
Information page for written
examinations at Linköping University

Examination date 2016-08-24

Room (1) TER4
Time 8-12
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7 

Teacher
responsible/contact
person during the exam
time

Ulf Kargén

Contact number during
the exam time 013-285876 

Visit to the examination
room approximately 09:00, 11:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag



LiTH, Linköpings tekniska högskola 

IDA, Institutionen för datavetenskap 

Nahid Shahmehri 

 

Written exam 

TDDC90 Software Security 

2016-08-24 

 

 

 

Permissible aids 

Dictionary (printed, NOT electronic) 

 

Teacher on duty 

Ulf Kargén, 013-285876 

 

Instructions and grading 

You may answer in Swedish or English. 

 

There are 7 questions on the exam. Your grade will depend on the total points you score. The 

maximum number of points is 40. The following grading scale is preliminary and might be 

adjusted during grading. 

 

Grade 3 4 5 

Points required 20 29 35 

 

 

 



Question 1: Secure software development (4 points) 

a) During which phase or phases of SDL are bug bars evaluated? 

b) Explain by example how attack trees are created (come up with a scenario on your 

own, and make sure that you explain all the details of attack trees). 

Question 2: Exploits and mitigations (5 points) 

a) Clearly explain the purpose of using a NOP-sled when exploiting a stack based buffer 

overflow. 

b) Address Space Layout Randomization (ASLR) is generally less effective on 32-bit 

systems, compared to 64-bit systems. Explain why. 

Question 3: Design patterns (5 points) 

Explain the following two design patterns: secure factory and privilege separation. For each 

pattern your answer should include a diagram, pseudo-code and an explanation of why and 

when the pattern should be used. 

Question 4: Web security (6 points) 

The developers of a website are considering adding functionality that would allow users to 

upload files to the server, that later will be downloaded and used by other users. There are 

several vulnerabilities that could be introduced by allowing this, please explain five of these. 

Your answer should include an explanation of the vulnerabilities, the possible consequences 

and how they can be mitigated. 



Question 5: Static analysis (7 points)

The following function computes the nth element of the Fibonacci sequence “0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, ...” (i.e., the sequence starting with a0 = 0, a1 = 1 and an = an−1 + an−2 for n ≥ 2).

Here, int denotes integers with an absolute value that can be arbitrarily large (i.e., no integer over-
flows).

1 int fib(int n){
2 if(n <= 0)
3 return 0;
4 int tmp = 0;
5 int a1 = 1;
6 int a2 = 0;
7 while (n > 0){
8 tmp = a1 + a2;
9 a2 = a1;

10 a1 = tmp;
11 assert(a2 <= a1);
12 n = n - 1;
13 }
14 assert (0 <= a1);
15 return a1;
16 }

We aim to check the assertions (a2 <= a1) at line 11 and (0 <= a1) at line 14. In the first part, we
consider the following two approaches for checking a given assertion:

• Symbolic execution: builds a path formula obtained by violating the assertion after following a
path through conditional statements (such as the one at line 2) and loops (such as the one at line
7) by choosing some outcome for the involved condition (for example, choosing (n ≤ 0) at line 7 in
order to exit the loop and get to line 14).

• Abstract interpretation: here using the abstract values depicted in the lattice above. Intuitively, the
abstract values are used to over-approximate, in an as precise manner as possible, the information
of whether a variable is 0, positive, negative, or some combinations of these.

Questions:

1. Consider the assertion (0 <= a1) at line 14:

(a) Give a path formulas that would correspond to taking the else outcome of the if statement
(line 2), entering the loop once (i.e., one iteration of the loop), exiting the loop to get to line
14 and violating the assertion there (i.e. violating the (0 <= a1) assertion). (2 pt)

(b) Can abstract interpretation, based on the sign abstract domain mentioned above, establish
that the assertion is never violated? explain by annotating each line with the abstract element
obtained at the end of such an analysis. (1pt)

2. Consider the assertion (a2 <= a1) at line 11:

(a) Give P10 defined as the weakest precondition of the predicate (a2 <= a1) with respect to
the assignment a1 = tmp at line 10; then give P9 defined as the weakest precondition of the
predicate P10 with respect to the assignment a2 = a1 at line 9; finally give P8 defined as the
weakest precondition of the predicate P9 with respect to the assignment tmp = a1 + a2 at
line 8. (2pt)

(b) Suppose the program variables satisfy P8 just before the assigment tmp = a1 + a2 at line 8.
If the program continues for three steps, can it violate the assertion (a2 <= a1) at line 11?
(1pt)

(c) What should a2 satisfy at the entrance of the loop at line 8 in order for P8 to always hold?
(1pt)

1



Question 6: Security testing (7 points) 

a) Briefly explain two general reasons (i.e. not related to specific vulnerability types) 

why automated fuzzing of web applications is often harder than fuzzing e.g. a desktop 

program written in C.  

b) Consider cross-site scripting (XSS) vulnerabilities. Which of the two vulnerability 

types Stored XSS and Reflected XSS is generally easier to detect using a black-box web 

application fuzzer? Clearly motivate your answer. 

c) Explain why detecting cross site request forgery (CSRF) bugs using automated testing 

is often very difficult. 

Question 7: Vulnerabilities in C/C++ programs (6 points) 

The code on the next page shows the beginning of a function that receives and processes a 

video stream from a potentially untrusted source over a network (e.g. the internet). The 

specific nature of the processing of video streams is not important here. The function contains 

at least one serious security bug. 

a) Identify and name the vulnerability. Clearly explain how an attacker could trigger the 

bug. 

b) Explain how to fix the bug. 

 

 

 



#define BUF_SIZE 2000000 
 
// Represents a video stream. Details unimportant here. 
struct Stream; 
 
enum { 
   QUALITY_LOW  = 1, 
   QUALITY_MED  = 2, 
   QUALITY_HIGH = 3 
}; 
 
// Receive maximum 'size' bytes from stream 's' into memory pointed to  
// by 'dst'. Returns the number of bytes actually read from stream. (Can be  
// lower than 'size' if more data than what was available was requested.) 
size_t receive(const struct Stream* s, size_t size, void* dst); 
 
// Receives a video stream and processes it.  
// Returns -1 in case of error, 0 otherwise. 
int handleStream(const struct Stream* s) 
{ 
   char buffer[BUF_SIZE]; 
 
   int quality; 
   size_t n_seconds; 
   size_t n_received; 
   size_t data_rate; 
 
   // Read header fields from stream: 
 
   // First quality setting ... 
   n_received = receive(s, sizeof(quality), &quality); 
   if(n_received != sizeof(quality)) { 
      printf("Transmission error!\n"); 
      return -1; 
   } 
 
   // ... and then number of seconds in stream 
   n_received = receive(s, sizeof(n_seconds), &n_seconds); 
   if(n_received != sizeof(n_seconds)) { 
      printf("Transmission error!\n"); 
      return -1; 
   } 
    
   switch(quality) { 
      case QUALITY_LOW: 
         data_rate = 8192; 
         break; 
      case QUALITY_MED: 
         data_rate = 16384; 
         break; 
      case QUALITY_HIGH: 
         data_rate = 32768; 
         break; 
      default: 
         printf("Unknown quality setting!\n"); 
         return -1; 
   } 
 
   if(n_seconds*data_rate > BUF_SIZE) { 
      printf("Too much data!\n"); 
      return -1; 
   } 
 
   // Recieve stream data into 'buffer', one second at a time 
   for(size_t i = 0; i < n_seconds; i++) { 
      n_received = receive(s, data_rate, buffer + i*data_rate); 
      if(n_received != data_rate) { 
         printf("Transmission error!\n"); 
         return -1; 
      } 
   } 
 
   // Continue processing data... 


