
Information page for written
examinations at Linköping University

Examination date 2017-01-14

Room (1) TER1(61)
Time 8-12
Course code TDDC90
Exam code TEN1
Course name
Exam name

Software Security (Software Security)
Written examination (Skriftlig tentamen)

Department IDA
Number of questions in
the examination 7

Teacher
responsible/contact
person during the exam
time

Ulf Kargén

Contact number during
the exam time 013-285876

Visit to the examination
room approximately 9:30, 11:00

Name and contact details
to the course
administrator
(name + phone nr + mail)

Madeleine Häger Dahlqvist,
013-282360,
madeleine.hager.dahlqvist@liu.se

Equipment permitted Dictionary (printed, NOT electronic)
Other important
information
Number of exams in the
bag

LiTH, Linköpings tekniska högskola

IDA, Institutionen för datavetenskap

Nahid Shahmehri

Written exam

TDDC90 Software Security

2017-01-14

Permissible aids

Dictionary (printed, NOT electronic)

Teacher on duty

Ulf Kargén, 013-285876

Instructions and grading

You may answer in Swedish or English.

There are 7 questions on the exam. Your grade will depend on the total points you score. The

maximum number of points is 40. The following grading scale is preliminary and might be

adjusted during grading.

Grade 3 4 5

Points required 20 29 35

Question 1: Secure software development (4 points)

a) Excluding the pre-SDL and final security review phases, SDL consists of five phases.

Name the second and third phase, and give a brief description of them (max 60 words

for each phase).

b) Map each of the following activities to the most appropriate phase of SDL: fuzz testing

and static analysis.

Question 2: Exploits and mitigations (5 points)

a) A use-after-free vulnerability can sometimes be used by an attacker to redirect the

flow of execution to an arbitrary address. Explain how, using an example. (You don’t

need to explain the whole process of achieving arbitrary code execution, just how to

redirect the execution to an address of the attackers choosing.)

b) Which of the two following mitigations would provide the biggest obstacle for an

attacker trying to exploit a use-after-free bug? Briefly explain why.

i. ASLR

ii. Stack Cookies

Question 3: Design patterns (5 points)

Explain the following two design patterns: secure factory and clear sensitive information. For

each pattern your answer should include a diagram, pseudo-code and an explanation of why

and when the pattern should be used.

Question 4: Web security (6 points)

a) Using pseudo-code, write server-side code that contains a vulnerability that allows for

SQL injections. Your code should be detailed enough that it is clear how SQL

injections can be made. Explain your code in English. Give an example of a client side

request that would exploit the vulnerability in your code. Finally, suggest a

modification of your code such that the vulnerability is removed. Explain why your

mitigation strategy works.

b) At least one of the (web) vulnerabilities discussed in this course can be used to stage a

denial of service attack. Explain in detail how this can be achieved (using pseudo-code

and English). Your response should clearly explain the vulnerability, the conditions

for the attack to succeed and how the attack is performed.

Question 5: Static analysis (7 points)

The following function computes the nth positive multiple of 3. Here, int denotes integers with an
absolute value that can be arbitrarily large (i.e., no integer overflows).

1 int mult_by_3(int n){
2 if(n < 0)
3 return -1;
4 int rstl = 0;
5 int i = n;
6 while (i != 0){
7 rslt = rslt + 3;
8 i = i - 1;
9 }

10 assert(i == 0);
11 assert(rslt == 3*n);
12 return rslt;
13 }

We aim to check the assertions (i == 0) at line 10 and (rslt == 3*n) at line 11. In the first part,
we consider the following two approaches for checking a given assertion:

• Symbolic execution: builds a path formula obtained by violating the assertion after following a
path through conditional statements (such as the one at line 2) and loops (such as the one at line
6) by choosing some outcome for the involved conditions.

• Abstract interpretation: here using the abstract values depicted in the lattice above. Intuitively, the
abstract values are used to over-approximate, in an as precise manner as possible, the information
of whether a variable is 0, positive, negative, or some combinations of these.

Questions:

1. Consider the assertion (i == 0) at line 10:

(a) Give a path formulas that would correspond to taking the else outcome of the if statement
(line 2), entering the loop once (i.e., one iteration of the loop), exiting the loop to get to line
10 and violating the assertion there (i.e. violating the (i == 0) assertion). (2 pt)

(b) Can abstract interpretation, based on the sign abstract domain mentioned above, establish
that the assertion (i == 0) is never violated? explain by annotating each line with the
abstract element obtained at the end of such an analysis. (2pt)

2. Consider the assertion (rslt == 3*n) at line 11:

(a) Give the predicate P7 defined as the weakest precondition of the predicate Inv = ((rslt

== 3* (n-i)) && (0 ≤ i) && (i ≤ n)) with respect to the assignment i= i - 1 at line
8; then give P6 defined as the weakest precondition of the predicate P7 with respect to the
assignment rslt= rslt + 3 at line 7? (2pt)

(b) Inv is in fact an invariant of the loop (lines 6-9). Using this fact, can you argue why the
assertion (rslt == 3*n) at line 11 holds? (1pt)

Question 6: Security testing (7 points)

a) Describe the main components in a typical fuzzing framework. Use one or two

sentences per component. Overly long answers may lead to a reduction of points!

b) Contrast generation based and mutation based fuzzing, and briefly describe their main

strengths and weaknesses.

c) Depth-first-search and breadth-first-search are two simple search strategies in concolic

testing. Neither of them work that well in practice on large real-life programs. Explain

why.

Question 7: Vulnerabilities in C/C++ programs (6 points)

The code on the next page shows a simple program that prints a list of floating-point values,

and allows the user to specify a few command-line options to control how printed values are

formatted. The program has the following command-line options:

-f INPUT INPUT specifies name of input file. Mandatory.
-e If this flag is given, use scientific notation when printing values.
-p PREC PREC specifies the precision as the number of digits to print after the decimal

point. PREC must be an integer value. Default: 8

For example, given the options -f values.dat -p 3 the values in “values.dat” would be

formatted something like this:

1: 1.234
2: 0.567
3: 89.000
...

The program contains at least one serious vulnerability.

a) Identify and name the vulnerability.

b) Give an example of an input that would demonstrate the vulnerable behaviour.

c) Explain (using English and/or pseudo code) how to fix the bug.

You can assume that all comments given in the code are correct and truthful.

// Omitted #include:s to save space

#define FORMAT_MAX 100
#define VALUES_MAX 1000

int use_exp = 0;
const char* precision = "8";
FILE* file = NULL;

// Prints given error message and terminates program
void exit_error(const char* message) {
 printf("%s", message);
 exit(1);
}

// Parses command line options. 'opt' is the option character, and, for options
// taking arguments, 'data' is guaranteed to point to a valid C-string. This
// string pointer is also guaranteed to be valid during the entire program execution.
// For example, given the command line argument -x ABC, we will have opt='x' and data="ABC".
void parse_options(char opt, const char* data) {
 switch (opt) {
 case 'e':
 use_exp = 1;
 break;
 case 'p':
 precision = data;
 if(precision[0] < '0' || precision[0] > '9')
 exit_error("Error: non-numeric precision option.\n");
 break;
 case 'f':
 file = fopen(data, "r"); // Open file for reading
 if(file == NULL)
 exit_error("Error opening file.\n");
 break;
 default:
 exit_error("Error: incorrect commandline arguments.\n");
 }
}

// Reads a maximum of 'max_values' float values from file stream 'f' into buffer 'destination'.
// Directly terminates program on any error. Returns number of values actually read.
// (Implementation details are unimportant.)
size_t read_values(FILE* f, float* destination, size_t max_values);

int main(int argc, char** argv)
{
 // Prefix of format specification.
 // %d prints an integer argument. %.Xf prints a floating-point argument,
 // using X digits after the decimal point, e.g. "%.8f".
 const char* prefix = "%d: %.";
 const size_t prefix_len = 6;
 const size_t suffix_len = 2;

 char format[FORMAT_MAX];

 float values[VALUES_MAX];
 size_t n_values;

 size_t i;
 char c;

 /*** Retrieve command line arguments and send to parse_options. ***/
 /*** This code can be assumed to be correct and safe. ***/
 while ((c = getopt (argc, argv, "p:f:e")) != -1) {
 parse_options(c, optarg);
 }
 /**/
 if(file == NULL)
 exit_error("Error: no input file specified.\n");

 if(strlen(precision) > FORMAT_MAX - prefix_len - suffix_len - 1)
 exit_error("Error: too long format specification.\n");

 // Copy prefix into 'format'
 strcpy(format, prefix);

 // Concatenate contents of 'precision' after prefix
 strcat(format, precision);

 // Finally, concatenate suffix to end of string
 if(use_exp)
 strcat(format, "e\n"); // %e formats using scientific notation
 else
 strcat(format, "f\n"); // %f formats as regular floating point

 n_values = read_values(file, values, VALUES_MAX);

 for(i = 0; i < n_values; i++) {
 printf(format, (int)i, values[i]);
 }

 return 0;
}

