
Modeling Software Vulnerabilities With Vulnerability Cause Graphs

David Byers Shanai Ardi Nahid Shahmehri Claudiu Duma

Department of computer and information science
Linköpings universitet, SE-58183 Linköping, Sweden

E-mail: {davby,shaar,nahsh,cladu}@ida.liu.se

Abstract

When vulnerabilities are discovered in software,
which often happens after deployment, they must be ad-
dressed as part of ongoing software maintenance. A ma-
ture software development organization should analyze
vulnerabilities in order to determine how they, and sim-
ilar vulnerabilities, can be prevented in the future.

In this paper we present a structured method for
analyzing and documenting the causes of software vul-
nerabilities. Applied during software maintenance, the
method generates the information needed for improv-
ing the software development process, to prevent similar
vulnerabilities in future releases.

Our approach is based on vulnerability cause
graphs, a structured representation of causes of software
vulnerabilities.

Keywords: software security, vulnerability modeling

1. Introduction

Vulnerabilities – security-related flaws – in soft-
ware affect us almost daily, have forced us to change
how we use computers and are at the center of some
of the most spectacular and costly computer failures in
recent years. For example, the total cost of the Code
Red worm has been estimated at $2.6 billion, and the
Nachi worm affected operations at Air Canada and CSX
railroad. Both exploited a class of vulnerabilities that
has been known since at least 1988. Efforts are being
made to reduce vulnerabilities in software, but the in-
dustry clearly has a long way to go.

In this paper we present a structured method for
modeling software vulnerabilities, based on a formal
graph representation called a vulnerability cause graph
(VCG), introduced in our earlier work [1], and we
demonstrate its application to a well-known vulnerabil-
ity. A VCG organizes information about a vulnerability
and its causes, and is designed to promote understanding
of vulnerabilities and reuse of analysis results. Vulner-

ability modeling is performed throughout the software
lifecycle, and is particularly important during mainte-
nance, as vulnerabilities in deployed software are dis-
covered.

Vulnerability modeling is a complement to efforts
like the National Vulnerability Database [20] and the Se-
curityFocus vulnerability database [17]. They provide
descriptions and catalogs of publicly available informa-
tion about vulnerabilities, while vulnerability modeling
provides in-depth analysis and understanding of vulner-
abilities. This additional depth is important when deter-
mining how to prevent vulnerabilities. It is also a com-
plement to efforts to analyze and classify vulnerabilities
[2, 4, 8, 9, 18], and can implement parts of abstract pro-
cess and lifecycle models for secure software [14, 15].

Our long-term goal is to develop methods and tools
for systematically augmenting software development
processes with activities that prevent vulnerabilities. We
aim to be process agnostic: our results should be ap-
plicable to agile processes such as extreme program-
ming [3] or feature-driven development [13] as well as
in more conventional development processes [7, 10].

Vulnerability modeling with VCGs is the first stage
of the process we are developing. Based on the vulner-
ability model, it is possible to determine which combi-
nations of activities would prevent the vulnerability, al-
lowing developers to select activities that fit their devel-
opment process and software products, while also pre-
venting vulnerabilities. Ultimately, we expect to be able
to automatically optimize activity selection with respect
to cost and effectiveness.

The major contributions of this paper are a com-
plete methodology for vulnerability modeling that re-
sults in vulnerability cause graphs, as well as significant
improvements to VCGs themselves.

2. Vulnerability cause graphs

Vulnerability cause graphs (VCGs) relate causes to
vulnerabilities in the final software product, and are used
as a starting point for improving the software develop-

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

ment process. Each vulnerability is modeled by a VCG,
and based on the information present in the VCGs, we
can derive combinations of software development ac-
tivities that prevent the vulnerability [1]. This paper
presents the second generation of our model.

VCGs must be well-defined so they can be used for
automatic computation; the model and prevention se-
mantics provide the requisite formalisms. VCGs must
also be easy for humans to comprehend; the visual rep-
resentation is designed with this in mind.

2.1. Model

A vulnerability cause graph is a directed acyclic
graph in which all nodes but one represent causes and
edges represent relationships between causes. There are
four kinds of nodes in VCGs: simple nodes, compound
nodes, conjunction nodes and exit nodes.

Every VCG has a designated exit node, which must
be the only node in the graph without successors, and is
the only node that does not represent a cause.

All other nodes are required to have at least one suc-
cessor. Nodes can be simple, compound or conjunctions.
Simple nodes represent conditions (causes) that may
lead to vulnerabilities in the software being developed;
they are the atoms of VCGs. Examples include “use of
unsafe API” or “data file can contain executable code”.
Compound nodes facilitate analysis reuse, maintenance
of models and improve readability. They serve a similar
purpose as procedures and functions in a programming
language and represent entire VCGs that model reusable
or complex analysis elements. Conjunctions represent
the conjunction of two or more other nodes. A simpli-
fied UML model of the VCG is shown in figure 1.

VCG

Node

Cause Node
+Name

Exit

Compound NodeSimple NodeConjunction Node

1

+Nodes
1..*

0..*

+Graph
1

1

+Clause

1..*

1

+Predecessor

0..*

+Exit

1
1

Cause

0..* +Cause 1

Figure 1. Simplified UML model of VCG

The predecessor-successor relationship between
nodes in the VCG models how certain conditions cause
other conditions to be a concern, with respect to prevent-
ing the vulnerability the VCG represents. If node A is a

predecessor of node B, then if A holds (i.e. is not mit-
igated during development), then B is a concern. This
implies the following:

• If A and B are predecessors of C, then C is a concern
if A or B hold (expresses “or” in the model).

• If N is a predecessor of C, and N is a conjunction
consisting of A1 . . .An, then C is a concern only if
all of A1 . . .An hold (expresses “and” in the model).

Sequences in the graph represent conditions that are
ordered by some form of causality (i.e. condition A
causes B to be a concern). Conjunctions represent con-
ditions that lack such a relationship, but jointly cause
some other condition to be a concern.

Figure 2 shows an example of a small VCG. It
shows, among other things, that if Cause E holds, then
Cause C is a concern, as is the conjunction of Cause A
and Cause B. It also shows that as long as Cause C holds
(and is a concern), there is a risk of Vulnerability V.

Cause D

Cause BCause A

Vulnerability V

Cause E

Cause C

Figure 2. Second-generation vulnerability
cause graph

2.2. Visual representation

The preferred representation, which maps directly
onto the VCGs model, is shown in figure 3.

Figure 2 contains all the visual elements. Cause D
and Cause E are simple nodes; Cause A and Cause B
are the clauses of a conjunction; Cause C is a compound
node; and Vulnerability V is the exit node.

2.3. Prevention semantics

Since the ultimate goal of vulnerability modeling is
to determine how to prevent vulnerabilities, the seman-
tics of vulnerability cause graphs are expressed in such
terms. The semantics of VCGs are derived from mitiga-
tion of causes.

A cause that is of concern during software de-
velopment or maintenance is mitigated if ac-
tions are taken that result in the condition the
cause represents being false.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Visual representation Model element

Name Simple node

Name Compound node

NameName Conjunction nodea

Name Exit node

aA conjunction node must contain two or more simple and/or com-
pound nodes; arbitrary combinations are permitted.

Figure 3. Visual representation of VCGs

A simple node N is mitigated if the cause it
represents is mitigated.

A node representing a cause that is not a concern during
development or maintenance is considered blocked. In
the definitions below, N is a node; C(N) is the set of
clauses of a conjunction N; if M(N) is true, then N is
mitigated; and if B(N) is true, then N is blocked.

Since each of the predecessors of a node N in the
VCG independently causes N to be a concern, they must
all be blocked, or N itself mitigated, for N to be blocked.
Hence,

A node N in a VCG is said to be blocked
if it is mitigated, or all its immediate pre-
decessors in the VCG are blocked (B(N) =
M(N)∨ (

V
p∈PN

B(p))).

Since all the clauses of a conjunction must hold for the
successor of a conjunction to hold, it is sufficient to
block any one of them to mitigate the entire conjunction.
Hence,

A conjunction is mitigated if any of its clauses
are blocked (M(N) =

W
c∈C(N) B(c)).

A compound node represents an entire graph, so its miti-
gation depends on the state of the exit node in that graph.
Hence,

A compound node is mitigated if the exit node
of the VCG it is associated with is blocked
(M(N) = B(E), where E is the exit node of
the VCG represented by N).

By definition, the exit node of a VCG can never be mit-
igated as it always represents the consequences of other
conditions. It can, however, be blocked. If the exit node
of the VCG is blocked, then the vulnerability the VCG

models will be prevented.
From the point of view of preventing vulnerabili-

ties, the semantics of a VCG is the function B(E), where
E is the exit node. Two VCGs V1 (with exit node E1)
and V2 (with exit node E2) are equivalent if all sets of
M(Ci), where Ci are causes, that satisfy B(E1) also sat-
isfy B(E2), and all sets of M(Ci), that satisfy B(E2) also
satisfy B(E1).

For the VCG in figure 2, with V denoting Vul-
nerability V, A denoting Cause A and so on: B(V) =
(M(C)∨M(E))∧ ((M(A)∨M(B))∨ (M(D)∧M(E))).

3. Vulnerability cause analysis

The goal of vulnerability cause analysis is to pro-
duce a vulnerability cause graph for a specific vulnera-
bility. The VCG will then be used to improve software
development practices to ensure that similar vulnerabili-
ties are prevented in the future. Classes of vulnerabilities
can be modeled as well, simply by combining the mod-
els of several specific vulnerabilities. E.g., if V1, V2 and
V3 are three vulnerabilities of the same class VC, then a
VCG for VC can be constructed by creating compound
nodes representing each vulnerability, and making them
predecessors of a single exit node (see figure 4).

V1 (specific) V2 (specific) V3 (specific)

VC (class)

Figure 4. Vulnerability cause graph for a
class of vulnerabilities

Vulnerability cause analysis is similar to root cause
analysis (RCA), and could even be seen as an RCA
method for security-related software failures. There
are, however, some differences between our method and
most RCA methods, discussed in section 6.

Vulnerability cause analysis is a creative process
supported by a systematic approach. Although it is im-
possible to entirely remove the creative element, the sys-
tematic approach is designed to maximize the probabil-
ity of a successful outcome. The process described be-
low is based on our experience from analyzing a number
of known software vulnerabilities.

3.1. The vulnerability analysis database

The vulnerability analysis database (VAD) is a
database containing knowledge about vulnerabilities,
causes, security activities, VCGs and related informa-
tion. All information generated during analysis and

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

modeling is entered into the database, successively im-
proving the quality and quantity of information. The
VAD ensures that all uses of the same cause or VCG are
linked; provides search mechanisms essential for anal-
ysis reuse; documentation needed for using the models;
and so forth. It is an essential tool for effective practical
application of the vulnerability modeling methodology
we present. In particular, analysis reuse is very diffi-
cult in practice without the VAD. We have implemented
a rudimentary version of the VAD, sufficient to support
our research.

3.2. Initial analysis

The first step of vulnerability cause analysis is de-
veloping a thorough understanding of the vulnerability
in question. We typically perform this step using code
review, static analysis tools, visualization tools, execu-
tion traces, and live debugging. Initial analysis is con-
sidered complete when we know what types of condi-
tions and/or input would expose a vulnerability. Devel-
oping a working exploit is sometimes also helpful.

The results of the analysis is entered into the VAD.

3.3. Vulnerability cause graph construction

After completing the initial analysis, a base VCG is
created consisting of an exit node only. The VCG is en-
tered into the VAD and associated with the vulnerability.
The complete VCG is constructed through a process of
iterative refinement. Any node in the VCG that has not
been completely analyzed is picked for further analysis.

Analysis of a node consists of the following, which
may be performed repeatedly:

• Determine the validity of the node

• Determine if the node needs to be split

• Determine if the node needs to be converted to a
compound node

• Find candidates for predecessors in the VCG

• Organize predecessor candidates in the VCG

These steps are iterated until no more changes or
additions to the VCG can be found (this exit criterion is
similar to that in many root cause analysis methods).

3.3.1. Determine node validity, splitting and conver-
sion Simple nodes entered into the VCG should al-
ways represent simple conditions, not combinations or
sequences of conditions, and the conditions represented
by different nodes in the graph should not overlap.

When a complex condition is identified, it should be
separated into several simpler nodes and possibly turned

into a compound node or conjunction (sections 4.1 and
4.4). For example, a node representing copying data
to a buffer without appropriate bounds checks could be
split into two nodes (copy to buffer and missing bounds
checks), and converted to a compound node.

If part of the condition represented by one node is
the same as part of the condition represented by another
node, this indicates that graph transformations should be
applied to convert conjunctions and combine identical
nodes (sections 4.1 and 4.3).

These guidelines tend to improve the quality of
analysis since it increases the depth of analysis, and
tends to promote reusability of nodes, since simple con-
ditions tend to repeat more often than complex ones.
Furthermore, analysis of mitigation techniques is easier
for simple conditions than for complex ones, an impor-
tant consideration in the application of VCGs.

3.3.2. Find and organize predecessor candidates
The VCG is extended by finding new nodes to place into
the VCG, based on an existing node. The predecessors
of a node all represent conditions that, independently of
any other conditions, might cause the condition the node
represents to be a concern. For example, if a node rep-
resents the use of error values in the same range as data
values, then a predecessor might represent the use of a
single variable for both data and error values.

Finding the predecessors of a node starts with an-
swering the question “under what circumstances is this
cause a concern?”. This produces a combination of con-
ditions that can be expressed as a propositional logic for-
mula. For example, assume we determine that for node
N to be a concern, condition A must hold true and at least
one of conditions B, C and D must hold true, which can
be expressed as A∧ (B∨C∨D). Note that if the node
being analyzed is already present in some other VCG,
then its predecessors in that VCG may be suitable as
predecessors in the current VCG.

Conjunctions tend to obscure the structure of the
model. By preferring disjunctions over conjunctions,
the graph becomes fairly flat, and it becomes easy to
trace the causes of vulnerabilities through paths in the
graph. Therefore, in order to improve readability, ex-
pressions should be converted to disjunctive normal
form. For example, A∧ (B∨C∨D) should be converted
to (A∧B)∨ (A∧C)∨ (A∧D). After converting to dis-
junctive normal form, each term of the expression can
be used as a predecessor of the node being analyzed.

Our experience shows that disjunctions are natu-
rally more common than conjunctions, and that the ex-
pressions arrived at in this step are typically even sim-
pler than the examples shown here. Complex expres-
sions are an indication that modeling is progressing in

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

too large steps. Nevertheless, it is possible to convert an
arbitrarily complex expression to a VCG by observing
that any parenthesized expression can be expressed as
a compound node; a conjunction can be expressed as a
conjunction node or sequence of nodes; and a disjunc-
tion is merely a set of predecessors of another node.

At any time during VCG construction, particularly
at this stage, graph transformations (see section 4) may
be applied to simplify the graph. Common transforma-
tions at this stage will include converting nodes to com-
pound nodes, converting conjunctions to sequences and
combining nodes representing the same cause.

For example, (A ∧ B) ∨ (A ∧C) ∨ (A ∧ D) could
be transformed by converting all conjunctions to se-
quences, then combining the three resulting nodes that
represent A, giving a final total of four simple nodes.

3.4. Graph validation and optimization

When the VCG is complete, it should be optimized
for reuse and clarity. Following optimization, it is vali-
dated by a second analyst or team of analysts.

Optimization consists of applying graph transfor-
mations (see section 4) to the VCG until the desired end
result is achieved. The order of every sequence in the
graph should be verified to ensure that it is a natural or-
der (e.g. cause-effect or temporal order). Sequences that
lack natural order should be considered for conversion
to conjunction nodes. Any compound nodes that have
been introduced at any stage in the process need to be
analyzed completely (if this has not already been done).
The process for doing so is identical to the process of an-
alyzing vulnerabilities. Common subgraphs and single
nodes should be eliminated where possible.

4. Graph transformations

Graph transformations can be applied at any time
during the analysis to make the graph easier to read,
more concise or more intuitive. All transformations
must preserve the semantics of the VCG. For node Ni,
if B(Ni) is true, then Ni is blocked and if M(Ni) is true,
then Ni is mitigated.

Equivalence of graphs Two VCGs V1 (with exit node
E1) and V2 (with exit node E2) are equivalent if all sets
of M(Ci), where Ci are causes, that satisfy B(E1) also
satisfy B(E2), and all sets of M(Ci), that satisfy B(E2)
also satisfy B(E1).

Due the limited space available, we have only in-
cluded sketches of the proofs of equivalence for each
transformation.

To show equivalence of a transformation involving
a set of nodes N, it is sufficient to show that there exists a

set postdominator S of N, such that for every node Si ∈ S,
B(Si) is unaffected by the transformation. A node Si

postdominates a node Ni if Si is on every path from Ni to
the exit node. S is a set postdominator of N if for every
Ni ∈ N there is a Si ∈ S that postdominates Ni.

If N is the set of nodes involved in a transformation
and S is a set postdominator of N, then when computing
B(E) for an exit node E , then neither B(Ni), nor M(Ni)
will appear in the function B(E) other than as the result
of expanding some B(Si). Hence, if B(Si) for all Si ∈ S
are unaffected by the transformation, then B(E) will also
be unaffected by the transformation. This observation is
the basis for the proof sketches given below.

4.1. Conversion of conjunctions

If C is a conjunction of N1 . . .Nn (the clauses in ar-
bitrary order), P is the set of predecessors of C and S is
the set of successors of C, then C can be replaced with
a sequence of N1 . . .Nn. Specifically, C is removed from
the graph; Ni is made the sole predecessor of Ni+1 for
i < n; P is made the set of predecessors of N1; and S
is made the set of successors of Nn. This transforma-
tion can be reversed. Figure 5 shows an example of this
transformation.

S1 S2 S3

N2N1

P1 P2

Before conversion

S1 S2 S3

N2

N1

P1 P2

After conversion

Figure 5. Conversion of conjunctions

Equivalence In the original graph, for s ∈ S,B(s) =
M(s)∨M(C)∨ (

V
p∈P B(p));M(C) =

W
i=1...n M(Ni). In

the new graph, for s ∈ S,B(s) = M(s)∨W
i=1...n M(Ni)∨

(
V

p∈P B(p)). The graphs are equivalent as the two ex-
pressions are equal.

4.2. Reordering of sequences

If N1 is the sole predecessor of N2, then N1 and N2

can be reordered so that the direct predecessors P of N1

become the direct predecessors of N2, the direct succes-
sors S of N2 become the direct successors of N1, and N2

becomes the sole predecessor of N1. This transformation
can be trivially reversed. Figure 6 shows an example of
this transformation.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

S1 S2 S3

N2

N1

P1 P2

Before reordering

S1 S2 S3

N1

N2

P1 P2

After reordering

Figure 6. Reordering of sequences

Equivalence In the original graph, for every s ∈ S,
B(s) = M(s)∨ M(N2)∨ M(N1)∨ (

V
p∈P M(p)). In the

new graph, for every s ∈ S, B(s) = M(s) ∨ M(N1) ∨
M(N2)∨ (

V
p∈P M(p)). The graphs are equivalent as the

two expressions are equal.

4.3. Combination of nodes

If N1 and N2 denote the same cause C, and from ev-
ery predecessor of N1 (denoted P1) or N2 (denoted P2),
it is possible to reach every successor of N1 (denoted S1)
or N2 (denoted S2), then N1 and N2 can be combined to a
single node X with predecessors set to P1 ∪P2 and suc-
cessors set to S1∪S2. Figure 7 shows an example of this
transformation.

S1
1 S2

1 S2
2

N1 N2

P12
2P12

1 P12
3

Before combination

S1
1 S2

1 S2
2

X

P12
2P12

1 P12
3

After combination

Figure 7. Combination of nodes

Equivalence In the original graph, for each s ∈
Si,B(s) = M(s) ∨ M(Ni)∨ (

V
p∈P1 B(p) ∧ V

p∈P2 B(p)).
In the new graph, s ∈ S1 ∪ S2,B(s) = M(s) ∨ M(X) ∨
(
V

p∈P1∪P2 B(p)), which is equivalent, showing that the
graphs are equivalent.

4.4. Conversion to compound nodes

Let N be a set of nodes N1 . . .Nn. Let Pi be the set
of predecessors of Ni and Si the set of successors of Ni.
Let N� be the set of nodes in N with predecessors out-
side N. Let N⊥ be the set of nodes in N with successors
outside N. N can be converted to a compound node if
the following holds:

1. Every node in N must be reachable from some node
in N�.

2. No node in N� has a predecessor in N, and all
nodes in N� have the same set of predecessors (de-
noted P�).

3. No node in N⊥ has a successor in N, and all nodes
in N⊥ have the same set of successors (denoted S⊥).

This implies that nodes not in N� only have prede-
cessors in N and nodes not in N⊥ only have successors
in N.

To convert N to a compound node, N is removed
from the VCG. A new compound node X is introduced,
with predecessors set to P� and successors set to S⊥.
The VCG for X is created by making a new exit node the
sole successor of all nodes in N⊥ and removing all pre-
decessors from all nodes in N�. This transformation can
be reversed. Figure 8 shows an example of this transfor-
mation.

S⊥1 S⊥2

N3 N4

N1 N2

N5

P�
1 P�

2

N� = {N1,N2}
N⊥ = {N3,N4}

Before conversion

S⊥1 S⊥2

X

P�
1 P�

2

X

N3 N4

N1 N2

N5

After conversion

Figure 8. Conversion to compound nodes

Equivalence In the original graph, if B(n), for any
n ∈ N is computed recursively without “expanding”
B(p) for any p /∈ N, then the resulting expression is
R(n)∨ (

V
p∈P� B(p)) (R(n) can be thought of as a term

representing the contribution of the nodes in N to B(n),
the semantic function of n), since every node in N can be
reached from N�, and every node in N� has the same set
of predecessors, P�. This further implies that for every
s ∈ S⊥, B(s) = (

V
n∈N⊥ R(n))∨ (

V
p∈P� B(p))

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

In the new graph, N is replaced by X , with prede-
cessors P� and successors S⊥. Hence, for every s ∈
S,B(s) = M(X)∨ (

V
p∈P� B(p)). Furthermore, M(X) =

B(E), where E is the exit node of the new VCG.
B(E) =

V
n∈N⊥ R(n), since the new VCG consists only

of nodes in N with the same structure as in the origi-
nal graph. Hence, in the new graph, for every s ∈ S⊥,
B(s) = (

V
n∈N⊥ R(n))∨ (

V
p∈P� B(p)), showing that the

transformation preserves the semantics of the graph.

4.5. Derived transformations

It is possible to derive a number of transformations
from the ones given above. For example, by succes-
sively rearranging pairs of nodes, the order of a sequence
can be rearrange arbitrarily. It is also possible to elim-
inate common subgraphs from the VCG either by ap-
plying conversion to compound nodes, resulting in two
identical VCGs, which can trivially be combined as one,
then combining the compound nodes, and finally revers-
ing the transformation to compound node; or by itera-
tively applying the “combination of nodes” transforma-
tions. Common terms can be factored out from conjunc-
tions and made predecessors or successors of the con-
junction by converting the conjunctions, then combining
nodes (see figure 9).

P1T

P2T

P3T

N

B

(a) Original graph

P1 P2 P3

T

N

B

(b) T as direct successor

P1T

P2T

P3T

N

B

(c) Original graph

T

P1 P2 P3

N

B

(d) T as a direct predecessor

Figure 9. Factoring out common conjunc-
tion terms

5. Case study: CVE-2003-0161

We have applied vulnerability modeling to a num-
ber of well-known vulnerabilities. In general, this has
resulted in a comprehensive understanding of the vul-
nerabilities and the measures required to prevent them.
Here, we show the majority of the analysis of CVE-
2003-0161 [21] (as designated in the Common Vul-
nerabilities and Exposures list [19]). This is a well-
known severe vulnerability in versions before 8.12.9 of
the sendmail mail server. This vulnerability is de-
scribed as follows:

The prescan() function in the address parser
(parseaddr.c) in Sendmail before 8.12.9 does
not properly handle certain conversions from
char and int types, which can cause a length
check to be disabled when Sendmail misinter-
prets an input value as a special "NOCHAR"
control value, allowing attackers to cause a
denial of service and possibly execute arbi-
trary code via a buffer overflow attack using
messages, a different vulnerability than CVE-
2002-1337.

5.1. Initial analysis

We performed a detailed analysis of the vulnerabil-
ity by code inspection and analysis of known exploits in
a debugger. This provided us with additional details:

• The prescan function tokenizes e-mail addresses by
copying the modified input to an output buffer.

• The int variable c holds the last character read.

• When copying, −1 is used as a sentinel value to
indicate that no character is to be copied into the
target buffer. This is stored in c as well.

• The assignment to c is from a signed character, so
sign extension occurs. Thus, the input character
0xff will be interpreted as “don’t copy”.

• Copying occurs in two places: one to copy charac-
ters and one to insert backslashes. The latter is not
protected by a range check, and the range check of
the former is not performed when c is −1.

• The lack of a range check when copying a back-
slash seems to not be a problem since a range check
will be triggered when copying the following char-
acter, but that range check will be skipped (and no
character copied) if c is −1.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

5.2. Vulnerability cause graph construction

VCG construction starts with a single exit node la-
beled “CVE-2003-0161”, representing the vulnerability
being modeled.

Iteration 1 The exit node is picked for further anal-
ysis. It is valid, cannot be split or converted to a com-
pound node. The predecessor candidates of the node
are its immediate causes. In this case we have deter-
mined that a buffer overflow can occur because a con-
ditional range check can be bypassed and because the
range check was not performed at the copy location.
These two causes are entered as predecessors of the exit
node. In our estimation either could have caused the
vulnerability independently of the other.

CVE-2003-0161

Range check separated
from copy location

Unsafe conditional
range check

Iteration 2 The “unsafe conditional range check” is
picked for further analysis. This does not represent a
simple cause, but a concept, so it is converted to a com-
pound node, the internals of which will be analyzed
later. We next ask the question “why is this a cause for
concern”. The answer is “because we are copying data
into an unchecked buffer of indeterminate size”. This is
a quite complicated cause, so it is entered into the graph
as a compound cause (if entered as a simple cause, it
would have been converted later).

CVE-2003-0161

Range check separated
from copy location

Unsafe conditional
range check

Copy to unchecked buffer

Iteration 3 In the third iteration “range check sepa-
rated [. . .]” is picked for further analysis. This node
does not need to be split or converted. The answer to the
question “why is this a cause for concern” is again that
we are copying data into an unchecked buffer, so “copy
to unchecked buffer” is made a predecessor of “range
check separated [. . .]”.

CVE-2003-0161

Range check separated
from copy location

Unsafe conditional
range check

Copy to unchecked buffer

Iteration 4 In the fourth iteration, we pick “copy
to unchecked buffer”, which represents data copied to
a buffer with certain dangerous properties, for further
analysis. The answer to the question “why is this a cause
for concern” is that data is being copied from an external
source to an internal buffer, which is a simple cause.

CVE-2003-0161

Range check separated
from copy location

Unsafe conditional
range check

Copy to unchecked buffer

External data copied to internal buffer

Further iterations Further iterations are not included
in this example; they identify product-specific causes
of this specific vulnerability related to the design of
sendmail.

5.3. Graph validation and optimization

Order of sequences The graph contains one sequence
that could be reordered (“external data copied [. . .]” to
“copy to unchecked buffer”), but it is already ordered
correctly: the decision to use an unchecked buffer is
made after the decision to copy data.

Other graph transformations Two nodes were con-
verted to compound nodes during the analysis. The two
remaining simple nodes cannot reasonably be split into
multiple causes at this time.

5.4. Analysis of compound nodes

Both compound nodes must be further analyzed. In
this example we show only the analysis of “unsafe con-
ditional range check”.

Iteration 1 The direct cause of an unsafe conditional
range check is that there is a conditional range check (a
range check that is only performed if certain conditions
are met).

Unsafe conditional range check

Conditional range check

Iteration 2 Next, “conditional range check node” is
picked for further analysis. It is a concern because the
range of sentinel values and range of data values overlap.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

Unsafe conditional range check

Conditional range check

Sentinel range and data range overlap

Iteration 3 Next, “sentinel range and [. . .]” is picked
for further analysis. It is a concern because a single vari-
able is used for sentinel and data values, and there is a
sign extension error in the code. This is expressed using
a conjunction. Sign extension error is a complex cause
likely to be present in the VAD, and certainly reusable
in other analyses.

Unsafe conditional range check

Conditional range check

Sentinel range and data range overlap

Sign extension errorShared variable for
data and state

At this point no further nodes are added to the
graph. As with any other VCG, this graph is subject
to validation and optimization, but this will not result in
any changes to the graph.

5.5. Discussion

When we originally applied our modeling method
to this and several other known vulnerabilities, we found
that the results gave a much more detailed understand-
ing of the vulnerabilities than was available in published
sources. For example, for CVE-2003-0161 we discov-
ered that the problem was not merely caused by having
the character 0xff in the input, but rather by having a
backslash followed by 0xff. That understanding is vi-
tal when attempting to prevent similar vulnerabilities in
the future.

We also found striking similarities between vul-
nerabilities found at different times in the same soft-
ware (e.g. CVE-2003-0694 and CVE-2003-0161 in
sendmail), clearly demonstrating that mitigation of the
original vulnerability was not performed with pre-
venting other, similar, vulnerabilities firmly in mind.
Had a deeper analysis been performed, and that used
to guide maintenance activities, several vulnerabilities
could have been eliminated at a much earlier stage than
was the case.

6. Related work

6.1. Root cause analysis

The vulnerability modeling method presented here
can be seen as a method for root cause analysis of
security-related software failures. Indeed, our method
meets many of the requirements of a root cause analysis
method. There are, however, some points which should
be highlighted.

We are concerned not only with what did cause the
vulnerability, but with what might have caused vulnera-
bility. One of the reasons for this is that in many situ-
ations, there will not be sufficient evidence available to
determine the actual causes. Furthermore, we are not
strongly focused on the root causes, since preventing
certain vulnerabilities (or even classes of vulnerabilities)
is sometimes more easily done by addressing contribut-
ing causes (e.g. through implementation-related, rather
than design or requirements-related, activities).

We require a high degree of formalism in the repre-
sentation of the analysis, as it will be used to automat-
ically generate a framework for process improvement.
Although some RCA methods use a formal representa-
tion, it is not a general requirement.

6.2. Analysis of vulnerabilities

Ours is not the only work aimed at analyzing and
preventing vulnerabilities. Schumacher outlines a gen-
eral lifecycle model (Software Improvement Feedback
Loop, SIFR) for software security [15], but lacks suf-
ficient detail to be applicable in practice. Vulnerability
modeling can fill some of the gaps in SIFR and similar
high-level models.

Many researchers have attempted to classify soft-
ware vulnerabilities [2, 4, 8]. Vulnerability modeling
could benefit from classification efforts, as vulnerabili-
ties in the same class are likely to have similar causes.
Classification efforts might benefit from vulnerability
analysis, as vulnerabilities with similar causes are likely
to be related in some way.

Others have published analysis of specific vulnera-
bilities [9, 18], which is the kind of work that can pro-
vide the information required at the initial step of vulner-
ability modeling, as it provides a thorough understand-
ing of the vulnerability in question.

6.3. Experience-based prevention approaches

Currently, most approaches to software security are
based on experience and the application of best practices
[5, 11, 12, 14, 16]. There is no doubt that these meth-

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

ods are valuable, as evidence shows that they do prevent
vulnerabilities. Nevertheless, these approaches usually
have several drawbacks. The most important drawbacks,
in our estimation, are lack of flexibility and evolution.

Best practice approaches tend to be quite difficult
to adapt to other situations (e.g. software development
processes, organizations, product types) than those for
which they were conceived. One of the primary goals of
our work is to overcome this limitation, and the applica-
tions of VCGs we have proposed [1] can be adapted to a
wide range of situations.

Best practice approaches also tend to be static. Al-
though they can be evolved to meet new challenges, they
rarely include mechanisms to do so. As a result, these
approaches are not very effective in meeting new threats.

Our approach is motivated by the need for contin-
uous improvement. It is the reason we have designed a
method for vulnerability in the first place, and the reason
for why we address analysis reuse.

7. Conclusions

Comprehensive analysis of vulnerabilities should
be an integral part of software maintenance. Effective
response to, and long-term prevention of, vulnerabili-
ties, depend on the ability to understand the causes of
vulnerabilities, and the ability to address those causes.

In this paper we have presented a systematic
method, suitable for use in the analysis phase [6] (or
equivalent) of maintenance, for analysis of software vul-
nerabilities that results in a formal model of the vulner-
ability, expressed as a vulnerability cause graph. In ad-
dition to the method, we have extended our earlier work
with significant improvements to VCGs (compound and
conjunction nodes, and a formal model and semantics).
Our method promotes reuse of analysis and over time
produces a body of knowledge of vulnerabilities and
their causes. Finally, we have applied the method to real
vulnerabilities with good results.

The next step of our work will be to apply vulnera-
bility modeling on software with high security require-
ments, developed by our industrial partners. To this end
we will implement the supporting tools required for ef-
ficient application of vulnerability modeling.

Vulnerability modeling is one part of a more com-
prehensive method for preventing vulnerabilities. Based
on the vulnerability model, it is possible to systemat-
ically (and to a large extent automatically) determine
what actions must be taken in software development and
maintenance to prevent vulnerabilities. The overall pro-
cess has been outlined in previous work [1] and will be
the subject of future articles.

References

[1] S. Ardi, D. Byers, and N. Shahmehri. Towards a
structured unified process for software security. In
Proceedings of the ICSE 2006 Workshop on Software
Engineering for Secure Systems (SESS06), 2006.

[2] T. Aslam, K. Ivan, and E. Spafford. Use of a taxonomy
of security faults. In Proceedings of the 19th National
Computer Security Conference, 1996.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] M. Bishop. Vulnerabilities analysis. In Web
Proceedings of the 2nd International Workshop on
Recent Advances in Intrusion Detection, 1999.

[5] M. Howard. Building more secure software with
improved development processes. Security & Privacy
Magazine, 2(6):63–65, Nov-Dec 2004.

[6] IEEE Std. 1219-1998. Standard for Software
Maintenance. IEEE Computer Society Press, 1998.

[7] I. Jacobson, G. Booch, and J. Rumbaugh. Unified
Software Development Process. Addison-Wesley, 1999.

[8] I. Krsul. Software Vulnerability Analysis. PhD thesis,
Purdue University, 1998.

[9] I. Krsul, E. Spafford, and M. Tripunitra. An analysis of
some software vulnerabilities. In Proceesings of the
21st NIST-NCSC National Information Systems
Symposium, pages 111–125, 1998.

[10] R. C. Linger. Cleanroom process model. IEEE
Software, 11(2):50–56, March 1994.

[11] S. B. Lipner. The trustworthy computing security
development lifecycle. In Proceedings of the 20th
Annual Computer Security Applications Conference,
pages 2–13. IEEE Computer Society, December 2004.

[12] G. McGraw. Software security. Security & Privacy
Magazine, 2(2):80–83, Mar-Apr 2004.

[13] S. R. Palmer and J. M. Felsing. A Practical Guide to
Feature-Driven Development. Prentice-Hall, 2002.

[14] S. T. Redwine and N. Davis. Processes to Produce
Secure Software, appendix B. Task Force on Security
Across the Software Development Lifecycle, 2004.

[15] M. Schumacher, R. Ackermann, and R. Steinmetz.
Towards security at all stages of a system’s life cycle.
In Proceedings of the International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), 2000.

[16] Secure Software, Inc. The CLASP application security
process. http://www.securesoftware.com/
(accessed April 2006).

[17] SecurityFocus. SecurityFocus vulnerability database.
http://www.securityfocus.com/
vulnerabilities.

[18] E. Spafford. The internet worm program: An analysis.
Computer Communication Review, 19(1), 1989.

[19] The common vulnerabilities and exposures list.
http://cve.mitre.org/.

[20] US-CERT/NIST. National vulnerability database.
http://nvd.nist.gov/.

[21] US-CERT/NIST. Vulnerability summary
CVE-2003-0161. http://nvd.nist.gov/nvd.
cfm?cvename=CVE-2003-0161.

22nd IEEE International Conference on Software Maintenance (ICSM'06)
0-7695-2354-4/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

