in-depth forensic
audit or a 100% recount, for instance, but not by ordinary processes. Still other attacks are
both detectable and likely to be detected by the practices and processes that are routinely
followed.

The potential harm caused by the former two classes of attacks surpasses what one might
expect by estimating their likelihood of occurrence. The mere existence of vulnerabilities
that make likely-to-be-undetected attacks possible poses a threat to election confidence. If
an election system is subject to such attacks, then we can never be certain that the election
results were not corrupted by undetected tampering. This opens every election up to question
and undercuts the finality and perceived fairness of elections. Therefore, we consider
undetectable or likely-to-be-undetected attacks to be especially severe and an especially high
priority.

• Recoverable vs. unrecoverable. In some cases, if an attack is detected, there is an easy way
to recover. In contrast, other attacks can be detected, but there may be no good recovery
strategy short of holding a new election. In intermediate cases, recovery may be possible
but expensive (e. g., recovery strategies that involve a 100% manual recount impose a heavy
administrative and financial burden).

Attacks that are detectable but not recoverable are serious. Holding a new election is an
extreme remedy, often requiring contentious litigation. Also, unofficial election results,
once announced, tend to take on certain inertia and there may be a presumption against
abandoning them. When errors are detected, attempts to overturn election results can
potentially lead to heated partisan disputes. Even if errors are detected and corrected, a
failure can potentially diminish public confidence. At the same time, detectable-but-not-
recoverable attacks are arguably not as serious as undetectable attacks: we can presume that
most elections will not be subject to attack, and the ability to verify that any particular election
was not attacked is valuable.

• Wholesale vs. retail. One can distinguish attacks that attempt to tamper with many ballots
or affect many voters’ votes (“wholesale” attacks) from attacks that attempt to tamper with
only a few votes (“retail” attacks). For instance, attacks that affect an entire county or a large
fraction of the precincts within a county are typically classified as wholesale attacks, whereas
attacks that affect only one voter or one precinct are typically classified as retail attacks. This
is a useful distinction because, in most contests, retail fraud does not have an impact large
enough to change the outcome of an election. Because wholesale fraud has a more significant
impact, we focused especially on analyzing whether the systems are vulnerable to wholesale
fraud.

• Casual vs. sophisticated. Certain attacks require little technical knowledge, sophistication,
advance planning, resources, or access. For instance, stealing an absentee ballot out of
someone’s mailbox is a classic low-tech attack: anyone can execute such an attack, and no
special qualifications or skills or organization is needed. In contrast, other attacks may require
deep technical knowledge, specialized skills or expertise, considerable advance planning, a
great deal of time, money, or other resources, and/or insider access. This study examines
both sophisticated technical attacks as well as casual low-tech attacks.

We can also categorize defenses:

• Prevention vs. detection. Often, there is a tradeoff between different strategies for dealing
with attacks. One strategy is to design mechanisms to prevent the attack entirely, closing

A.4 Types of Attacks 74

A. Threat Model

the vulnerability and rendering attack impossible. When prevention is not possible or too
costly, an attractive alternative strategy is to design mechanisms to detect attacks and recover
from them.

Most election systems combine both strategies, using prevention as the first line of defense
along with detection as a fallback in case the preventive barrier is breached. For instance, we
attempt to prevent or deter ballot box stuffing by placing the ballot box in the open where it
can be observed. At the same time, we track the number of signed-in voters, account for all
blank ballots, and count the number of ballots in the box at the end of the day to ensure that
any ballot box stuffing that somehow escapes notice will still be detected. This combination
can provide a robust defense against attack.

A.5 Mechanisms for Tamper Sealing

Virtually every election system makes extensive use of tamper seals as a part of its security
design. This section presents a brief summary of how these mechanisms work and the level of
sophistication an attacker must have to violate them.

Tamper resistance refers to the ability of a system to deter an attacker from gaining access to
the system. This could take the form of software controls (e. g., careful limits on the protocols
spoken across networks) to procedural controls (e. g., the use of strong passwords) to hardware
mechanisms (e. g., strong locks). Tamper resistance generally refers to the amount of time, effort,
and/or sophistication required to overcome a security mechanism.

Tamper evidence is the flip-side of the coin to tamper resistance, representing the extent to
which an attacker’s attempt to overcome a tamper-resistance mechanism leaves behind evidence
of that tampering. For example, in a typical home, a burglar could easily break in by putting a
brick through a window. A plate-glass window offers little tamper resistance, but strong tamper
evidence (i. e., the effort that would be required by a burglar to reinstall a broken window and
clean up the broken glass is quite significant). For contrast, a typical door lock is far more tamper
resistant than the glass window. However, if a skilled burglar can pick the lock, there will be little
or no evidence that it had been picked.

In the context of voting systems, there are a number of tamper sealing mechanisms commonly
used:

Key locks: To prevent access to memory cards or sensitive machine ports, many voting machines
place a plastic or metal door in front of these ports, using a key lock. Assuming the keys
are suitably controlled (and unauthorized duplication is prevented), attackers would be
prevented from accessing the protected ports. Of course, if bypassable lock mechanisms are
used, or if access to the locked compartment can be gained without opening the lock, then
the locks will offer neither tamper resistance nor tamper evidence as has been observed with
both Diebold [14] and Nedap/Groenendaal [15] voting systems.

Wire loops: Many voting machines have adopted a mechanism commonly used with traditional
ballot boxes — the use of holes through which a metal or plastic wires loops may be fitted.
These seals have much in common with standard “tie wraps;” once fitted, the wire loop
cannot be loosened; it can only be physically cut off. Like key locks, the loops, when sealed,
lock a physical door in place. In common election practice, these seals are stamped or printed
with individual serial numbers. Those numbers are then logged when the seals are installed
and again when they are cut to detect the substitution of an alternate seal. An attacker with
simple tools may be able to clone the serial numbers from old wire loops to new ones without
detection [31].

Tamper-evident tape: Adhesive tape can be printed with numbered labels in the same fashion as
loop seals. Typically, two different adhesives are used, such that if/when the tape is removed,
part of the label will remain stuck to the lower surface while part of the label will be removed
with the tape. Technology of this sort is commonly used for automobile registration and

A.5 Mechanisms for Tamper Sealing 75

A. Threat Model

inspection stickers. Anecdotal evidence suggests that it may be possible to peel back the tape
and replace it without this being easily observable [29].

A recent study of tamper seals considered 244 different seal designs and found that “the
majority could be defeated — removed and replaced without evidence — by one person working
alone within about two minutes and all of these devices could be thwarted within about 30
minutes” [20]. Needless to say, such seals cannot be counted on, alone, to provide significant
security protections for electronic voting systems.

Of course, these mechanisms can be augmented through other procedural means, including
requiring multiple people to be present when machines are handled or maintaining video cameras
and other locks on the storage areas of the elections warehouse. Johnston also recommends that
officials have genuine seals in their hands to compare against the seals being inspected [20].

The use of tamper-evident or tamper-resistant technologies, as such, must be evaluated in
the broader context of procedures and policies used to manage an election. Weaknesses in these
procedures cannot be overcome by the application of tamper-resistant / tamper-evident seals. Also,
the attacker’s motivation must also be considered. Perhaps the attacker does not care if an attack is
evident, so long as it cannot be recovered from.

A.5 Mechanisms for Tamper Sealing 76

Bibliography

[1] Interview with Talbot Iredale, Software Development Manager, Diebold Election Systems.

[2] Voting machine company apologizes to Kern County. KERO 23 Bakersfield. June 13, 2006.
Available at http://www.turnto23.com/news/9366552/detail.html.

[3] ABBOT, R. P., DAVIS, M., EDMONDS, J., FLORER, L., PROEBSTEL, E., PORTER, B., AND
STAUFFER, J. Security evaluation of the Diebold voting system, July 2007.

[4] BRENNAN CENTER TASK FORCE ON VOTING SYSTEM SECURITY. The Machinery of Democracy:
Protecting Elections in an Electronic World, June 2006. Available at http://www.brennancenter.
org/dynamic/subpages/download file 36343.pdf.

[5] BURREN, D. man crypt(3) (FreeBSD 6.2). Available at http://www.freebsd.org/cgi/man.cgi?
query=crypt&sektion=3, Jan. 1997. Multiple editors.

[6] CHRISTEY, S., AND MARTIN, R. A. Vulnerability type distributions in CVE, version 1.1.
Available at http://cwe.mitre.org/documents/vuln-trends/index.html, May 2007.

[7] CHUNG, L. Microsoft Access or Microsoft SQL Server: What’s right in your
organization. Available at http://download.microsoft.com/download/5/d/0/
5d026b60-e4be-42fc-a250-2d75c49172bc/Access Whats Right.doc, Dec. 2004.

[8] DIEBOLD ELECTION SYSTEMS. Frequently asked questions. Available at http://www.diebold.
com/dieboldes/faq.asp.

[9] DIEBOLD ELECTION SYSTEMS. AccuVote-OS hardware guide revision 6.0, Feb. 2005.

[10] DIEBOLD ELECTION SYSTEMS. GEMS 1.18 election administrator’s guide 8.0, June 2005.

[11] DILL, D., AND WALLACH, D. Stones unturned: Gaps in the investigation of Sarasotas
disputed congressional election. Available at http://www.cs.rice.edu/∼dwallach/pub/
sarasota07.html, Apr. 2007.

[12] DRIEHAUS, B. Audit finds many faults in Cleveland’s ’06 voting. The New York Times. April
20, 2007.

[13] EVERETT, S. P. The Usability of Electronic Voting Machines and How Votes Can Be Changed Without
Detection. PhD thesis, Rice University, 2007.

[14] FELDMAN, A., HALDERMAN, J. A., AND FELTEN, E. W. Security analysis of the Diebold
AccuVote-TS voting machine. In Proc. 2007 USENIX/ACCURATE Electronic Voting Technology
Workshop (EVT ’07).

[15] GONGGRIJP, R., AND HENGEVELD, W.-J. Studying the Nedap/Groenendaal ES3B voting
computer: A computer security perspective. In Proc. 2007 USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT ’07).

[16] HOGLUND, G., AND BUTLER, J. Rootkits: Subverting the Windows Kernel. Addison-Wesley
Professional, 2005.

77

http://www.turnto23.com/news/9366552/detail.html
http://www.brennancenter.org/dynamic/subpages/download_file_36343.pdf
http://www.brennancenter.org/dynamic/subpages/download_file_36343.pdf
http://www.freebsd.org/cgi/man.cgi?query=crypt&sektion=3
http://www.freebsd.org/cgi/man.cgi?query=crypt&sektion=3
http://cwe.mitre.org/documents/vuln-trends/index.html
http://download.microsoft.com/download/5/d/0/5d026b60-e4be-42fc-a250-2d75c49172bc/Access_Whats_Right.doc
http://download.microsoft.com/download/5/d/0/5d026b60-e4be-42fc-a250-2d75c49172bc/Access_Whats_Right.doc
http://www.diebold.com/dieboldes/faq.asp
http://www.diebold.com/dieboldes/faq.asp
http://www.cs.rice.edu/~dwallach/pub/sarasota07.html
http://www.cs.rice.edu/~dwallach/pub/sarasota07.html

BIBLIOGRAPHY

[17] HURSTI, H. Critical security issues with Diebold optical scan design. Available at http:
//www.blackboxvoting.org/BBVreport.pdf, July 2005.

[18] HURSTI, H. Critical security issues with Diebold TSx (unredacted). Available at http:
//www.wheresthepaper.org/reports/BBVreportIIunredacted.pdf, May 2006.

[19] HURSTI, H. Diebold TSx evaluation: Supplemental report, additional
observations (unredacted). Available at http://www.wheresthepaper.org/
BBVreportIIsupplementUnredacted.pdf, May 2006.

[20] JOHNSTON, R. G. Tamper-indicating seals. American Scientist 94 (November-December 2006),
515–523. Reprint available at http://ephemer.al.cl.cam.ac.uk/∼rja14/johnson/newpapers/
American%20Scientist%20(2006).pdf.

[21] JOHNSTON, R. G. Tamper-indicating seals. American Scientist 94 (Nov. 2006), 515–523.

[22] JONES, D. W. Voting system transparency and security: The need for standard models,
September 2004. Testimony before the EAC Technical Guidelines Development Committee,
National Institute of Standards and Technology, Gaithersburg, MD.

[23] KIAYIAS, A., MICHEL, L., RUSSELL, A., AND SHVARTSMAN, A. Security assessment of
the Diebold optical scan voting terminal. Available at http://voter.engr.uconn.edu/voter/
OS-Report files/uconn-report-os.pdf, Oct. 2006.

[24] KIAYIAS, A., MICHEL, L., RUSSELL, A., AND SHVARTSMAN, A. Integrity vulnerabilities
in the Diebold TSX voting terminal. Available at http://voter.engr.uconn.edu/voter/
OS-TSX-Report files/TSX Voting Terminal Report.pdf, July 2007.

[25] KLEIN, D. V. Foiling the cracker: A survey of, and improvements to, password security. In
Proc. 1990 USENIX Workshop on Security.

[26] KOHNO, T., STUBBLEFIELD, A., RUBIN, A., AND WALLACH, D. Analysis of an electronic
voting system. In Proc. 2004 IEEE Symposium on Security and Privacy, pp. 27–42.

[27] PELZL, J. Cryptanalysis with a cost-optimized FPGA cluster (presentation slides). UCLA
IPAM Workshop IV: Special purpose hardware for cryptography: Attacks and Applications.
Available at https://www.ipam.ucla.edu/publications/scws4/scws4 6560.pdf, Dec. 2006.

[28] ROHDE, D. On new voting machine, the same old fraud. The New York Times. April 27, 2004.
Available at http://www.nytimes.com/2004/04/27/international/asia/27indi.html.

[29] RUBIN, A. D. My day at the polls — Maryland primary ’06. Available at http://avi-rubin.
blogspot.com/2006/09/my-day-at-polls-maryland-primary-06.html, Sept. 2006.

[30] RYAN, T. P., AND HOKE, C. GEMS tabulation database design issues in relation to voting
systems certification standards. In Proc. 2007 USENIX/ACCURATE Electronic Voting Technology
Workshop (EVT’07).

[31] SHAMOS, M. Oral testimony, Technical Guidelines Development Committee (TGDC),
public data gathering hearings. Available at http://vote.nist.gov/PublicHearings/9-20-94%
20Panel%202%20SHAMOS.doc, Sept. 2004.

[32] SUN MICROSYSTEMS. Java card technologies. Available at http://java.sun.com/products/
javacard/.

[33] WAGNER, D., JEFFERSON, D., AND BISHOP, M. Security analysis of the Diebold AccuBasic
interpreter. Available at http://www.ss.ca.gov/elections/voting systems/security analysis
of the diebold accubasic interpreter.pdf, Feb. 2006.

[34] YOUNG, E. des(3). Available at http://www.openssl.org/docs/crypto/des.html.

BIBLIOGRAPHY 78

http://www.blackboxvoting.org/BBVreport.pdf
http://www.blackboxvoting.org/BBVreport.pdf
http://www.wheresthepaper.org/reports/BBVreportIIunredacted.pdf
http://www.wheresthepaper.org/reports/BBVreportIIunredacted.pdf
http://www.wheresthepaper.org/BBVreportIIsupplementUnredacted.pdf
http://www.wheresthepaper.org/BBVreportIIsupplementUnredacted.pdf
http://ephemer.al.cl.cam.ac.uk/~rja14/johnson/newpapers/American%20Scientist%20(2006).pdf
http://ephemer.al.cl.cam.ac.uk/~rja14/johnson/newpapers/American%20Scientist%20(2006).pdf
http://voter.engr.uconn.edu/voter/OS-Report_files/uconn-report-os.pdf
http://voter.engr.uconn.edu/voter/OS-Report_files/uconn-report-os.pdf
http://voter.engr.uconn.edu/voter/OS-TSX-Report_files/TSX_Voting_Terminal_Report.pdf
http://voter.engr.uconn.edu/voter/OS-TSX-Report_files/TSX_Voting_Terminal_Report.pdf
https://www.ipam.ucla.edu/publications/scws4/scws4_6560.pdf
http://www.nytimes.com/2004/04/27/international/asia/27indi.html
http://avi-rubin.blogspot.com/2006/09/my-day-at-polls-maryland-primary-06.html
http://avi-rubin.blogspot.com/2006/09/my-day-at-polls-maryland-primary-06.html
http://vote.nist.gov/PublicHearings/9-20-94%20Panel%202%20SHAMOS. doc
http://vote.nist.gov/PublicHearings/9-20-94%20Panel%202%20SHAMOS. doc
http://java.sun.com/products/javacard/
http://java.sun.com/products/javacard/
http://www.ss.ca.gov/elections/voting_systems/security_analysis_of_the_diebold_accubasic_interpreter.pdf
http://www.ss.ca.gov/elections/voting_systems/security_analysis_of_the_diebold_accubasic_interpreter.pdf
http://www.openssl.org/docs/crypto/des.html

	Executive Summary
	Introduction
	System Overview
	Methodology
	Limitations of this Report

	Architecture
	Components at Polling Places
	Components at Election Headquarters

	Major Attacks
	Voting Machine Viruses
	Virus Payloads
	Attacking the VVPAT
	Attacking Ballot Secrecy

	Systemic and Architectural Issues
	Design
	Implementation
	Engineering Practices

	Selected Specific Issues
	AccuVote-OS
	AccuVote-TSX
	GEMS

	Procedural Safeguards and their Limitations
	Logic and Accuracy Testing
	Commercial Virus Scanners
	Stricter Chain of Custody Measures
	Tamper-Evident Seals
	Forensics
	Parallel Testing
	Voter-Verifiable Paper Records
	Ballot Secrecy Protections
	Minimizing Use of Modems and Shared Networks
	A Segregated Dual-GEMS Architecture
	The Alternative: A Voting System that is Secure by Design

	Conclusion
	Threat Model
	Reference Model
	Attacker Goals
	Attacker Types
	Types of Attacks
	Mechanisms for Tamper Sealing

