
An extended misuse case notation: Including

vulnerabilities and the insider threat

Lillian Røstad1

Norwegian University of Science and Technology, Trondheim, Norway
Lillian.Rostad@idi.ntnu.no

Abstract. Misuse cases are a useful technique for eliciting and mod-
elling security requirements and threats. In addition they may be very
useful in a risk analysis process, particularly as part of the system de-
velopment process. The original misuse case notation adds inverted use
cases to model threats and inverted actors to represent attackers. How-
ever, an attack is usually performed by exploiting a vulnerability in a
system and it would be useful to be able to represent vulnerable func-
tions in a model. In addition, it should be possible to discern between
insiders and outside attackers in a model, as they have very different abil-
ities and potential for attacking a system. This paper therefore proposes
an extended misuse case notation that includes the ability to represent
vulnerabilities and the insider threat, and discusses the use of this ex-
tended notation in the system development and risk analysis processes.

1 Introduction

Security is being increasingly recognized as an important quality of IT-systems.
Much of the reason for this can be explained by the evolution of IT-systems
towards what Gary McGraw in [13] defines as the trinity of trouble: connectivity,
extensibility and complexity. While these three properties typically improves
the possibilities of what a system can do, they also significantly increases the
risks. Being secure means having control and being able to keep the bad guys
out - but the more complex a system is the harder it is to manage, and the
possibility of third-party extensions only adds to the complexity. Connectivity
is seductive as it greatly increases the potential use of a system, but it also
greatly increases the number of attackers that can have a go at breaking into
or otherwise harm the system. In some systems, like health care, defence and
banking, security has always been considered an important property. But as
the system’s operational environment changes, so does the threat scenarios and
need for defence mechanisms. Where isolation previously has been considered an
appropriate defence, this is no longer an option.

An excellent example of this, and the original motivation for the work pre-
sented here, is access control in healthcare systems. In healthcare systems pro-
tecting the patient’s privacy is a major concern - however it always has to be bal-
anced against the need for access to information to make sound medical decisions
and provide the best possible care. The current state-of-the art is Role-Based



Access Control (RBAC) [8] and a role in existing systems is typically a rather
static structure combined of a user’s profession (doctor, nurse etc), place of work
(ward) and where the patient is currently admitted (ward). There is currently a
move towards making the systems more dynamic and user centric and enabling
information sharing. As patients are able to select hospital or place of care more
freely there is a need to be able to make a patient’s medical information available
to those providing care. This significantly adds to the complexity and changes
the requirements for the access control mechanisms - static structures are no
longer sufficient. Also, most existing systems include mechanisms that allow a
user to override the access control mechanism in emergency situations. In such
situations there is no time to register the patient at the correct ward to en-
able the normal access control mechanism to function. Emergency access control
effectively constitutes a vulnerability in the system that may be exploited by
insiders - that is; legitimate system users that may misuse the functionality. As
systems become connected the user bases grow, thereby increasing the potential
risk for exploitation.

To be able to design secure solutions in a changing threat scenario one needs
to be able to perform risk analysis [21] based on system requirements and design
[13]. UML use cases [1] have become a widely used technique for elicitation of
functional requirements [7] when designing software systems. One of the main
advantages of use cases is that they are easy to understand with only limited
introduction to the notation, and therefore are a very well-suited tool for com-
municating and discussing requirements with system stakeholders. A use case
model illustrates required usage of a system - i.e. expected functionality. In risk
analysis it is equally important how one should not be able to use a system
- i.e. potential threats and exploitation. Misuse cases [18] have been proposed
as an approach to identifying threats and required countermeasures. The nota-
tion is very simple and complements the UML use case notation. However, the
usability of the notation or the ability to give a more complete risk overview
could be significantly improved by adding some minor extensions enabling the
specification of vulnerabilities and the insider threat in misuse case models. The
remainder of this paper presents such an extended misuse case notation and
discusses potential use in system development and risk analysis.

2 Related work

The notation proposed here builds upon work done on how to utilize use cases
as a tool for eliciting and modelling security requirements. John McDermott
[11] and Chris Fox [12] used the term abuse cases in their approach where they
explored how threats and countermeasures could be expressed using the standard
UML use case notation. In their approach they kept the abuse cases in separate
models.

Later, in a series of papers [15], [16], [17], [19], [14], [18], Guttorm Sindre and
Andreas L. Opdahl have proposed, and elaborated on, the concept of misuse
cases including both graphic and textual description. Misuse cases [18] extends



the UML use case notation by adding inverted use cases to model misuse and
inverted actors to model attackers. Sindre and Opdahl [18] define misuse cases
and misusers as:

– Misuse case - a sequence of actions, including variants, that a system or
other entity can perform, interacting with misusers of the entity and causing
harm to some stakeholder if the sequence is allowed to complete.

– Misuser - an actor that initiates misuse cases, either intentionally or inad-
vertently.

Misuse cases are created by extending a use case model and thus provide the
ability to regard system functions and possible attacks in one coherent view. In
the initial work on misuse cases two additional relationships were defined [15]:
prevents and detects and it was pointed out that the UML use case relationships
include and extend may also be used to connect misuse cases. They also pointed
out that the include-relationship may be used between a misuse case and use case
to illustrate that an attack utilizes system functionality. This in fact corresponds
to exploiting a vulnerability, but they did not provide a tailored notation for this.

Ian Alexander has written several papers discussing misuse cases as a tool [6]
[5] and experiences from application of misuse cases [2]. He has also discussed
misuse cases in relation to goal-oriented requirements engineering [3] [4]. In this
case Alexander stays true to the graphic notation of inverted use cases proposed
by Sindre and Opdahl, but he defines four different relationships: threatens,
mitigates, aggravates and conflicts with. It is interesting to note that in their
latest (at the time of writing this paper) [18] publication on misuse cases, Sindre
and Opdahl have refined the relationships in the misuse case notation adopting
threaten and mitigate as suggested by Ian Alexander. By their definition a use
case mitigates misuse case and misuse case threaten use case. Exchanging the
prevents and detects with the softer mitigate makes sense as it is unlikely that
any countermeasure applied will entirely eliminate a threat.

User Attacker

Encrypt info

Steal infoStore private info

<<mitigate>>

<<threaten>>

Fig. 1. Simple use and misuse case illustrating the notation

Donald G. Firesmith has discussed the concept of security use cases [9] where
a security use case represents functionality needed to protect a systems assets



from identified threats. The idea of security use cases as a way of representing
specific security functionality, or countermeasures, has been adopted by Sindre
and Opdahl [18] and linked directly to the mitigate relationships. Security uses
cases have not been given a specific graphical notation, but are represented as
ordinary use cases in the models.

Figure 1 depicts a very simple misuse case that illustrates the current nota-
tion. In this figure encrypt info is a security use case added to protect against
the threat (steal info) identified as a potential misuse case.

3 Extended misuse case notation

This paper proposes an extended misuse case notation to enable visualisation of
vulnerabilities and the insider threat. The original misuse case notation only de-
fines outside attackers [18]. However, inside attackers also pose a serious threat.
An insider, to an organisation or a system, usually has much easier access to
a system and thereby may perform other attacks and exploit other weaknesses
than an outside attacker. As such it is useful to be able to model insiders as a
separate actor type in order to get a comprehensive and complete overview of
possible threats and attacks. In the original misuse case notation misuse cases
are linked directly to use cases that they threaten. In other words attacks are
linked to system functionality that may be disabled or otherwise damaged as a
consequence of a successful attack. However it would be useful to be able to visu-
alize what vulnerabilities are exploited to perform that attack. Threats towards
a system may only be realized in an attack if the system contains vulnerabilities
that can be exploited. It is important to be able to illustrate vulnerabilities to
be able to identify all possible threats and attacks. We define an insider and a
vulnerability as:

– Insider - a misuser that is also member of an authorized group for the
entity being attacked - e.g. an authorized user of a system, a member of the
development team, an employee of an organization.

– Vulnerability - a weakness that may be exploited by misusers.

Figure 2 presents a combined overview of the notation for use cases and extended
misuse cases. In addition to actors representing insiders and misuse cases repre-
senting vulnerabilities an additional relationship exploit is defined. The exploit
relationship is used to link a threat to a vulnerability. Insiders and vulnerabilities
have been given the same grey colour in this extended notation. This choice of
colour indicates that both represent weaknesses in a system that may or may
not be exploited. Either way it is important to have knowledge about the weak
spots of a system as this constitutes the systems attack surface that may be
exploited. The remainder of this section presents examples of how to use the
extended notation. We have included three examples that illustrates different
situations and systems where the notation will be useful.



Outside attackerInsiderAuthorized user

Use case Vulnerability Threat

<<extend>>

<<include>>

<<exploit>> <<threaten>>

<<mitigate>>

Fig. 2. Extended misuse case legend

3.1 Examples of use of the extended notation

Emergency access control in healthcare systems Figure 3 depicts an ex-
ample misuse case model using the extended notation proposed in this paper.
The model illustrates use and misuse of the access control mechanism in an
Electronic Patient Record (EPR) system. As explained in the introduction, such
healthcare systems often have emergency access control mechanisms designed to
be able to override the standard access control mechanisms in situations where
access to information is of vital importance but there is no time to register the
patient in the system and link him/her to a specific ward - which is necessary for
the standard access control to function properly. In these situations healthcare
personnel are authorized, by their organization and the law, to use the emer-
gency access control mechanism to gain access to information that they have a
legitimate need and right to view. However, for such an emergency mechanism
to be useful, it has to be available at all times. This effectively leads to a back-
door into the system that may be misused by insiders to snoop around when
they should not. Most system users will not attempt misusing this mechanism
although it is possible. But, it is important to be able to consider the possibility
and map out potential consequences and apply proper countermeasures if the
consequences are grave. And that is the reason why this addition to the misuse
case notation is important. You cannot get a complete overview of potential
risks and threats towards a system if you do not consider the complete picture.
By identifying emergency access as a vulnerability we are also able to consider
proper countermeasuers to apply in order to minimize the risk for misuse - in
this case auditing (enables traceability and detection of misuse) and awareness
training (e.g. making sure that system users are aware of the consequences of
misuse - and what is considered misuse).



Read EPR

Authorized user

Insider

Access Control (AC)

Normal AC Emergency AC

<<extend>> <<extend>>

<<include>>

Unauthorized read EPR

Emergency read EPR

<<include>>

<<exploit>>

Auditing <<mitigate>>

Awareness training
<<mitigate>>

Fig. 3. Extended misuse case example: access control

User input in web-enabled systems In an IT-system all input, from users
or other systems, should be handled with caution. Figure 4 illustrates a generic
login procedure for a web application - the user has to enter a username and
password to log in. Identified attacks include (but are definitely not limited to):

– Injection - for instance sql-injections to tamper with database content or
override password check.

– Overflow - entering unexpected or large quantities of data in the input fields
to observe system reaction or possibly take control over the system.

Input validation is identified as a countermeasure that helps mitigate these
threats. This model illustrates how the extended notation helps highlight vulner-
abilites that may be exploited. An insider is not inlcuded because these attacks
are typically performed by outside attackers. Highlighting vulnearbilities in this
way may be particularly helpful in a risk analysis process, where the customers
are involved. By visualizing vulnerabilities, attacks and what may happen it will
hopefully be easier to get acceptance and resources to apply security measures.

An insider on the system development team This example illustrates
how the extended notation may be used not only on a system level, but also on
a business- or organizational level. An insider may exist inside a development



Authorized user

Enter username

Enter password

Injection attack

Overflow attack

Input validation

<<exploit>>

<<exploit>>

<<exploit>>

<<exploit>>

<<mitigate>>

<<mitigate>>

Attacker

Use system

<<threaten>>

<<threaten>>

Fig. 4. Extended misuse case example: user input

team or an organization. For example a disgruntled employee working on a de-
velopment project may inject code into a system that opens up a backdoor that
attackers may exploit like Figure 5 illustrates.

Insider

System developer

Implement system

Inject backdoor

Inject bug

Code audit

Security testing
<<mitigate>>

<<mitigate>>

<<mitigate>>

<<mitigate>>

Fig. 5. Extended misuse case example: insider in development team

3.2 A step-by-step approach: how to apply the extended notation

In [15] Sindre and Opdahl propose guidelines, a set of steps, to perform when
using misuse cases to elicit threats and countermeasures. The approach described



here for applying extended misuse cases is based on their guidelines, but refined
to include the necessary activities to consider the insider threat and uncover
vulnerabilities.

1. Identify actors and use cases for the target system. Only with an
overview of what the system is supposed to do, and who will use it, is it pos-
sible to start identifying potential attackers, weak spots and threats. Create
UML use case models. These will serve as input to the subsequent steps.

2. Identify potential outside attackers. With knowledge about the system
discovered in step 1 one should be able to identify who might target the
system for attack purposes from the outside. This may include a wide range
of persons with a wide variety of motivations - from the unskilled hacker
using downloaded tools to jam the system using a DoS1-attack, to highly
skilled industrial spies. At this point it is important to create as complete a
list as possible of potential attackers. Later, in the risk analysis process one
can eliminate attackers that are deemed unlikely or that will probably not
be able to cause any harm.

3. Identify potential insiders. As with outside attackers there may be a
variety of insiders. For example there are the people developing a system
- who may intentionally inject backdoors - and there are different kinds of
users of the operational system that have different rights and thereby differ
in the harm they are capable of inflicting on the system. On this point as
well, the main concern is to generate as complete a picture as possible.

4. Identify threats. Having identified potential misusers who may harm the
system, the next step is to identify what types of harm they may want to
inflict on the system - i.e. potential threats and attacks. To be able to do
this one should consider what might be the goal of the identified misusers -
what would they want to achieve?

5. Identify vulnerabilities. This step means analysing how threats and at-
tacks may be performed. Given the identified threats - how may an outside
attacker, or insider, do this? This means examining the systems functionality
identified in step 1 and consider each use case carefully to decide if it may be
exploited for malicious purposes. When a potential vulnerability is identified
it should be labeled accordingly in conformance with the extended misuse
case notation.

6. Identify security requirements. Having identified misusers, threats and
vulnerabilities - in this step the focus is on countermeasures. This is done
by adding security use cases (as earlier mentioned these use the notation of
ordinary use cases) to the models and adding the mitigate relationship to
the threats or vulnerabilities they protect against.

7. Revise findings so far. This is of course an iterative process that may be
carried out several times before one is satisfied that the result is reasonably
sound and complete. Creating a 100% complete overview of all risks is in-
feasible but applying a structured risk-based approach and using the right

1 Denial of Service



people with the required knowledge [13] should help ensure the best possible
result.

Note that the steps need not necessarily always be carried out in exactly this
order. Specifically steps 2 through 5 may be intertwined as it may be hard or
possibly not beneficial to completely separate these steps.

4 Relation to risk management in system development

Risk analysis, and risk managed development processes, is a well known tech-
nique for making decisions in many engineering fields. Building secure systems
is about managing risks. It is not possible to build a system that is absolutely
secure against all attacks, known in the present or that may be invented in the
future [22]. Risk managed system development is about creating systems that
are reasonably protected against known attacks and with a robust build using
design principles that will hopefully make the system able to withstand future
attacks. What is reasonable protection and what risks should be handled is for
the system stakeholders to decide - i.e. the customer. To decide what risks to
handle one needs to rank the identified risks and this requires assigning a value.
A risk value is calculated as:

Risk = Probability × Consequence (1)

Misuse cases provide an overview of information that is very useful in a risk
analysis process [10]. However, misuse cases only provides an overview and should
be a starting point for creating attack trees [22] and doing threat modelling [20]
to get a complete view of the threats and vulnerabilities in a system. Adding
notation for expressing vulnerabilities and the insider threat makes the misuse
case notation richer and adds more detail which should provide a better starting
point for the continuing risk management process.

5 Discussion

Although not all vulnerabilities may be represented in a use case or misuse case
model, it is important when considering adding functionality to a system to
examine if it represents a vulnerability that can be exploited. Only then is it
possible to make a risk-based decision whether to not include that functional-
ity or apply the necessary countermeasures to ensure protection. The possibly
greatest power of use and misuse cases is that they are so graphical and easy to
understand, and work very well as a basis for discussion with system stakehold-
ers. Typically customers are not eager to spend money on security as it does
not directly add to the value of the product. Misuse cases can help convince
customers that security is important. Extending the misuse case notation helps
this process as it enables:



– Visualisation of effects of adding functionality that might seem desirable,
but actually represents vulnerabilities. The extended misuse case notation
enables explicitly stating how vulnerable functions may be exploited.

– The insider threat should not be neglected. Insider attackers have very dif-
ferent possibilities from outsider attackers and by using a separate notation
for insiders one is able to emphasize this.

The extensions proposed here are simple, in accordance with the original misuse
case notation. The idea is to keep close to the UML use case notation and only
add what is needed to include security concerns, while keeping the models very
easy to understand.

6 Conclusion and further work

This paper has presented and shown examples of an extended misuse case no-
tation including notation for expressing vulnerabilities and insider attackers.
This adds to the expressiveness of misuse cases while still keeping the notation
very straightforward and easy to understand. The extended notation enables
expressing a richer and more complete picture of security threat considerations
for a system which is useful when using misuse cases in risk analysis. To fur-
ther investigate the ideas presented here, it would be useful to create a textual
representation of extended misuse cases. Also, security functionality is currently
represented as ordinary use cases. It might be useful to create a specific notation
for security functionality, or countermeasures that have been added to mitigate
vulnerabilities and threats.

7 Acknowledgements

The ideas described in this paper was inspired by the project on case studies of
access control in healthcare performed by Julie-Marie Foss and Nina Ingvaldsen
at the Norwegian University of Science and Technology (NTNU) in the fall of
2004 which I had the pleasure of supervising. Misuse cases was used in that
project to model findings and some alterations, initiated by very useful comments
and suggestions from Guttorm Sindre, to the notation had to be made to be able
to express all findings. These alterations were the starting point of the extended
notation described in this paper.

References

[1] Unified modeling language: Superstructure. Technical report, Object Management
Group (OMG), August 2005. http://www.omg.org.

[2] I. Alexander. Initial industrial experience of misuse cases in trade-off analysis. In
IEEE Joint International Conference on Requiremenst Engineering, Essen, Ger-
many, 2002. IEEE.



[3] I. Alexander. Modelling the interplay of conflicting goals with use and misuse
cases. In Goal-Oriented Business-Process Modeling (GBMP) 2002, volume 109,
London, UK, 2002. CEUR Workshop Proceedings.

[4] I. Alexander. Modelling the interplay of conflicting goals with use and misuse
cases. In International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ) 2002, Essen, Germany, 2002.

[5] I. Alexander. Misuse cases help to elicit non-functional requirements. Computing
& Control Engineering Journal, 14(1):40–45, 2003.

[6] I. Alexander. Misuse cases: Use cases with hostile intent. IEEE Software, 20(1):58–
66, 2003.

[7] I. Alexander and N. Maiden. Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle. John Wiley & Sons, 2004. ISBN: 0470861940.

[8] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access Con-
trol. Computer Security Series. Artech House Publishers, Boston, 1 edition, 2003.
ISBN: 1580533701.

[9] D. G. Firesmith. Security use cases. Journal of Object Technology, 2(3):53–64,
2003.

[10] P. Hope, G. McGraw, and A. I. Anton. Misuse and abuse cases: Getting past the
positive. IEEE Security & Privacy, 2(3):90–92, May/June 2004.

[11] J. McDermott. Abuse case models for security requirements analysis. In Sympo-
sium on Requirements Engineering for Information Security (SREIS), Indianapo-
lis, USA, 2001.

[12] J. McDermott and C. Fox. Using abuse case models for security requirements
analysis. In Annual Computer Security Applications Conference, Phoenix, Ari-
zona, 1999.

[13] G. McGraw. Software Security - Building Security In. Addison-Wesley Software
Security Series. Addison-Wesley (Pearson Education), Boston, 1 edition, 2006.
ISBN: 0321356705.

[14] G. Sindre, D. G. Firesmith, and A. L. Opdahl. A reuse-based approach to de-
termining security requirements. In 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’03), Klagenfurt/Velden,
Austria, 2003.

[15] G. Sindre and A. L. Opdahl. Eliciting security requirements by misuse cases. In
37th International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS-Pacific 2000), pages 120–131, Sydney, Australia, 2000.

[16] G. Sindre and A. L. Opdahl. Capturing security requirements through misuse
cases. In Norsk Informatikkonferanse (NIK), Tromsø, Norway, 2001.

[17] G. Sindre and A. L. Opdahl. Templates for misuse case description. In Seventh
International Workshop on Requirements Engineering: Foundation of Software
Quality (REFSQ’2001), Interlaken, Switzerland, 2001.

[18] G. Sindre and A. L. Opdahl. Eliciting security requirments with misuse cases.
Requirements Engineering, 10(1):34–44, 2005.

[19] G. Sindre, A. L. Opdahl, and G. F. Brevik. Generalization/specialization as a
structuring mechanism for misuse cases. In 2nd Symposium on Requirements
Engineering for Information Security (SREIS’02),, Raleigh, NC, USA, 2002.

[20] F. Swiderski. Threat Modeling. Microsoft Press U.S., 2004. ISBN: 0735619913.
[21] D. Verdon and G. McGraw. Risk analysis in software design. IEEE Security &

Privacy, 2(4):79–84, 2004.
[22] J. Viega and G. McGraw. Building Secure Software: How to Avoid Security Prob-

lems the Right Way. Addison Wesley, 2001. ISBN: 020172152X.


